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This note concerns the well-posedness for the Cauchy problem of derivative non-

linear Schr�odinger equation:
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where the unknown function u is a complex valued function of (t; x) 2 R2 and

� 2 R. The derivative nonlinear Schr�odinger equation is a model of the propagation

of circularly polarized Alfv�en waves in magnetized plasma with a constant external

magnetic �eld [15, 16].

Here we consider the well-posedness, which means the existence, the uniqueness,

the persistency property (u0 2 X ) u(t) 2 X) and the continuous dependence of

solution on data (u0 ! v0 ) u(t) ! v(t)). We say the global (resp. local) well-

posedness, if the well-posedness holds for all time (resp. a positive time interval).

When we try to show the well-posedness by the contraction argument, we meet

with the derivative loss stemming from the derivative nonlinearity of equation (1).

In [9, 10, 11, 17], the H1 global well-posedness for small initial data was shown,

where the proof uses two gauge transformations. The strategy of argument in

[9, 10, 11, 17] is to reduce the original equation (1) to equations without derivative

nonlinearity.

The well-posedness below energy is considered in [18, 20]. In [18] the H
1

2 lo-

cal well-posedness was proven. The proof of [18] was a suitable combination of

the gauge transformation and the Fourier restriction norm method [1, 12]. The

transformation [9, 10, 11, 17, 18]
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reduces (1) to the following:
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Solutions of the Cauchy problem corresponding to (5) satisfy the conservation law:

E1(v(t)) = k@xv(t)k
2

L2
x

�
�

2
=hjv(t)j2v(t); @xv(t)iL2

x

:(5)

As compared to the equation (1), jvj4v appears and v2@xv remains in (3), but the

term of derivative type jvj2@xv in (1) is removed here. The term jvj2@xv is di�cult

to handle, while the proof in [18] can control the terms v2@xv and jvj4v.

Anyway, it is natural to try to extend the above local solution below energy to

global one. But it is not obvious, because it seems di�cult to give the a priori

bound of solution by the usual use of conservation laws (cf. (5), L2-conservation,

etc : : : ). The above problem is investigated in [20]. The proof of [20] is based on

the argument in [3]. In [3] Bourgain shows global existence results for the 2D-NLS

in weaker spaces than in the energy space (see also [4, 5, 3D-NLS], [6, 7, KdV], [8,

mKdV], [13, 14, NLW], [19, 23, KP-2]). His strategy is a general scheme as follows.

Let Vt and V (t) denote the ow maps of nonlinear and linear equations, that is,

Vtu0 and V (t)u0 are solutions of nonlinear and linear equations, respectively. Let

X and Y be Banach spaces such that X ( Y , where X and Y correspond to

conservation law spaces and the initial data space, respectively. His strategy is

that if (Vt � V (t))u0 2 X for all time t, we have the global well-posedness in Y .

Roughly speaking, his argument aims to estimate the high Sobolev norm of solution

by the low Sobolev norm, which controls the transportation of energy from the low

frequency region to the high frequency region. He applied this argument to NLS

with X = H1 and Y = Hs for some 0 < s < 1 in [3]. However in equations of

derivative type, the derivative loss stems from the derivative nonlinearity. Moreover

we have to regain more than one derivatives for the usage of Bourgain's argument.

Here we combine the above argument of Bourgain with the Fourier restriction norm

method observed in [18].

This talk devotes to the above results of [18, 20]. More precisely, we are to

exhibit the following two theorems.

Theorem 1 ([18]). Let s � 1

2
. Then the Cauchy problem (1)-(2) is locally well-

posed in Hs.

Theorem 2 ([20]). The Cauchy problem (1)-(2) is globally well-posed in Hs for

s0 < s < 1 for appropriate s0 2 ( 1
2
; 1), provided ku0kL2 <

q
2�

j�j .

Concerning the number s0 in Theorem 2, we shall observe in the talk.
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