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1. Introduction

We study smoothing e�ect for the following nonlinear dispersive equation of the Benjamin-

Ono type:

(
@tu+Hx@

2
xu+ @xu

2 = 0; t 2 (�T; T ); x 2 R;

v(0; x) = �(x);
(1.1)

where u(t; x) : R � R ! R is a unknown function and Hx denotes the Hilbert transform

de�ned by Hxv = F �
ij�j

v̂. This equation arises in the water wave theory and u describes

long internal gravity wave in deep strati�ed uid (see [1], [14]). Our problem here is to

investigate a su�cient condition of the initial data � on which the solution has regularizing

property up to analyticity.

Our method is based on an operator method which is common to the cases of the KdV

equation or nonlinear Schr�odinger equations: We introduce the generator of space-time

dilation P = 2t@t + x@x that plays a compensating role where the main linear operator

L = @t + Hx@
2
x can not gain the regularity. As a consequence, we observe analytic

smoothing e�ect for the solution to (1.1) with an initial data having a singularity at one

point. Let Hs = Hs(R) be the Sobolev space of order s de�ned by

kfkHs � kh�isf̂k2;

where f̂ = Ff denotes the Fourier transform of f and h�i = (1 + j � j2)1=2.

Theorem 1.1. Let s > 3=2. Suppose that for some A0 > 0, the initial data � 2 Hs(R)

and satis�es
1X
k=0

Ak
0

k!
k(x@x)

k�kHs <1;

then there exists a unique solution u 2 C(R; Hs) to the nonlinear dispersive equation (1.1)

and for any (t; x) 2
�
R n f0g

�
� R, we have for some A > 0

j@jt @
l
xu(t; x)j � Cht�1ij+lhxi2l+3jAj+l(j + l)!

for any j; l 2 N. Namely u(t; �) is a real analytic function in both space and time variables

for t 6= 0.
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Remark 1. The assumption on the initial data implies that the data have to be analytic

except x = 0. On this point the data is assumed to have only Hs regularity. Hence the

above theorem states that this singularity disappears after time passed. The weakness

of this singularity on the data is depending on the space where we may establish the

well-posedness of the equation.

Here we summarize some notation that we would use in what follows. h�i = (1+ j� j2)1=2.

Hs is the Sobolev space of order s. Let L = @t+Hx@
2
x be the linear part of the Benjamin-

Ono equation and P = 2t@t+x@x be the dilation operator associated with L. For operators

A and B, [A;B] stands for the commutator AB � BA. The free propagator group for

the linear Benjamin-Ono type evolution is denoted by e�tHx@2x which is a unitary operator

from L2(R) to L2(R).

2. Method

In this section we give an overview of the proof and present some di�erence from the

proof of the former cases in [7] and [?]. The results are based on the following observation.

Noting the commutation relation between the generator of the dilation P = 2t@t + x@x

and the linear dispersive operator L � @t +Hx@
2
x:

[L; P ] = 2L;

we have

LP k = (P + 2)kL;

(P + 2)k@x = @x(P + 1)k; k = 1; 2; � � � :
(2.1)

Applying P = 2t@x + x@x to the equation (1.1) iteratively, we have

@t(P
ku) +Hx@

2
x(P

ku) = (P + 2)kLu = �(P + 2)k@x(u
2):(2.2)

Setting uk = P ku and Bk(u; u) = �(P + 2)k@xu2, we have

@tuk +Hx@
2
xuk = Bk(u; u) = �@x

X
k=k0+k1+k2

k!

k0!k1!k2!
uk1uk2:(2.3)

An important point here is that the nonlinear terms Bk(u; u) maintain the bilinear

structure similar to the original Benjamin-Ono equation. This is due to the fact that the

Leibniz law can be applicable for an operation of P . Thus each of uk satis�es the following

system of equations; (
@tuk +Hx@

2
xuk = Bk(u; u); t; x 2 R;

uk(0; x) = (x@x)
k�(x):

(2.4)
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Firstly we establish the local well-posedness of the solution to the following in�nitely

coupled system of dispersive equation in a proper Sobolev space:(
@tuk +Hx@

2
xuk = Bk(u; u); t; x 2 R;

uk(0; x) = �k(x):
(2.5)

Taking �k = (x@x)
k�(x), the uniqueness and local well-posedness allow us to say uk = P ku

for all k = 0; 1; � � � .

Through showing the existence and uniqueness process, we obtain the estimate

kP kukHs � CAkk!:

Until this step, there is no e�ect from the appearance of the non local operator Hx.

Next we would derive the pointwise derivative estimate by using the equation:

Hx@
2
xP

ku = �
1

2t
P k+1u+

1

2t
x@xP

ku+Bk(u; u):(2.6)

To treat the second term of the right hand side of (2.6), we employ localization argument.

With a suitable decaying weight function a = a(x), we can show that

ka@lxP
ku(t)kH1(R) � Cht�1ilAk+l(k + l)!; k; l = 0; 1; 2; � � � :

and then by iterative argument, we can shift from the estimate with the operator P to

the one with t@t and conclude

k(t@t)
l1@ l2

x u(t)kL1(x0��;x0+�) � Cht�1il1+l2hx0i
3l1+2l2Al1+l2(l1 + l2)!;(2.7)

for l1; l2 = 0; 1; 2; � � � . A crucial step for obtaining the above derivative estimates is to

treat the nonlocal operator Hx which is an essential di�erence from the KdV equation or

nonlinear Schr�odinger equations. In order to handle this term, it is required to show an

explicit dependence of the iteration of the commutator estimate

k[Hx; a
k]kL(L2!L2) � Ck;

where a = a(x) is a cut-o� function and ak = a(x)k. We then choose a particular weight

function a(x) = hxi�2, where hxi = (1 + jxj2)1=2 and derive an explicit commutation

estimate with the Hilbert transform and ak. By this step, we may use the equation (2.6)

to gain the regularity and to show the analyticity (2.7). Here we only exhibit the following

lemma which treats the commutator of Hx and ak.

Lemma 2.1. If kal@lxfk2 � CAll!kfk2 for 0 � l � N � 1, then we have

k[Hx; a
N ]@Nx fk2 � CANN !kfk2:
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To prove Lemma 2.1, we use the equality

[Hx; a]f = p:v:

Z
R

a(y)� a(x)

x� y
f(y)dy =

Z
R

x+ y

hxi2hyi2
f(y)dy:
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