A PARTIAL REGULARITY RESULT FOR HARMONIC MAPS INTO A FINSLER MANIFOLD

ATSUSHI TACHIKAWA

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan E-mail:tachikawa_atsushi@ma.noda.tus.ac.jp

Let N be a n-dimensional C^{∞} manifold and TN the tangent bundle of N. We express each point in TN as (u, X) with $u \in N$ and $X \in T_x N$. Moreover, **0** denotes the 0-section $\{(u, 0)\} \subset TN$ when we write $TN \setminus \mathbf{0}$. A Finsler structure of N is a function $F: TN \to [0, \infty)$ with the following properties:

- (i) Regularity: $F \in C^{\infty}(TN \setminus \mathbf{0})$.
- (ii) Homogeneity: $F(u, \lambda X) = \lambda F(u, X)$ for all $\lambda \ge 0$.
- (iii) Convexity: The Hessian matrix of F^2 with respect to X

$$(h_{ij}(u,X)) = \left(\frac{1}{2}\frac{\partial^2 F^2(u,X)}{\partial X^i \partial X^j}\right)$$

is positive definite at every point $(u, X) \in TN \setminus \mathbf{0}$.

We call the pair (N, F) a Finsler manifold.

According to Centore [1] the energy density of maps between Finsler manifold is defined as follows.

Definition. Let (M, G) and (N, F) be Finsler manifolds, and $I_x M$ a unit ball in $T_x M$, namely

$$I_x M = \{\xi \in T_x M; G(X) \le 1\}.$$

For a C^1 -map $u: M \to N$, we define the energy density e(u)(x) of u at $x \in M$ by

$$e(u)(x) = \frac{\int_{I_x M} (u^* F)^2(X) dX}{\int_{I_x M} dX}.$$
(0.1)

The above definition is consistent with the standard one for Riemannian cases ([1, Lemma 2]) and it can be regarded as a special case of the definition given by Jost [2] for abstract cases of metric measure spaces ([1, Theorem 5]).

In this talk, we consider harmonic maps from \mathbb{R}^m into Finsler space $(N, F) = (\mathbb{R}^n, F)$. For such a case, by virtue of the special structure of \mathbb{R}^m and the homogeneity of F, we can write the energy density defined by (0.1) more simply.

Namely, for a map $u : \mathbb{R}^m \to (N, F)$ we can define the energy density of u at $x \in \mathbb{R}^m$ as

$$e(u)(x) = \frac{1}{2c_m} \int_{S^{m-1}} F^2(u(x), du_x \cdot \xi) d\xi, \qquad (0.2)$$

where c_m denotes the area of the (m-1)-dimensional standard sphere S^{m-1} , du_x the differential of u at x and

$$du_x \cdot \xi = \left((du_x \cdot \xi)^1, \dots, (du_x \cdot \xi)^n \right) = \left(\frac{\partial u^1}{\partial x^\alpha} \xi^\alpha, \dots, \frac{\partial u^n}{\partial x^\alpha} \xi^\alpha \right).$$

Moreover, as usual, we define the energy of u on $\Omega \subset \mathbb{R}^m$ by

$$E(u,\Omega) = \int_{\Omega} e(u)(x)dx \qquad (0.3)$$

We consider minimizing problems for the functional $E(u, \Omega)$ defined by (0.3) in the class

$$H_f^{1,2}(\Omega, N) = \{ u \in H^{1,2}(\Omega, N) \; ; \; u - f \in H_0^{1,2}(\Omega, \mathbb{R}^n) \}, \tag{0.4}$$

where $f: \partial \Omega \to N$ is a given L^{∞} function. In the following, "a minimizer of E" means "a minimizer of E in the class $H_{f}^{1,2}(\Omega, N)$ ".

As in the case that the target manifold is Riemannian, let us call a solution of the Euler-Lagrange equation of (0.3) to be *a harmonic map*.

We consider the following assumption on $h_{ij}(u, X) = \frac{1}{2} \frac{\partial^2 F^2(u, X)}{\partial X^i \partial X^j}$

(h-1) For some concave increasing function ω with $\omega(0) = 0$ we have

$$|h_{ij}(u, X) - h_{ij}(v, X)| \le \omega(|u - v|)$$
 (0.5)

for all $u, v, X \in \mathbb{R}^n$.

(h-2) There exists a positive constant λ_0 such that

$$h_{ij}(u, X)\xi^i\xi^j > \lambda_0 \|\xi\|^2$$
 (0.6)

for all $u, X, \xi \in \mathbb{R}^n$.

Theorem.([3]) Let $m \leq 4$. Under the above assumptions a minimizer u of $E(u; \Omega)$ is in in the class $C^{1,\alpha}(\Omega_0)$ for some open subset $\Omega_0 \subset \Omega$ with $\mathcal{H}^{m-2-\varepsilon}(\Omega \setminus \Omega_0) = 0$ for some $\varepsilon > 0$.

References

- P.Centore, Finsler Laplacians and minimal-energy maps, Int. J. Math. 11 (2000), 1–13.
- [2] J. Jost, "Nonpositive curvature: Geometric and analytic aspects", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 1997.
- [3] A.Tachikawa, A Partial regularity result for harmonic maps into a Finsler manifold, to appear in Calc. Var.