A SMOOTHING PROPERTY OF SCHRÖDINGER EQUATIONS ALONG THE SPHERE

MITSURU SUGIMOTO

We shall consider the following Cauchy problem of the Schrödinger equation

(1)
$$\begin{cases} (i\partial_t + \triangle_x) u(t,x) = 0 \\ u(0,x) = \varphi(x), \end{cases}$$

where $u=u(t,x)\in \mathcal{S}'(\mathbf{R}_t\times\mathbf{R}_x^n)$ and $\varphi(x)\in \mathcal{S}(\mathbf{R}^n)$. Since the solution operator $e^{it\Delta}$ conserves the L^2 -norm, the solution u(t,x) can be defined for $\varphi(x)\in L^2(\mathbf{R}^n)$, as well, and belongs to $L^2(\mathbf{R}_x^n)$ for any fixed t. But, by integrating the solution in t, the extra gain of regularity in x can be observed. For example, in the case n=1, we have the inequality

$$\sup_{x \in \mathbf{R}} \left\| \left| D_x \right|^{1/2} u(\cdot, x) \right\|_{L^2(\mathbf{R}_t)} \le \|\varphi\|_{L^2(\mathbf{R})}$$

by an appropriate use of Plancherel's theorem. In the higher dimensional case $n \geq 2$, Sjölin [4] shows that $\langle D_x \rangle^{1/2} u \in L^2_{loc}(\mathbf{R}_t \times \mathbf{R}_x^n)$ for $\varphi(x) \in L^2(\mathbf{R}^n)$.

On the other hand, Kato and Yajima [3] showed their global version, that is, the inequality

(2)
$$||x|^{\alpha-1} |D_x|^{\alpha} u||_{L^2(\mathbf{R}_t \times \mathbf{R}_x^n)} \le C ||\varphi||_{L^2(\mathbf{R}^n)},$$

where $0 \le \alpha < 1/2$ in the case $n \ge 3$ and $0 < \alpha < 1/2$ in the case n = 2. This result has been extended to the case $1 - n/2 < \alpha < 1/2$ in the case $n \ge 2$ by Sugimoto [5].

As for the problem whether we can obtain the inequality (2) with $\alpha = 1/2$, Hoshiro [2] proved, in the case $n \geq 3$ and $0 \leq \alpha < 1/2$,

(3)
$$||x|^{\alpha-1} \Omega^{1/2-\alpha} |D_x|^{\alpha} u||_{L^2(\mathbf{R}_t \times \mathbf{R}_x^n)} \le C ||\varphi||_{L^2(\mathbf{R}^n)}.$$

Here Ω^{σ} denotes the homogeneous extension of the elliptic self-adjoint operator $(1-\triangle_{S^{n-1}})^{\sigma/2}$ on the sphere S^{n-1} , and $\triangle_{S^{n-1}}$ denotes the Laplace-Beltrami operator on S^{n-1} . For example, for $k \in 2\mathbb{N}$, we have

$$\Omega^k = \left(1 - \sum_{i < j} \left(x_j rac{\partial}{\partial x_i} - x_j rac{\partial}{\partial x_i}
ight)^2
ight)^{k/2}.$$

If we remark that Ω^{σ} behaves like $|x|^{\sigma}|D_x|^{\sigma}$ in the sense of the orders of differential and decay, the estimate (3) means that the gain of regularity is exactly the order 1/2 just like the local smoothing property proved by Sjölin [4].

The objective of this article is to investigate why the sphere S^{n-1} has such a special meaning. For the purpose, we shall replace the Laplacian $-\triangle_x$ in (1) by more general elliptic operators $L_p = p(D)^2$, where $p(\xi)$ is the square root of a positive definite quadratic form. The case $p(\xi) = |\xi|$ corresponds to the case $L_p = -\triangle_x$. We shall give an answer to the question by finding the surface which has the same property in this generalized case.

Our main theorem below says that the surface

$$\Sigma_p' = \{ \nabla p(\xi); p(\xi) = 1 \}$$

plays the same role as the sphere S^{n-1} does in the special case $p(\xi) = |\xi|$. We can replace $\Omega^{1/2-\alpha}$ in the estimate (3) by $\Omega_{p'}^{1/2-\alpha}$, which is defined by using the Laplace-Beltrami operator on Σ_p' instead of $\triangle_{S^{n-1}}$. Furthermore, it says that the estimate (3) can be extended to the case $n \geq 2$ and $1 - n/2 < \alpha < 1/2$.

Theorem 1. Suppose $n \geq 2$ and $1 - n/2 < \alpha < 1/2$. Then the solution $u(t,x) \in \mathcal{S}'(\mathbf{R}_t \times \mathbf{R}_x^n)$ to the problem

$$\left\{egin{aligned} (i\partial_t - L_p) u(t,x) &= 0 \ u(0,x) &= arphi(x) \in \mathcal{S}(\mathbf{R}^n_x) \end{aligned}
ight.$$

satisfies

$$\left\|\left|x\right|^{\alpha-1}\Omega_{p'}^{1/2-\alpha}|p(D)|^{\alpha}u(t,x)\right\|_{L^{2}(\mathbf{R}_{t}\times\mathbf{R}_{x}^{n})}\leq C\|\varphi\|_{L^{2}(\mathbf{R}_{x}^{n})}.$$

The surface Σ'_p is the set of the positions of particles at the time t=1, which started from the origin at t=0 and traveled along the classical orbits. This theorem suggests that the classical orbit propagates some information on unknown regularity properties.

We remark that Theorem 1 cannot be obtained from a simple modification of the proof of the estimate (3). Since the method in [2] depends on the special function theory, it can be applied to only the special case $L_p = -\triangle_x$. The change of variable does not directly imply our theorem either.

The essential part of the proof is to show a refinement of the limiting absorption principle, the fact that the resolvent $(L_p-\mu)^{-1}$ has a meaning even if μ is a spectrum. This principle was first shown by Agmon [1], which says that $(L_p-\mu)^{-1}$ has the weak limit as a bounded operator on a weighted L^2 -space of the order greater than 1/2, when μ tends to the spectrum. More precisely, for each $d \in \mathbf{R}$, we have

$$\sup_{\varepsilon>0} \left\| (1+|x|)^{-k} \big(L_p - (d+i\varepsilon)^2 \big)^{-1} v \right\|_{L^2(\mathbf{R}^n)} \le C_d \big\| (1+|x|)^l v \big\|_{L^2(\mathbf{R}^n)}$$

if k > 1/2 and l > 1/2. To prove Theorem 1, we need the following estimate which says that we can attain the critical order 1/2 for the weight if we consider an effect along the surface $\Sigma_{p'}$:

Theorem 2. Let $d \in \mathbf{R}$ and $\Psi \in \mathcal{C}_0^{\infty}(\mathbf{R}^n)$. Suppose k, l > 1/2. Then we have

$$\begin{split} \sup_{\varepsilon>0} & \left\| (1+|x|)^{-k} \Omega_{p'}^{k-1/2} \big(L_p - (d+i\varepsilon)^2\big)^{-1} \varPsi(D) v \right\|_{L^2(\mathbf{R}^n)} \\ & \leq C_{d,\varPsi} \left\| (1+|x|)^l \Big(\Omega_{p'}^{1/2-l}\Big)^* v \right\|_{L^2(\mathbf{R}^n)}. \end{split}$$

REFERENCES

- [1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa 2 (1975), 151-218.
- [2] T. Hoshiro, On weighted L² estimates of solutions to wave equations, J. Anal. Math. 72 (1997), 127-140.
- [3] T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481-496.
- [4] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715.
- [5] M. Sugimoto, Global smoothing properties of generalized Schrödinger equations, J. Anal. Math. 76 (1998), 191-204.

DEPARTMENT OF MATHEMATICS
GRADUATE SCHOOL OF SCIENCE
OSAKA UNIVERSITY
TOYONAKA, OSAKA 560-0043, JAPAN
E-mail address: sugimoto@math.wani.osaka-u.ac.jp