A SMOOTHING PROPERTY OF SCHRÖDINGER EQUATIONS ALONG THE SPHERE

MITSURU SUGIMOTO

We shall consider the following Cauchy problem of the Schrödinger equation

$$
\left\{\begin{align*}
\left(i \partial_{t}+\triangle_{x}\right) u(t, x) & =0 \tag{1}\\
u(0, x) & =\varphi(x),
\end{align*}\right.
$$

where $u=u(t, x) \in \mathcal{S}^{\prime}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)$ and $\varphi(x) \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. Since the solution operator $e^{i t \Delta}$ conserves the L^{2}-norm, the solution $u(t, x)$ can be defined for $\varphi(x) \in L^{2}\left(\mathbf{R}^{n}\right)$, as well, and belongs to $L^{2}\left(\mathbf{R}_{x}^{n}\right)$ for any fixed t. But, by integrating the solution in t, the extra gain of regularity in x can be observed. For example, in the case $n=1$, we have the inequality

$$
\sup _{x \in \mathbf{R}}\left\|\left|D_{x}\right|^{1 / 2} u(\cdot, x)\right\|_{L^{2}\left(\mathbf{R}_{t}\right)} \leq\|\varphi\|_{L^{2}(\mathbf{R})}
$$

by an appropriate use of Plancherel's theorem. In the higher dimensional case $n \geq 2$, Sjölin [4] shows that $\left\langle D_{x}\right)^{1 / 2} u \in L_{l o c}^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)$ for $\varphi(x) \in L^{2}\left(\mathbf{R}^{n}\right)$.

On the other hand, Kato and Yajima [3] showed their global version, that is, the inequality

$$
\begin{equation*}
\left\||x|^{\alpha-1}\left|D_{x}\right|^{\alpha} u\right\|_{L^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)} \leq C\|\varphi\|_{L^{2}\left(\mathbf{R}^{n}\right)}, \tag{2}
\end{equation*}
$$

where $0 \leq \alpha<1 / 2$ in the case $n \geq 3$ and $0<\alpha<1 / 2$ in the case $n=2$. This result has been extended to the case $1-n / 2<\alpha<1 / 2$ in the case $n \geq 2$ by Sugimoto [5].

As for the problem whether we can obtain the inequality (2) with $\alpha=1 / 2$, Hoshiro [2] proved, in the case $n \geq 3$ and $0 \leq \alpha<1 / 2$,

$$
\begin{equation*}
\left\||x|^{\alpha-1} \Omega^{1 / 2-\alpha}\left|D_{x}\right|^{\alpha} u\right\|_{L^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)} \leq C\|\varphi\|_{L^{2}\left(\mathbf{R}^{n}\right)} . \tag{3}
\end{equation*}
$$

Here Ω^{σ} denotes the homogeneous extension of the elliptic self-adjoint operator $\left(1-\triangle_{S^{n-1}}\right)^{\sigma / 2}$ on the sphere S^{n-1}, and $\triangle_{S^{n-1}}$ denotes the Laplace-Beltrami operator on S^{n-1}. For example, for $k \in 2 \mathbf{N}$, we have

$$
\Omega^{k}=\left(1-\sum_{i<j}\left(x_{j} \frac{\partial}{\partial x_{i}}-x_{j} \frac{\partial}{\partial x_{i}}\right)^{2}\right)^{k / 2}
$$

If we remark that Ω^{σ} behaves like $|x|^{\sigma}\left|D_{x}\right|^{\sigma}$ in the sense of the orders of differential and decay, the estimate (3) means that the gain of regularity is exactly the order $1 / 2$ just like the local smoothing property proved by Sjölin [4].

The objective of this article is to investigate why the sphere S^{n-1} has such a special meaning. For the purpose, we shall replace the Laplacian $-\triangle_{x}$ in (1) by more general elliptic operators $L_{p}=p(D)^{2}$, where $p(\xi)$ is the square root of a positive definite quadratic form. The case $p(\xi)=|\xi|$ corresponds to the case $L_{p}=-\triangle_{x}$. We shall give an answer to the question by finding the surface which has the same property in this generalized case.

Our main theorem below says that the surface

$$
\Sigma_{p}^{\prime}=\{\nabla p(\xi) ; p(\xi)=1\}
$$

plays the same role as the sphere S^{n-1} does in the special case $p(\xi)=|\xi|$. We can replace $\Omega^{1 / 2-\alpha}$ in the estimate (3) by $\Omega_{p^{\prime}}^{1 / 2-\alpha}$, which is defined by using the LaplaceBeltrami operator on Σ_{p}^{\prime} instead of $\triangle_{S^{n-1}}$. Furthermore, it says that the estimate (3) can be extended to the case $n \geq 2$ and $1-n / 2<\alpha<1 / 2$.

Theorem 1. Suppose $n \geq 2$ and $1-n / 2<\alpha<1 / 2$. Then the solution $u(t, x) \in$ $\mathcal{S}^{\prime}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)$ to the problem

$$
\left\{\begin{aligned}
\left(i \partial_{t}-L_{p}\right) u(t, x) & =0 \\
u(0, x) & =\varphi(x) \in \mathcal{S}\left(\mathbf{R}_{x}^{n}\right)
\end{aligned}\right.
$$

satisfies

$$
\left\||x|^{\alpha-1} \Omega_{p^{\prime}}^{1 / 2-\alpha}|p(D)|^{\alpha} u(t, x)\right\|_{L^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{n}\right)} \leq C\|\varphi\|_{L^{2}\left(\mathbf{R}_{x}^{n}\right)}
$$

The surface Σ_{p}^{\prime} is the set of the positions of particles at the time $t=1$, which started from the origin at $t=0$ and traveled along the classical orbits. This theorem suggests that the classical orbit propagates some information on unknown regularity properties.

We remark that Theorem 1 cannot be obtained from a simple modification of the proof of the estimate (3). Since the method in [2] depends on the special function theory, it can be applied to only the special case $L_{p}=-\triangle_{x}$. The change of variable does not directly imply our theorem either.

The essential part of the proof is to show a refinement of the limiting absorption principle, the fact that the resolvent $\left(L_{p}-\mu\right)^{-1}$ has a meaning even if μ is a spectrum. This principle was first shown by Agmon [1], which says that $\left(L_{p}-\mu\right)^{-1}$ has the weak limit as a bounded operator on a weighted L^{2}-space of the order greater than $1 / 2$, when μ tends to the spectrum. More precisely, for each $d \in \mathbf{R}$, we have

$$
\sup _{\varepsilon>0}\left\|(1+|x|)^{-k}\left(L_{p}-(d+i \varepsilon)^{2}\right)^{-1} v\right\|_{L^{2}\left(\mathbf{R}^{n}\right)} \leq C_{d}\left\|(1+|x|)^{l} v\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}
$$

if $k>1 / 2$ and $l>1 / 2$. To prove Theorem 1 , we need the following estimate which says that we can attain the critical order $1 / 2$ for the weight if we consider an effect along the surface $\Sigma_{p^{\prime}}$:

Theorem 2. Let $d \in \mathbf{R}$ and $\Psi \in \mathcal{C}_{0}^{\infty}\left(\mathbf{R}^{n}\right)$. Suppose $k, l>1 / 2$. Then we have

$$
\begin{aligned}
& \sup _{\varepsilon>0}\left\|(1+|x|)^{-k} \Omega_{p^{\prime}}^{k-1 / 2}\left(L_{p}-(d+i \varepsilon)^{2}\right)^{-1} \Psi(D) v\right\|_{L^{2}\left(\mathbf{R}^{n}\right)} \\
& \leq C_{d, \Psi}\left\|(1+|x|)^{l}\left(\Omega_{p^{\prime}}^{1 / 2-l}\right)^{*} v\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}
\end{aligned}
$$

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa 2 (1975), 151-218.
[2] T. Hoshiro, On weighted L^{2} estimates of solutions to wave equations, J. Anal. Math. 72 (1997), 127-140.
[3] T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481-496.
[4] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715.
[5] M. Sugimoto, Global smoothing properties of generalized Schrödinger equations, J. Anal. Math. 76 (1998), 191-204.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka, Osaka $560-0043$, Japan
E-mail address: sugimoto@math.wani.osaka-u.ac.jp

