An Extremal Problem for Vertex Decomposition of Complete Multipartite Graphs

Tomoki Nakamigawa

Shonan Institute of Technology

September 13, 2013
Definition

For a graph G and a family of graphs \mathcal{H}, we call a vertex decomposition $V(G) = V_1 \cup \cdots \cup V_\ell$ an \mathcal{H}-decomposition, if $G[V_i] \in \mathcal{H}$ for $1 \leq i \leq \ell$, where $G[V_i]$ is a subgraph of G induced by V_i.

In the following, we consider the case where G is a complete multipartite graph and \mathcal{H} consists of graphs with a common number of vertices. Our aim is to find sufficient conditions for the existence of an \mathcal{H}-decomposition having some nice properties.
Definition

For a graph G and a family of graphs \mathcal{H}, we call a vertex decomposition $V(G) = V_1 \cup \cdots \cup V_\ell$ an \mathcal{H}-decomposition, if $G[V_i] \in \mathcal{H}$ for $1 \leq i \leq \ell$, where $G[V_i]$ is a subgraph of G induced by V_i.

In the following, we consider the case where G is a complete multipartite graph and \mathcal{H} consists of graphs with a common number of vertices.

Our aim is to find sufficient conditions for the existence of an \mathcal{H}-decomposition having some nice properties.
Vertex decomposition of a complete multipartite graph into two kinds of subgraphs of the same order.

Theorem 1 (Nakamigawa, 2010)

Let k and ℓ be positive integers. Then for any complete multipartite graph G of order $k\ell$, there exists a pair of complete multipartite graphs H_1, H_2 of order k such that G admits a $\{H_1, H_2\}$-decomposition.
a complete multipartite graph ⇔ a set of piles of coins

Example of Theorem 1 \((k = 5, \ell = 3)\)

\[G = (9, 3, 2, 1) \]

\[H_1 \]

\[H_1 \]

\[H_2 \]
Notation and Definition

- $K_{n_1,n_2,...,n_s}$ is denoted by (n_1, n_2, \ldots, n_s).
- Furthermore, if t partite sets have a common order a, we write as (\ldots, a^t, \ldots) instead of $(\ldots, a, a, \ldots, a, \ldots)$.

Let $A_k = \{ (a, 1_k - a) : 1 \leq a \leq k \}$.

Namely, A_k is a family of graphs of order k which consists of a complete graph, an empty graph and joins of a complete graph and an empty graph.
Notation and Definition

- $K_{n_1, n_2, \ldots, n_s}$ is denoted by (n_1, n_2, \ldots, n_s).

- Furthermore, if t partite sets have a common order a, we write as (\ldots, a^t, \ldots) instead of $(\ldots, a, a, \ldots, a, \ldots)$.

- Let $A_k = \{(a, 1^{k-a}) : 1 \leq a \leq k\}$.
 Namely, A_k is a family of graphs of order k which consists of a complete graph, an empty graph and joins of a complete graph and an empty graph.
Main Results

Theorem 2

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits an A_k-decomposition.
Theorem 2

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits an A_k-decomposition.

We will prove a slightly stronger statement.

Proposition 3

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits a \{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}-decomposition with some positive integer a.
Theorem 2

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits an A_k-decomposition.

An extremal example for Theorem 2 (and Proposition 3) is $G = ((k - 1)(k - 3) - 1, k - 2)$ for $\ell = k - 3$.
Tightness of Theorem 2

Theorem 2

Let \(k \geq 4 \). If \(\ell \geq k - 2 \), then every complete multipartite graph of order \(k\ell \) admits an \(\mathcal{A}_k \)-decomposition.

An extremal example for Theorem 2 (and Proposition 3) is

\[
G = ((k - 1)(k - 3) - 1, k - 2) \text{ for } \ell = k - 3.
\]

- Since \(G \) has only two partite sets, \(G \) contains no copy of \((a, 1^{k-a})\) for \(a \leq k - 2 \).
- Since \(G \) has at most \(k - 4 \) vertex disjoint copies of \((k - 1)\), \(G \) has no \{\((k), (k - 1, 1)\)\}-decomposition.
Lemma (Clique Decomposition)

Let ℓ be a positive integer. Let G be a complete multipartite graph of order n such that the order of every partite set of G is at most ℓ. Then there exists a vertex decomposition $V(G) = V_1 \cup \cdots \cup V_\ell$ such that $G[V_i] \cong (1^k)$ or (1^{k+1}), where $k = \lfloor n/\ell \rfloor$, for $1 \leq i \leq \ell$.

Example of Lemma (\(\ell = 8\))

\[
G = (7, 7, 5, 3) \\
V_1 \ V_2 \ V_3 \ V_4 \ V_5 \ V_6 \ V_7 \ V_8
\]
Proof of Proposition 3

Lemma (Clique Decomposition)

Let ℓ be a positive integer. Let G be a complete multipartite graph of order n such that the order of every partite set of G is at most ℓ. Then there exists a vertex decomposition $V(G) = V_1 \cup \cdots \cup V_\ell$ such that $G[V_i] \cong (1^k)$ or (1^{k+1}), where $k = \lfloor n/\ell \rfloor$, for $1 \leq i \leq \ell$.

Example of Lemma ($\ell = 8$)

$G = (7, 7, 5, 3)$
Proof of Proposition 3

Proposition 3

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$-decomposition with some positive integer a.

Proof. Let G be a complete multipartite graph of order $k\ell$ with partite sets P_1, \ldots, P_s. Let us define a as the maximum integer x such that G contains ℓ vertex disjoint copies of (x). If $a \geq k - 1$, we have a $\{(k), (k-1, 1)\}$-decomposition of G. Hence, we may assume $a \leq k - 2$.

T. Nakamigawa (SIT)
Decomposition of Complete Multipartite Graphs
September 13, 2013 9 / 23
Proof.

- Let G be a complete multipartite graph of order $k\ell$ with partite sets P_1, \ldots, P_s.
- Let us define a as the maximum integer x such that G contains ℓ vertex disjoint copies of (x).
- If $a \geq k - 1$, we have a $\{(k), (k - 1, 1)\}$-decomposition of G. Hence, we may assume $a \leq k - 2$.
Proof of Proposition 3

Proposition 3

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$-decomposition with some positive integer a.

Proof.

- Choose a vertex decomposition $V(G) = V_0 \cup V_1 \cup \cdots \cup V_\ell$ of G such that
 - (1) $G[V_i] \cong (a)$ or $(a + 1)$ for $1 \leq i \leq \ell$, and
 - (2) $|V_0|$ is the minimum with respect to (1).
- Define $r = \max\{|V_0 \cap P_j| : 1 \leq j \leq s\}$.
- **Claim.** $r \leq \ell$.
Proof of Proposition 3

Proposition 3

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$-decomposition with some positive integer a.

Proof.

- **Claim.** $r \leq \ell$.

![Diagram of complete multipartite graph decomposition]
Proof of Proposition 3

Proposition 3

Let \(k \geq 4 \). If \(\ell \geq k - 2 \), then every complete multipartite graph of order \(k\ell \) admits a \(\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}\)-decomposition with some positive integer \(a \).

Proof.

- **Claim.** \(r \leq \ell \).
Proof of Proposition 3

Proposition 3

Let $k \geq 4$. If $\ell \geq k - 2$, then every complete multipartite graph of order $k \ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$-decomposition with some positive integer a.

Proof.

- **Claim.** $r \leq \ell$.
Proof of Proposition 3

Proposition 3

Let \(k \geq 4 \). If \(\ell \geq k - 2 \), then every complete multipartite graph of order \(k\ell \) admits a \(\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\} \)-decomposition with some positive integer \(a \).

Proof.

- By Clique Decomposition Lemma, \(V_0 \) can be decomposed into \(\ell \) copies of \((1^{k-a}) \) and \((1^{k-(a+1)}) \).
Proof of Proposition 3

Proposition 3

Let \(k \geq 4 \). If \(\ell \geq k - 2 \), then every complete multipartite graph of order \(k\ell \) admits a \(\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}\)-decomposition with some positive integer \(a \).

Proof.

- By Clique Decomposition Lemma, \(V_0 \) can be decomposed into \(\ell \) copies of \((1^{k-a}) \) and \((1^{k-(a+1)}) \).
- Combining a copy of \((1^{k-a}) \) in \(V_0 \) with a copy of \((a) \), we have a copy of \((a, 1^{k-a}) \).
- Combining a copy of \((1^{k-(a+1)}) \) in \(V_0 \) with a copy of \((a + 1) \), we have a copy of \((a + 1, 1^{k-(a+1)}) \) or \((a + 2, 1^{k-(a+2)}) \). \(\square\)
Proposition 4

Let $k \geq 4$. If $\ell \geq 2k - 6$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)})\}$-decomposition with some positive integer a.

The bound of Proposition 4 is tight. An extremal example is $G = (\binom{k-1}{k-3} - 1, \binom{k-1}{k-3} - 1, k-4)$ for $\ell = 2k - 7$.
Proposition 4

Let $k \geq 4$. If $\ell \geq 2k - 6$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)})\}$-decomposition with some positive integer a.

The bound of Proposition 4 is tight. An extremal example is $G = ((k - 1)(k - 3) - 1, (k - 1)(k - 3) - 1, k - 4)$ for $\ell = 2k - 7$.

Proposition 4

Let $k \geq 4$. If $\ell \geq 2k - 6$, then every complete multipartite graph of order $k\ell$ admits a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)})\}$-decomposition with some positive integer a.

The bound of Proposition 4 is tight. An extremal example is $G = ((k - 1)(k - 3) - 1, (k - 1)(k - 3) - 1, k - 4)$ for $\ell = 2k - 7$.

- Suppose to the contradiction that G has a $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)})\}$-decomposition.
- Since G has only at most three partite sets, we have $a \geq k - 2$.
- Since G contains at most $2k - 8 < \ell$ vertex disjoint copies of $(k - 1)$, we have $a = k - 2$.
- We may assume the 1st partite set is decomposed into $k - 3$ copies of $(k - 2)$ and the 2nd partite set is decomposed into $k - 4$ copies of $(k - 2)$. But the remaining vertices of the 2nd partite set is $2k - 6 > \ell$, there exists no $\{(k - 1, 1), (k - 2, 1^2)\}$-decomposition.
We can decrease the cardinality of \mathcal{H} to three.

Proposition 5

Let $k \geq 4$. If $\ell \geq (k - 2)^2$, then every complete multipartite graph of order $k\ell$ admits a $\{(k), (k - 1, 1), (1^k)\}$-decomposition.
We can decrease the cardinality of \mathcal{H} to three.

Proposition 5

Let $k \geq 4$. If $\ell \geq (k - 2)^2$, then every complete multipartite graph of order $k\ell$ admits a $\{(k), (k - 1, 1), (1^k)\}$-decomposition.

The bound of Proposition 5 is tight. An extremal example is

$$G = ((k - 1) ((k - 2)^2 - 1) - 1, (k - 2)^{k-2}),$$

which has $k - 1$ partite sets, for $\ell = (k - 2)^2 - 1$.
We can decrease the cardinality of \mathcal{H} to three.

Proposition 5

Let $k \geq 4$. If $\ell \geq (k - 2)^2$, then every complete multipartite graph of order $k\ell$ admits a $\{(k), (k - 1, 1), (1^k)\}$-decomposition.

The bound of Proposition 5 is tight. An extremal example is $G = ((k - 1)((k - 2)^2 - 1) - 1, (k - 2)^{k-2})$, which has $k - 1$ partite sets, for $\ell = (k - 2)^2 - 1$.

- G has no copy of (1^k).
- Since G has at most $\ell - 1$ vertex disjoint copies of $(k - 1)$, there is no $\{(k), (k - 1, 1)\}$-decomposition.
Related Results

The next result is a refinement of Proposition 5.

Proposition 6

Let $k \geq 4$. If $\ell \geq \frac{1}{2}(3k^2 - 9k + 4)$, then every complete multipartite graph of order $k\ell$ admits a $\{(k), (k - 1, 1)\}$-decomposition or a $\{(k), (1^k)\}$-decomposition.
Related Results

The next result is a refinement of Proposition 5.

Proposition 6

Let \(k \geq 4 \). If \(\ell \geq \frac{1}{2}(3k^2 - 9k + 4) \), then every complete multipartite graph of order \(k\ell \) admits a \((k), (k - 1, 1)\)-decomposition or a \((k), (1^k)\)-decomposition.

The bound of Proposition 6 is tight. An extremal example is \(G = (k(k - 1)(k - 3) - 1, (k - 1)^2 - 1, (k - 2)(k - 1) - 1, (k - 3)(k - 1) - 1, \ldots, 2(k - 1) - 1, 1^{(k^2 - k - 4)/2}) \) for \(\ell = (1/2)(3k^2 - 9k + 2) \).
Proposition 6

Let \(k \geq 4 \). If \(\ell \geq \frac{1}{2}(3k^2 - 9k + 4) \), then every complete multipartite graph of order \(k\ell \) admits a \(\{(k), (k - 1, 1)\}\)-decomposition or a \(\{(k), (1^k)\}\)-decomposition.

The bound of Proposition 6 is tight. An extremal example is
\[
G = (k(k - 1)(k - 3) - 1, (k - 1)^2 - 1, (k - 2)(k - 1) - 1, (k - 3)(k - 1) - 1, \ldots, 2(k - 1) - 1, 1^{(k^2 - k - 4)/2}) \text{ for } \ell = (1/2)(3k^2 - 9k + 2).
\]

- Since \(G \) has at most \(\ell - 1 \) vertex disjoint copies of \((k - 1) \), there is no \(\{(k), (k - 1, 1)\}\)-decomposition.
- The maximum number of vertex disjoint copies of \((k) \) in \(G \) is \(\ell - (k - 2) \).
The next result is a refinement of Proposition 5.

Proposition 6

Let \(k \geq 4 \). If \(\ell \geq \frac{1}{2}(3k^2 - 9k + 4) \), then every complete multipartite graph of order \(k\ell \) admits a \(\{(k), (k - 1, 1)\} \)-decomposition or a \(\{(k), (1^k)\} \)-decomposition.

The bound of Proposition 6 is tight. An extremal example is

\[
G = (k(k - 1)(k - 3) - 1, (k - 1)^2 - 1, (k - 2)(k - 1) - 1, (k - 3)(k - 1) - 1, \ldots, 2(k - 1) - 1, 1^{(k^2 - k - 4)/2}) \text{ for } \ell = (1/2)(3k^2 - 9k + 2).
\]

- For \(k - 2 \leq x \leq \ell \), let us remove \(\ell - x \) vertex disjoint copies of \((k) \) from \(G \), and let us denote the possible maximum number of the remaining vertices over all partite sets by \(r(x) \).
- What we want to show is \(x < r(x) \) for any \(x \) with \(k - 2 \leq x \leq \ell \), and this can be proved by induction on \(x \).
Discussion

How about **graphs** instead of complete multipartite graphs?

Remark (Hell-Manoussakis-Tuza, 1994)

*For any integers k and t, and sufficiently large multiple n of k, every t-edge colored complete graph of order n has a vertex decomposition into monochromatic stars on k vertices such that the endpoints of each star induce a monochromatic complete graph of order $k - 1$.***
How about **graphs** instead of complete multipartite graphs?

Remark (Hell-Manoussakis-Tuza,1994)

For any integers \(k \) and \(t \), and sufficiently large multiple \(n \) of \(k \), every \(t \)-edge colored complete graph of order \(n \) has a vertex decomposition into monochromatic stars on \(k \) vertices such that the endpoints of each star induce a monochromatic complete graph of order \(k - 1 \).
How about **graphs** instead of complete multipartite graphs?

Remark (Hell-Manoussakis-Tuza, 1994)

For any integers k and t, and sufficiently large multiple n of k, every t-edge colored complete graph of order n has a vertex decomposition into monochromatic stars on k vertices such that the endpoints of each star induce a monochromatic complete graph of order $k - 1$.

- We focus on the case $t = 2$.
- Define $f(k)$ as the minimum integer ℓ such that every graph of order $k\ell$ admits a $\{K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\}$-decomposition.
- By the above remark, $f(k) < \infty$.
Discussion

$f(k)$ is defined as the minimum integer ℓ such that every graph of order $k\ell$ admits a \{\(K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\}\}-decomposition.

Observation

\[c_1 2^{k/2} \leq f(k) \leq c_2 \frac{2^{4k}}{k}.\]
Discussion

$f(k)$ is defined as the minimum integer ℓ such that every graph of order $k\ell$ admits a \{\(K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\}\}-decomposition.

Observation

$$c_1 2^{k/2} \leq f(k) \leq c_2 \frac{2^{4k}}{k}.$$

Lower Bound.

- \((k - 1)\ell + 1 < R(k - 1, k - 1) \Rightarrow \ell < f(k).\)
Discussion

$f(k)$ is defined as the minimum integer ℓ such that every graph of order $k\ell$ admits a \{\(K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\)\}-decomposition.

Observation

\[c_1 2^{k/2} \leq f(k) \leq c_2 \frac{2^{4k}}{k}.

Upper Bound.

- Let G be a graph of order $n = k\ell$ sufficiently large.
- Let $d = R(k, k) - k$.
- Take d vertex disjoint copies of K_{2k-1} or $\overline{K_{2k-1}}$, which may be mixed, from G.
- From the remaining vertices, remove copies of K_k or $\overline{K_k}$, until the number of the remaining vertices is d.
- By combining a copy of $(K_{2k-1} \text{ or } \overline{K_{2k-1}})$ and a remaining singleton, we can build a copy of $(K_k \text{ or } \overline{K_k})$ and a copy of $(K_{1,k-1} \text{ or } \overline{K_{1,k-1}})$.
Open Problem

$f(k)$ is defined as the minimum integer ℓ such that every graph of order $k\ell$ admits a $\{K_k, \overline{K_k}, K_{1,k-1}, \overline{K_{1,k-1}}\}$-decomposition.

Observation

$c_12^{k/2} \leq f(k) \leq c_2\frac{2^{4k}}{k}$.

Problem

*Find a better upper (or lower) bound of $f(k)$.***