An Inverse Problem for the Wave Equation in Plane-stratified Media

Sei Nagayasu
Department of Mathematics, Graduate School of Science, Osaka University
Machikaneyama 1-16, Toyonaka, Osaka 560-0043, Japan
E-mail: sei@cr.math.sci.osaka-u.ac.jp

Assume that there exist media which have singularities in a half-space. We investigate the singularities of the media by causing an artificial shock at a certain point near the boundary of the half-space and by observing the behavior of waves on the boundary. These problems for wave equations and elastic equations were studied by Rakesh [2] and Wang [4], for example. In these paper, they use the "linearization" method, that is, they assume the smallness of the singularities of the media and so on (Sacks-Symes [3]).

We discuss the case when the singularities may be large. We specialize the situation and discuss the following problem: Assume that two media, Medium 1 and Medium 2, are laying in the half-space, and the interface wall is parallel to the boundary of a half-space (see Figure 1). We assume that the speed of waves in Medium 1 and the way of the reflection by the boundary are known, but the width of Medium 1, the speed of waves in Medium 2, and interface and transmission conditions are unknown. In this situation, we try to identify these unknown things by using the known data or the data which can be observed near the boundary.

Now, we introduce the notation and formulate the problem above. Suppose $n \geq 2$. Let us write $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$, and $x^{\prime \prime}=\left(x_{2}, \ldots, x_{n}\right)$ for the coordinate $x=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}. The variable x_{1} plays the role of the time and $x^{\prime \prime}$ the physical space.

Let $h>0$ and $\Omega_{1}:=\left\{x^{\prime \prime} \in \mathbb{R}^{n-1}: 0<x_{n}<h\right\}, \Omega_{2}:=\left\{x^{\prime \prime} \in \mathbb{R}^{n-1}:\right.$ $\left.x_{n}>h\right\}$. We set $D_{x_{j}}:=(1 / i)\left(\partial / \partial x_{j}\right)$. Let a_{k} be positive real number and

Figure 1:
set $P_{k}\left(D_{x}\right):=a_{k}^{2}\left(D_{x_{2}}^{2}+\cdots+D_{x_{n}}^{2}\right)-D_{x_{1}}^{2}$ for $k=1,2$. The positive number a_{k} describes the speed of waves in Ω_{k}. Let $Q\left(D_{x}\right)$ be a partial differential operator with constant coefficients of first order, and write $Q\left(D_{x}\right)=q_{1} D_{x_{1}}+$ $\cdots+q_{n} D_{x_{n}}+q_{0}$. Furthermore we assume the coefficient q_{n} for $D_{x_{n}}$ of $Q\left(D_{x}\right)$ is not zero. Let $b_{1}, b_{2}, c_{1}, c_{2}$ be constants. Suppose $0<y_{n}<h$. Set $y^{\prime \prime}:=\left(0, \ldots, 0, y_{n}\right) \in \mathbb{R}^{n-1}$ and $y:=\left(0, y^{\prime \prime}\right) \in \mathbb{R}^{n}$.

We discuss the following equations:

$$
\begin{align*}
& P_{1}\left(D_{x}\right) u(x)=\delta(x-y), \quad x_{1} \in \mathbb{R}, x^{\prime \prime} \in \Omega_{1}, \tag{1}\\
& P_{2}\left(D_{x}\right) u(x)=0, \quad x_{1} \in \mathbb{R}, \quad x^{\prime \prime} \in \Omega_{2}, \tag{2}\\
& \left.Q\left(D_{x}\right) u(x)\right|_{x_{n}=0}=0, \quad x^{\prime} \in \mathbb{R}^{n-1}, \tag{3}\\
& \left.b_{1} u(x)\right|_{x_{n}=h_{-}}=\left.c_{1} u(x)\right|_{x_{n}=h_{+}}, \quad x^{\prime} \in \mathbb{R}^{n-1}, \tag{4}\\
& \left.b_{2} D_{x_{n}} u(x)\right|_{x_{n}=h_{-}}=\left.c_{2} D_{x_{n}} u(x)\right|_{x_{n}=h_{+}}, \quad x^{\prime} \in \mathbb{R}^{n-1} . \tag{5}
\end{align*}
$$

These equations describe the situation that the initial data is the delta function at a point $y^{\prime \prime}$ in Ω_{1} at time $x_{1}=0$ with the boundary condition (3) and the interface or transmission conditions (4) and (5). We assume that the mixed problem for the operator system $\left\{P_{1}\left(D_{x}\right), P_{2}\left(D_{x}\right) ; Q\left(D_{x}\right) ; b_{1}, c_{1}\right.$; $\left.b_{2} D_{x_{n}}, c_{2} D_{x_{n}}\right\}$ is \mathcal{E} well-posed.

The following main result says that we can reconstruct the width h of Ω_{1}, the speed of waves a_{2} in Ω_{2} and the interface or transmission condition to a certain degree from the observation data of u near the boundary $\left\{x_{n}=0\right\}$ when the speed a_{1} on Ω_{1} and the boundary condition are known.

Main Result. Let $a_{1}, Q\left(D_{x}\right)$, y_{n} be given. Assume that observation data $\left.u(x)\right|_{x_{n}=0}$ are given, where $u(x)$ denote the solution of equations (1)-(5). Then the constants h, a_{2} and the ratio of $b_{1} c_{2}$ to $b_{2} c_{1}$ are reconstructed in the following sense:

- The constant h is reconstructed by using known data $a_{1}, Q\left(D_{x}\right), y_{n}$ and the observation data $\left.u(x)\right|_{x_{n}=0}$ unless $\left.\left.u(x)\right|_{x_{n}=0} \equiv \widetilde{u}(x)\right|_{x_{n}=0}$. Here \widetilde{u} is the wave in the situation that only one medium Medium 1 is laying in the half-space, that is, the solution of

$$
\begin{aligned}
& P_{1}\left(D_{x}\right) \widetilde{u}(x)=\delta(x-y), \quad x \in \mathbb{R}^{n}, \\
& \left.Q\left(D_{x}\right) \widetilde{u}(x)\right|_{x_{n}=0}=0, \quad x^{\prime} \in \mathbb{R}^{n-1} .
\end{aligned}
$$

- Suppose $n \geq 3$. Then the ratio of $b_{1} c_{2}$ to $b_{2} c_{1}$ is reconstructed by a_{1}, $Q\left(D_{x}\right), y_{n}$ and $\left.u(x)\right|_{x_{n}=0}$. If $b_{1} b_{2} c_{1} c_{2} \neq 0$ then a_{2} is also reconstructed.
- Suppose $n=2$. Then the ratio of $b_{1} c_{2}$ to $a_{2} b_{2} c_{1}$ is reconstructed by a_{1}, $Q\left(D_{x}\right), y_{n}$ and $\left.u(x)\right|_{x_{n}=0}$.

We prove this main result by using the solution formula of the problem (1)-(5), given by Matsumura [1] as the fundamental solution of the mixed problem for the operator system $\left\{P_{1}\left(D_{x}\right), P_{2}\left(D_{x}\right) ; Q\left(D_{x}\right) ; b_{1}, c_{1} ; b_{2} D_{x_{n}}\right.$, $\left.c_{2} D_{x_{n}}\right\}$.

References

[1] M. Matsumura, On the Singularities of the Riemann Functions of Mixed Problems for the Wave Equation in Plane-Stratified Media, Proc. Japan Acad., 52 (1976), 289-295.
[2] Rakesh, A linearised inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 573-601.
[3] P. Sacks, W. Symes, Uniqueness and continuous dependence for a multidimensional hyperbolic inverse problem, Comm. Partial Differential Equations, 10 (1985), 635-676.
[4] J.-N. Wang, On the relation between singularities of coefficients and singularities of reflected waves in the Lamé system, Inverse Problems, 14 (1998), 733-743.

