On the Gevrey wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order

Ferruccio Colombini and Tamotu Kinoshita

We shall consider the Cauchy problem in $[0, T] \times \mathbf{R}_{x}^{1}$

$$
\left\{\begin{array}{l}
\partial_{t}^{m} u=\sum_{j+k=m, j<m} a_{j, k}(t) \partial_{t}^{j} \partial_{x}^{k} u+\sum_{j+k \leq l} a_{j, k}(t) \partial_{t}^{j} \partial_{x}^{k} u \tag{1}\\
\partial_{t}^{j} u(0, x)=u_{j}(x) \quad(j=0,1, \cdots, m-1),
\end{array}\right.
$$

where $0 \leq l \leq m-1$ and $a_{j, k}(t) \in C^{0}[0, T]$ for j, k satisfying $j+k \leq l$.
Now we assume that the characteristic roots $\tau_{1}(t) \xi, \tau_{2}(t) \xi, \cdots, \tau_{m}(t) \xi$ of the characteristic equation $\tau^{m}=\sum_{j+k=m, j<m} a_{j, k}(t) \tau^{j} \xi^{k}$ are real valued and satisfy the following conditions
(2) $\quad \tau_{1}(t), \cdots, \tau_{r}(t)$ coincide at the same points such that for any $1 \leq i, p, q \leq r(i \neq p, q)$ $\left|\tau_{i}(t)-\tau_{p}(t)\right| \leq{ }^{\exists} C\left|\tau_{i}(t)-\tau_{q}(t)\right|$ for $t \in[0, T]$ and belong to $C^{\alpha}[0, T](0 \leq \alpha \leq 1)$, $\tau_{r+1}(t), \cdots, \tau_{m}(t)$ are di stinct and belong to $C^{\beta}[0, T](0 \leq \beta \leq 1)$,
where $1 \leq r \leq m$. In particular when $r=1, \tau_{1}(t)$ also becomes a distinct root. Therefore (2) and (3) imply that

$$
\begin{equation*}
\tau_{1}(t), \tau_{2}(t), \cdots, \tau_{m}(t) \text { are distinct and belong to } C^{\beta}[0, T](0 \leq \beta(=\alpha) \leq 1) \tag{4}
\end{equation*}
$$

When $m=2, l=1$ and $r=2($ resp. $r=1)$, F. Colombini, E. Jannelli, S. Spagnolo and E. De Giorgi assumed $a_{1,1}(t) \equiv 0$ and $a_{0,2}(t) \in C^{\gamma}[0, T](\gamma \geq 0)$ which means that the characteristic roots satisfy (2) with $\alpha=\frac{\gamma}{2}$ (resp. (4) with $\beta=\gamma$), and showed that the Cauchy problem (1) is wellposed in G^{s}, provided $1 \leq s<1+\alpha\left(\right.$ resp. $\left.1 \leq s<1+\frac{\beta}{1-\beta}\right)$ (see [CDS] and [CJS]).

When $m \geq 2, l=m-1$ and $r \geq 2, Y$. Ohya and S. Tarama assumed $a_{j, k}(t) \in C^{\gamma}[0, T](0 \leq$ gamma $\leq 2)$ for j, k satisfying $j+k=m$. In their case we remark that the characteristic roots don't always multiply at the same points. Rougly speaking their assumption means that the characteristic roots satisfy (2) with $\alpha=\frac{\gamma}{r}$ and (3) with $\beta=\gamma(=r \alpha)$ from the properties of hyperbolic polynomials(see [B]). Then they showed that the Cauchy problem (1) is wellposed in G^{s}, provi ded $1 \leq s<1+\min \left\{\frac{\gamma}{r}, \frac{1}{r-1}\right\}=1+\min \left\{\alpha, \frac{1}{r-1}\right\}$ (see [OT]).

Theorem. Let $T 0,0 \leq l \leq m-1$ and $2 \leq r \leq m($ res p. $r=1)$. Assume that (2) and (3)(resp. (4)). Then for any $u_{j}(x) \in G^{s}(\mathbf{R})(j=0,1, \cdots, m-1)$, the Cauchy problem (1) has a unique solution $u \in C^{m}\left([0, T] ; G^{s}\left(\mathbf{R}_{x}^{1}\right)\right)$, provided

$$
\begin{equation*}
1 \leq s<1+\min \left\{\alpha, \frac{\beta}{r-\beta}, \frac{m-l}{r-1}\right\}\left(\text { resp. } 1 \leq s<1+\frac{\beta}{1-\beta}\right) \tag{5}
\end{equation*}
$$

We shall give the typical example to apply our theorem. We consider the Cauchy problem for the weakly hyperbolic equation of 4 th order

$$
\left\{\begin{array}{l}
\partial_{t}^{4} u=\{a(t)+b(t)\} \partial_{t}^{2} \partial_{x}^{2} u-a(t) b(t) \partial_{x}^{4} u \tag{6}\\
\partial_{t}^{j} u(0, x)=u_{j}(x) \quad(j=0,1,2,3)
\end{array}\right.
$$

where $a(t)$ and $b(t)$ belong to $C^{2 \alpha}[0, T]$ and $C^{\beta}[0, T]$ respectively and satisfy $a(t) \geq 0$ and $b(t)-a(t) \geq{ }^{\exists} \delta 0$ wh ich imply that the multiplicity $r=2$. Since the coefficients belong to $C^{\gamma}[0, T]$ where $\gamma=\min \{2 \alpha, \beta\}$, according to $[\mathrm{OT}]$ the Cauchy problem (6) is wellposed in G^{s}, provided

$$
1 \leq s<1+\frac{\gamma}{2}=1+\min \left\{\alpha, \frac{\beta}{2}\right\} .
$$

Noting that $b(t)$ is strictly positive, we see that $\tau_{1}(t) \equiv-\sqrt{a(t)} \in C^{\alpha}[0, T]$, $\tau_{2}(t) \equiv \sqrt{a(t)} \in C^{\alpha}[0, T], \tau_{3}(t) \equiv-\sqrt{b(t)} \in C^{\beta}[0, T]$ and $\tau_{4}(t) \equiv \sqrt{b(t)} \in$ $C^{\beta}[0, T]$. Applying our theorem, we find that the Cauchy problem (7) is wellposed in G^{s}, provided

$$
1 \leq s<1+\min \left\{\alpha, \frac{\beta}{2-\beta}\right\} .
$$

NOTATIONS

$G^{s}(\mathbf{R})(s \geq 1)$ is the space of Gevrey functions $f(x)$ satisfying for any compact set $K \subset \mathbf{R}, \sup _{x \in K}\left|D^{\alpha} f(x)\right| \leq C_{K} \rho_{K}^{\alpha} \alpha!^{s}$ for ${ }^{\forall} \alpha \in \mathbf{N}$.

REFERENCES
[B] M.D. Bronštein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obs̆č. 41 (1980), 87-103 (Trans. Moscow Math. Soc., 1 (1982), 87-103).
[CDS] F. Colombini, E. De Giorgi and S. Spagnolo, Sur les é quations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm Sup. Pisa, 6 (1979), 511-559.
[CJS] F. Colombini, E. Jannelli and S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm Sup. Pisa, 10 (1983), 291-312.
[KWY] K. Kajitani, S. Wakabayashi and K. Yagdjian, The C^{∞}-wellposed Cauchy problem for hyperbolic operators with multiple characteristics vanishing with the different speeds, preprint.
$[\mathrm{OT}] \quad$ Y. Ohya and S. Tarama, Le problème de Cauchy à caractéristiques multiples -coefficients hölderiens en t-, (Proc. Taniguchi Intern. Sympos. on Hyperbolic Equations and Related Topics 1984), Kinokuniya, 1986, 273-306.

