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1 Order preserving operator inequalities

In this report, an operator means a bounded linear operator on a Hilbert space H . An

operator T is said to be positive (denoted by T ≥ 0) if (Tx, x) ≥ 0 for all x ∈ H , and also T is

said to be strictly positive (denoted by T > 0) if T is positive and invertible.

We begin this report by introducing the following result which is quite useful for the study

of the class of operators including normal operators (⇐⇒ T ∗T = TT ∗).

Theorem F (Furuta inequality [18]).

If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q

and

(ii) (A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p + r.

p

q(1, 0)

(0,−r)
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q = 1 p = q

(1 + r)q = p + r

Figure 1

We remark that Theorem F yields Löwner-Heinz theorem “A ≥ B ≥ 0 ensures Aα ≥ Bα

for any α ∈ [0, 1]” when we put r = 0 in (i) or (ii) stated above. Alternative proofs of Theorem

F are given in [10][35] and also an elementary one-page proof in [19]. It is shown in [37] that

the domain drawn for p, q and r in Figure 1 is the best possible for Theorem F.

2 p-Hyponormal and log-hyponormal operators

The following are well-known classes of non-normal operators．

Definition.

(i) T : hyponormal ⇐⇒ T ∗T ≥ TT ∗.

(ii) T : p-hyponormal for p > 0 ⇐⇒ (T ∗T )p ≥ (TT ∗)p.

(iii) T : log-hyponormal ⇐⇒ T is invertible and log T ∗T ≥ log TT ∗.

(iv) T : paranormal ⇐⇒ ‖T 2x‖ ≥ ‖Tx‖2 for every unit vector x ∈ H.
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It is well known that the following inclusion relations among these classes hold.

Proposition.

(i) T : hyponormal ⇐⇒ T : 1-hyponormal.

(ii) T : p-hyponormal =⇒ T : q-hyponormal for any p ≥ q > 0.

(iii) T : invertible and p-hyponormal for some p > 0 =⇒ T : log-hyponormal.

(iv) T : p-hyponormal for some p > 0 or log-hyponormal =⇒ T : paranormal ([6][24]).

(ii) follows from Löwner-Heinz theorem, and (iii) holds since log t is operator monotone.

We remark that p-hyponormality tends to log-hyponormality as p → +0 since Xp−I
p

→ log X

as p → +0 for every positive invertible operator X. (iv) shall be discussed in §7.

It is also well known that all of the inclusion relations shown in Proposition are proper.

Especially, it can be proved by the following example about (ii) and (iii).

Lemma 2.1 ([49]). For positive operators A and B on H, define the operator T on
⊕∞

k=−∞ H

as follows:

T =



. . .

. . . 0 0
B

1
2 0

B
1
2 0

A
1
2 0

0 A
1
2 0

. . .
. . .


, (2.1)

where shows the place of the (0, 0) matrix element. Then

(i) T : p-hyponormal for p > 0 ⇐⇒ Ap ≥ Bp.

(ii) T : log-hyponormal ⇐⇒ A and B are invertible and log A ≥ log B.

Associated with Löwner-Heinz theorem, it is well known that A ≥ B ≥ 0 does not always

ensure Aα �≥ Bα for α > 1. Put

A0 =

(
2 1

1 1

)
and B0 =

(
1 0

0 0

)
for example, then A0 ≥ B0 ≥ 0 and Aα

0 �≥ Bα
0 for all α > 1 ([23]). For each q > p > 0, put

A = A
1
p

0 and B = B
1
p

0 , and define T as (2.1), then it turns out by (i) of Lemma 2.1 that T is

p-hyponormal and not q-hyponormal. Next, put A, B > 0 as

log A =

(
2

√
6√

6 1

)
and log B =

(
0 0

0 −2

)
,

then log A ≥ log B and Ap �≥ Bp for all p > 0 ([15]). Define T as (2.1), then it turns out by (ii)

of Lemma 2.1 that T is log-hyponormal and not p-hyponormal for all p > 0.

2



3 Aluthge transformation of p-hyponormal and

log-hyponormal operators

The operator T̃ = |T | 12 U |T | 12 is called Aluthge transformation of an operator T whose

polar decomposition is T = U |T |, where |T | = (T ∗T )
1
2 . It was shown in [4][8] that σ(T̃ ) = σ(T )

holds for any operator T , where σ(T ) denotes the spectrum of T．Aluthge transformation was

first introduced by Aluthge [1], and he showed the following result on Aluthge transformation

of p-hyponormal operators.

Theorem 3.A ([1]). Let T = U |T | be the polar decomposition of a p-hyponormal operator

for 0 < p < 1 and U be unitary. Then

(i) T̃ = |T | 12 U |T | 12 is (p + 1
2
)-hyponormal if 0 < p ≤ 1

2
.

(ii) T̃ = |T | 12 U |T | 12 is hyponormal if 1
2
≤ p < 1.

Huruya [29] and Yoshino [50] showed the following result which is an extension of Theorem

3.A on generalized Aluthge transformation T̃s,t = |T |sU |T |t of p-hyponormal operators.

Theorem 3.B ([29][50]). Let T = U |T | be the polar decomposition of a p-hyponormal oper-

ator for p > 0. Then the following assertions hold for s > 0 and t > 0:

(i) T̃s,t = |T |sU |T |t is p+min{s,t}
s+t

-hyponormal if max{s, t} ≥ p.

(ii) T̃s,t = |T |sU |T |t is hyponormal if max{s, t} ≤ p.

Tanahashi [38] showed a parallel result to Theorem 3.B for log-hyponormal operators as an

application of Theorem 4.A in the following section.

Theorem 3.C ([38]). Let T = U |T | be the polar decomposition of a log-hyponormal operator.

Then T̃s,t = |T |sU |T |t is min{s,t}
s+t

-hyponormal for any s > 0 and t > 0.

4 A characterization of the chaotic order and its best

possibility

The order between positive invertible operators A and B defined by log A ≥ log B is called

chaotic order. The chaotic order is weaker than the usual order A ≥ B since log t is operator

monotone. The following result is a characterization of the chaotic order of Theorem F type,

which is an extension of a result by Ando [7]. Among others, a simple proof was given by

Uchiyama [39] recently.

Theorem 4.A ([11][13][21][39]). For positive invertible operators A and B, log A ≥ log B

if and only if

Ar ≥ (A
r
2 BpA

r
2 )

r
p+r

holds for all p ≥ 0 and r ≥ 0.
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Theorem 4.A can be rewritten as follows.

Theorem 4.A’. For positive and invertible operators A and B, log A ≥ log B if and only if

A
p+r

q ≥ (A
r
2 BpA

r
2 )

1
q

holds for all p ≥ 0 and r ≥ 0 with rq ≥ p + r.

We consider an order between positive operators A and B defined by Aδ ≥ Bδ for a fixed

δ > 0. It is obvious by Löwner-Heinz theorem that Aδ1 ≥ Bδ1 implies Aδ2 ≥ Bδ2 for δ1 ≥ δ2 > 0,

so that the order Aδ ≥ Bδ interpolates between the usual and chaotic orders continuously

since it coincides with the usual order A ≥ B in case δ = 1, and tends to the chaotic order

log A ≥ log B as δ → +0 since Xp−I
p

→ log X as p → +0 for every positive invertible operator

X. The following result can be obtained by applying Theorem F to Aδ ≥ Bδ ≥ 0.

Theorem 4.B ([14][15]). For positive operators A and B, Aδ ≥ Bδ for a fixed δ > 0 if and

only if

A
p+r

q ≥ (A
r
2 BpA

r
2 )

1
q

holds for all p ≥ 0, r ≥ 0 and q ≥ 1 with (δ + r)q ≥ p + r.

Figure 2 [15] shows the domains of param-

eters p, q and r where the inequality A
p+r

q ≥
(A

r
2 BpA

r
2 )

1
q holds under the conditions A ≥ B,

Aδ ≥ Bδ for δ ∈ (0, 1) and log A ≥ log B by

Theorem F, Theorem 4.B and Theorem 4.A’. It

turns out that the domains where the inequality

holds are smaller as the orders in the assump-

tion are weaker.

p

q1

1

δ

−r

q = 1

(1 + r)q = p + r

(δ + r)q = p + r

rq = p + r

Figure 2

Tanahashi [37] showed the following result which states that the domain of parameters of

Theorem F for the usual order is the best possible.

Theorem 4.C ([37]). Let p > 0, q > 0 and r > 0. If 0 < q < 1 or (1 + r)q < p + r, there

exist A, B > 0 on R
2 such that A ≥ B > 0 and

A
p+r

q �≥ (A
r
2 BpA

r
2 )

1
q .

By applying Theorem 4.C and using the idea of Figure 2, we showed the following result

which states that the domain of the parameters of Theorem 4.A for the chaotic order is also

the best possible.

Theorem 4.1 ([49]). Let p > 0 and r > 0. If α > 1, then there exist A, B > 0 on R
2 such

that log A ≥ log B and

Arα �≥ (A
r
2 BpA

r
2 )

rα
p+r .
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5 The best possibilities of the results on Aluthge

transformation

As applications of Theorem 4.C and Theorem 4.1 we also show the following results which

state the best possibilities of Theorem 3.B and Theorem 3.C, respectively.

Theorem 5.1 ([49]). Let p > 0, s > 0 and t > 0. And let T = U |T | be the polar decomposi-

tion of T . Then the following assertions hold:

(i) In case max{s, t} ≥ p, if α > p+min{s,t}
s+t

, there exists a p-hyponormal operator T such

that T̃s,t = |T |sU |T |t is not α-hyponormal.

(ii) In case p ≥ max{s, t}, if α > 1, there exists a p-hyponormal operator T such that

T̃s,t = |T |sU |T |t is not α-hyponormal.

Theorem 5.2 ([49]). Let s > 0 and t > 0. If α > min{s,t}
s+t

, there exists a log-hyponormal

operator T such that T̃s,t = |T |sU |T |t is not α-hyponormal, where T = U |T | is the polar

decomposition of T .

Especially, the following result can be obtained as a simple corollary of Theorem 5.1.

Corollary 5.3. For each ε > 0, there exists a hyponormal operator T such that T̃ = |T | 12 U |T | 12
is not (1 + ε)-hyponormal.

The following problems remain for the Aluthge transformation T̃ and the n-th Aluthge

transformation T̃ (n) whose definition is introduced in the following section.

Conjecture 5.A ([34]). There exists a hyponormal operator T such that T̃ is not (1 + ε)-

hyponormal for every ε > 0.

Conjecture 5.4. There exists a hyponormal operator T such that T̃ (n) is not (1 + ε)-

hyponormal for every ε > 0 and positive integer n.

6 Repeated Aluthge transformation

In this section, we shall introduce recent results by Yamazaki [42][43][44][45] on repeated

Aluthge transformation defined as follows.

Definition ([34][42]). The n-th Aluthge transformation T̃ (n) of an operator T is defined by

T̃ (1) = T̃ and T̃ (n+1) = ˜̃T (n) for every positive integer n.

Firstly, we shall introduce results on norms of repeated Aluthge transformation.

Theorem 6.A ([42]). For every operator T and positive integer n, ‖T‖ = ‖T n+1‖ 1
n+1 if and

only if ‖T‖ = ‖T̃ (n)‖.
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An operator T is said to be normaloid if ‖T‖ = r(T ) where r(T ) denotes the spectral radius

of T . It is well known that T is normaloid if and only if ‖T‖ = ‖T n‖ 1
n for all positive integer

n, so that the following another characterization of normaloid operators can be obtained as an

immediate corollary of Theorem 6.A, which is an extension of a result in [12].

Corollary 6.B ([42]). An operator T is normaloid if and only if ‖T‖ = ‖T̃ (n)‖ for all positive

integer n.

The following can be considered parallel to the well-known fact that lim
n→∞

‖T n‖ 1
n = r(T )

holds for any operator T .

Theorem 6.C ([45]). lim
n→∞

‖T̃ (n)‖ = r(T ) holds for any operator T .

Secondly, we shall introduce results on numerical ranges of repeated Aluthge transforma-

tion. Jung-Ko-Pearcy [34] showed the following result and conjecture, where W (T ) denotes the

numerical range of an operator T .

Theorem 6.D ([34]). W (T ) ⊇ W (T̃ ) holds for any 2 × 2 matrix T .

Conjecture 6.E ([34]). W (T ) ⊇ W (T̃ ) holds for any operator T .

The following result was shown in [44] related to Theorem 6.D and Conjecture 6.E, where

w(T ) denotes the numerical radius of an operator T .

Theorem 6.F ([44]). w(T ) ≥ w(T̃ ) holds for any operator T .

Furthermore, the following results were also shown.

Theorem 6.G ([44]). If T = U |T | for an isometry U , then W (T ) ⊇ W (T̃ ) holds.

Corollary 6.H ([44]). If N(T ) ⊆ N(T ∗), then

W (T ) ⊇ W (T̃ ) ⊇ W (T̃ (2)) ⊇ · · · ⊇ W (T̃ (n))

holds for every positive integer n.

Theorem 6.G is an extension of Theorem 6.D since T = U |T | for a unitary U and W (T ) is

a closed set in case T is a matrix.

The following result is important to give proofs of the results in this section.

Theorem 6.I ([28]). Let A and B be positive operators and X be an operator. Then the

following assertions hold:

(i) ‖AXB‖r‖X‖1−r ≥ ‖ArXBr‖ for r ∈ [0, 1].

(ii) ‖ArXBr‖‖X‖r−1 ≥ ‖AXB‖r for r ≥ 1.
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7 Powers of p-hyponormal and log-hyponormal

operators

It is well known that even if an operator T is hyponormal, T 2 is not hyponormal in general,

but paranormal since every hyponormal operator is paranormal [6] and if T is paranormal, then

T n is also paranormal for any natural number n [17]. Such an example is shown in [27, Problem

209]. Associated with this fact, Aluthge-Wang [3] showed the following result.

Theorem 7.A ([3]). Let T be a p-hyponormal operator for p ∈ (0, 1]. Then

(T n∗T n)
p
n ≥ (T ∗T )p ≥ (TT ∗)p ≥ (T nT n∗)

p
n

holds for all positive integer n, i.e., T n is p
n
-hyponormal.

It follows from Theorem 7.A that T 2 is 1
2
-hyponormal for every hyponormal operator T ,

which is more precise than the fact mentioned above since every 1
2
-hyponormal operator is

paranormal [6][24].

Furuta and the author [25][26] obtained extensions of Theorem 7.A, and Ito [32] obtained

the following further extension for p > 0.

Theorem 7.B ([32]). Let T be a p-hyponormal operator for p > 0 and m be a positive integer

such that p ∈ (m − 1, m]. Then the following assertions hold:

(i) T n∗T n ≥ (T ∗T )n and (TT ∗)n ≥ T nT n∗ hold for all positive integer n < p + 1.

(ii) The following inequalities hold for all positive integer n ≥ p + 1:

(T n∗T n)
p+1

n ≥ · · · ≥ (T m+2∗T m+2)
p+1
m+2 ≥ (T m+1∗T m+1)

p+1
m+1 ≥ (T ∗T )p+1

and

(TT ∗)p+1 ≥ (T m+1T m+1∗)
p+1
m+1 ≥ (T m+2T m+2∗)

p+1
m+2 ≥ · · · ≥ (T nT n∗)

p+1
n .

Corollary 7.C ([32]). Let T be a p-hyponormal operator for p > 0. Then the following

assertions hold:

(i) T n∗T n ≥ (T ∗T )n ≥ (TT ∗)n ≥ T nT n∗ holds for all positive integer n < p,

i.e., T n is hyponormal.

(ii) (T n∗T n)
p
n ≥ (T ∗T )p ≥ (TT ∗)p ≥ (T nT n∗)

p
n holds for all positive integer n ≥ p,

i.e., T n is p
n
-hyponormal.

Yamazaki [41] showed the following Theorem 7.D and Corollary 7.E for log-hyponormal

operators which correspond to Theorem 7.B and Corollary 7.C in case p → 0, respectively

since log-hyponormal can be regarded as 0-hyponormal as mentioned before.
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Theorem 7.D ([41]). Let T be a log-hyponormal operator. Then

(T n∗T n)
1
n ≥ · · · ≥ (T 2∗T 2)

1
2 ≥ T ∗T

and

TT ∗ ≥ (T 2T 2∗)
1
2 ≥ · · · ≥ (T nT n∗)

1
n

hold for all positive integer n.

Corollary 7.E ([41]). Let T be a log-hyponormal operator. Then

log(T n∗T n)
1
n ≥ log T ∗T ≥ log TT ∗ ≥ log(T nT n∗)

1
n

holds for all positive integer n, i.e., T n is also log-hyponormal.

Corollary 7.E yields the following result by Aluthge-Wang [2] “If T is log-hyponormal, then

T 2n
is also log-hyponormal for any positive integer n.”

The following result is important to give a proof of Theorem 7.B and Theorem 7.D.

Theorem Ff ([20][21]). If A ≥ B ≥ 0 or log A ≥ log B, then the following assertions hold:

(i) For each q ≥ 0 and r ≥ 0, f(p) = (B
r
2 ApB

r
2 )

q+r
p+r is increasing for p ≥ q.

(ii) For each q ≥ 0 and r ≥ 0, g(p) = (A
r
2 BpA

r
2 )

q+r
p+r is decreasing for p ≥ q.

8 Classes of operators associated with operator

inequalities

Furuta-Ito-Yamazaki [24] introduced the following class of operators called class A, and

showed the following result on inclusion relations which gives another proof of the result by

Ando [6]. We remark that class A is defined by an operator inequality parallel to the norm

inequality “‖T 2x‖ ≥ ‖Tx‖2 for every unit vector x ∈ H” which defines paranormal operators.

Definition ([24]). T ∈ class A ⇐⇒ |T 2| ≥ |T |2.

Theorem 8.A ([24]). T : log-hyponormal =⇒ T ∈ class A =⇒ T : paranormal.

On the other hand, Aluthge-Wang introduced the class of w -hyponormal operators via

Aluthge transformation in [4], and showed an equivalent condition via operator inequalities in

[5].

Definition ([4][5]).

T : w -hyponormal ⇐⇒ |T̃ | ≥ |T | ≥ |(T̃ )∗|
⇐⇒ (|T ∗| 12 |T ||T ∗| 12 ) 1

2 ≥ |T ∗| and |T | ≥ (|T | 12 |T ∗||T | 12 ) 1
2 ,

where T̃ = |T | 12 U |T | 12 is the Aluthge transformation of T = U |T |.
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As a generalization of class A, Fujii-D.Jung-S.H.Lee-M.Y.Lee-Nakamoto [16] introduced

class A(s, t) for s > 0 and t > 0.

Definition ([16]). For s > 0 and t > 0,

(i) T ∈ class A(s, t) ⇐⇒ (|T ∗|t|T |2s|T ∗|t) t
s+t ≥ |T ∗|2t.

(ii) T ∈ class AI(s, t) ⇐⇒ T ∈ class A(s, t) and T is invertible.

Proposition ([41]). Class A(1, 1) coincides with class A.

As a generalization of the class of w -hyponormal operators, Ito [30] introduced class wA(s, t)

for s > 0 and t > 0 via generalized Aluthge transformation.

Definition ([30]). For s > 0 and t > 0,

T ∈ class wA(s, t) ⇐⇒ |T̃s,t| 2t
s+t ≥ |T |2t and |T |2s ≥ |(T̃s,t)

∗| 2s
s+t

⇐⇒ (|T ∗|t|T |2s|T ∗|t) t
s+t ≥ |T ∗|2t and |T |2s ≥ (|T |s|T ∗|2t|T |s) s

s+t ,

where T̃s,t = |T |sU |T |t is the generalized Aluthge transformation of T = U |T |.

Proposition ([30]). Class wA(1
2
, 1

2
) coincides with the class of w-hyponormal operators.

We remark that the following inclusion relations holds for each s > 0 and t > 0:

class A(s, t) ⊇ class wA(s, t) ⊇ class AI(s, t).

The first relation holds obviously, and the second holds since the first inequality in the definition

of class wA(s, t) yields the second by the following lemma in case T is invertible.

Lemma F ([22]). Let A > 0 and B be an invertible operator. Then

(BAB∗)λ = BA
1
2 (A

1
2 B∗BA

1
2 )λ−1A

1
2 B∗

holds for any real number λ.

We also remark the following inclusion relations among these classes.

Theorem 8.B ([16][30]).

(i) T : log-hyponormal ⇐⇒ T ∈ class AI (s, t) for all s, t > 0.

(ii) T : p-hyponormal for some p > 0 or log-hyponormal =⇒ T ∈ class wA(s, t) for all s, t > 0.

(iii) T ∈ class A(s, t1) =⇒ T ∈ class A(s, t2) for each 0 < s and 0 < t1 ≤ t2.

(iv) T ∈ class wA(s1, t1) =⇒ T ∈ class wA(s2, t2) for each 0 < s1 ≤ s2 and 0 < t1 ≤ t2.

As continuation of the study mentioned in §7, Ito [31] and Yamazaki [41] studied powers of

invertible class A and class AI(s, t) operators, and Aluthge-Wang [5] and Cho-Huruya-Kim [9]
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studied powers of w -hyponormal operators. As an extension of these results, we obtained the

following result on powers of wA(s, t) operators.

Theorem 8.1. If T belongs to class wA(s, t) for s ∈ (0, 1] and t ∈ (0, 1], then T n belongs to

wA( s
n
, t

n
) for all positive integer n.

Corollary 8.2. If T is w-hyponormal, then T n is also w-hyponormal for all positive integer n.

We remark that in case A and B are positive and invertible,

(B
r
2 ApB

r
2 )

r
p+r ≥ Br ⇐⇒ Ap ≥ (A

p
2 BrA

p
2 )

p
p+r

for each p ≥ 0 and r ≥ 0 by Lemma F. Very recently, Ito-Yamazaki [33] showed the following

result on relations between these two inequalities in case A and B are not necessarily invertible.

Theorem 8.C ([33]). Let A and B be positive operators. Then for each p ≥ 0 and r ≥ 0,

the following assertions hold:

(i) If (B
r
2 ApB

r
2 )

r
p+r ≥ Br, then Ap ≥ (A

p
2 BrA

p
2 )

p
p+r .

(ii) If Ap ≥ (A
p
2 BrA

p
2 )

p
p+r and N(A) ⊆ N(B), then (B

r
2 ApB

r
2 )

r
p+r ≥ Br.

The following result can be obtained as an immediate corollary of Theorem 8.C.

Theorem 8.D ([33]).

(i) Class A(s, t) coincides with class wA(s, t) for each s > 0 and t > 0.

(ii) Class A coincides with class wA(1, 1).

(iii) Class A(1
2
, 1

2
) coincides with the class of w-hyponormal operators, i.e., class wA(1

2
, 1

2
).

The following result can be obtained by applying Theorem 8.D to (iv) of Theorem 8.B and

Theorem 8.1.

Theorem 8.E ([33]).

(i) T ∈ class A(s1, t1) =⇒ T ∈ class A(s2, t2) for each 0 < s1 ≤ s2 and 0 < t1 ≤ t2.

(ii) If T belongs to class A(s, t) for s ∈ (0, 1] and t ∈ (0, 1], then T n belongs to A( s
n
, t

n
) for

all positive integer n.

Corollary 8.F ([33]). If T belongs to class A, then T 2 is w-hyponormal.

9 Generalizations of paranormal operators

An operator T is said to be paranormal if ‖T 2x‖ ≥ ‖Tx‖2 for every unit vector x ∈ H .

Furuta-Ito-Yamazaki [24] and Fujii-Izumino-Nakamoto [12] introduced absolute-k-paranormal

and p-paranormal operators as generalizations of paranormal operators. We introduced a fur-

ther generalization called absolute-(s, t)-paranormal as parallel concept to class A(s, t).
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Definition ([47]). For s > 0 and t > 0,

T : absolute-(s, t)-paranormal ⇐⇒ ‖|T |s|T ∗|tx‖t ≥ ‖|T ∗|tx‖s+t for every unit vector x ∈ H

⇐⇒ ‖|T |sU |T |tx‖t ≥ ‖|T |tx‖s+t for every unit vector x ∈ H,

where the polar decomposition of T is T = U |T |.

Proposition ([47]). T is paranormal if and only if T is absolute-(1, 1)-paranormal.

A generalization of the result by Ando [6] which states that

T : paranormal ⇐⇒ T 2∗T 2 − 2λT ∗T + λ2I ≥ 0 for all λ > 0,

we showed a characterization of absolute-(s, t)-paranormal operators via operator inequalities.

Proposition 9.1 ([47]). For each s > 0 and t > 0,

T : absolute-(s, t)-paranormal ⇐⇒ t|T ∗|t|T |2s|T ∗|t − (s + t)λs|T ∗|2t + sλs+tI ≥ 0

for all λ > 0.

We showed the following inclusion relations among these classes. (i) is parallel to (i) of

Theorem 8.E, and (ii) is a generalization of the second relation of Theorem 8.A.

Theorem 9.2 ([47]).

(i) T : absolute-(s1, t1)-paranormal =⇒ T : absolute-(s2, t2)-paranormal

for each 0 < s1 ≤ s2 and 0 < t1 ≤ t2.

(ii) For each s > 0 and t > 0, T ∈ class A(s, t) =⇒ T : absolute-(s, t)-paranormal.

(iii) T : absolute-(s, t)-paranormal for some s, t > 0 =⇒ T : normaloid (i.e., ‖T‖ = r(T )).

We also gave the following characterization of log-hyponormal operators via absolute-(s, t)-

paranormalities which is an extension of (i) of Theorem 8.B by (ii) of Theorem 9.2.

Theorem 9.3 ([46][47]).

T : log-hyponormal ⇐⇒ T : invertible and p-paranormal for all p > 0

⇐⇒ T : invertible and absolute-(s, t)-paranormal for all s > 0 and t > 0.

The following result is important to give proofs of the result stated above.

Theorem 9.A ([36]). Let A be a positive operator. Then the following inequalities hold for

every unit vector x ∈ H :

(i) (Arx, x) ≤ (Ax, x)r for 0 < r ≤ 1.

(ii) (Arx, x) ≥ (Ax, x)r for r ≥ 1.
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The following diagram represents the inclusion relations among the classes discussed in this

report.

log-hyponormal
(0, 0)

0
hyponormal

1

p-hyponormal

p

class A
(1, 1)

class A(s, t)

(s, t)

paranormal
(1, 1)

absolute-(s, t)-paranormal

(s, t)

normaloid

Very recently, Yamazaki and the author [48] showed the following result.

Theorem 9.4 ([48]). Let A and B be positive operators. Then for each p > 0, r ≥ 0 and

λ > 0, the following assertions hold, where X
Y

denotes XY −1 for X ≥ 0 and Y > 0 in case

XY = Y X:

(i) If
rB

r
2 ApB

r
2 + pλp+rI

(p + r)λp
≥ Br, then Ap ≥ (p + r)λpA

p
2 BrA

p
2

rA
p
2 BrA

p
2 + pλp+rI

.

(ii) If Ap ≥ (p + r)λpA
p
2 BrA

p
2

rA
p
2 BrA

p
2 + pλp+rI

and N(A) ⊆ N(B), then
rB

r
2 ApB

r
2 + pλp+rI

(p + r)λp
≥ Br.

We remark that in case A and B are positive and invertible,

rB
r
2 ApB

r
2 + pλp+rI

(p + r)λp
≥ Br ⇐⇒ Ap ≥ (p + r)λpA

p
2 BrA

p
2

rA
p
2 BrA

p
2 + pλp+rI

for each p > 0, r ≥ 0 and λ > 0.
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We also remark that

rB
r
2 ApB

r
2 + pλp+rI

(p + r)λp
≥ (B

r
2 ApB

r
2 )

r
p+r and (A

p
2 BrA

p
2 )

p
p+r ≥ (p + r)λpA

p
2 BrA

p
2

rA
p
2 BrA

p
2 + pλp+rI

hold for each positive invertible operators A and B, p ≥ 0, r ≥ 0 and λ > 0 by the arithmetic-

geometric-harmonic mean inequality, so that Theorem 9.4 can be understood as a result on the

same relations between weaker inequalities than the inequalities in Theorem 8.C.

We showed the following result on normality of absolute-(s, t)-paranormal operators as an

application of Theorem 9.4.

Theorem 9.5 ([48]). Let s1 > 0, s2 > 0, t1 > 0 and t2 > 0. If T is absolute-(s1, t1)-

paranormal and T ∗ is absolute-(s2, t2)-paranormal, then T is normal.

Theorem 9.5 yields the following corollary on normality of paranormal operators.

Corollary 9.6 ([48]). If T and T ∗ are paranormal, then T is normal.

Corollary 9.6 is an extension of the following result by Ando [6].

Theorem 9.B ([6]). If T and T ∗ are paranormal with N(T ) = N(T ∗), then T is normal.

References

[1] A.Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13

(1990), 307–315.

[2] A.Aluthge and D.Wang, An operator inequality which implies paranormality, Math. Inequal.
Appl. 2 (1999), 113–119.

[3] A.Aluthge and D.Wang, Powers of p-hyponormal operators, J. Inequal. Appl. 3 (1999), 279–284.

[4] A.Aluthge and D.Wang, w-Hyponormal operators, Integral Equations Operator Theory 36 (2000),
1–10.

[5] A.Aluthge and D.Wang, w-Hyponormal operators II, Integral Equations Operator Theory 37
(2000), 324–331.

[6] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169–178.

[7] T.Ando, On some operator inequalities, Math. Ann. 279 (1987), 157–159.

[8] M.Cho, On spectra of AB and BA, Proc. KOTAC 3 (2000), 15–19.

[9] M.Cho, T.Huruya and Y.O.Kim, A note on w-hyponormal operators, to appear in J. Inequal.
Appl.

[10] M.Fujii, Furuta’s inequality and its mean theoretic approach, J. Operator Theory 23 (1990),
67–72.

[11] M.Fujii, T.Furuta and E.Kamei, Furuta’s inequality and its application to Ando’s theorem, Linear
Algebra Appl. 179 (1993), 161–169.

13



[12] M.Fujii, S.Izumino and R.Nakamoto, Class of operators determined by the Heinz-Kato-Furuta
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