L^{p}－theory of second－order elliptic operators with unbounded coefficients

Hiroshi Tamura
（Tokyo University of Science）

Let $p \in(1, \infty)$ and $N \in \mathbf{N}$ ．In the complex Banach space $L^{p}\left(:=L^{p}\left(\mathbf{R}^{N}\right)\right)$ ，we consider the elliptic partial differential operator of the form

$$
T u:=-\Delta u+b \cdot \nabla u+q u .
$$

Here $b:=\left(b_{1}, b_{2}, \ldots, b_{N}\right)$ is a real－vector－valued function on \mathbf{R}^{N} and q is a complex－valued function on \mathbf{R}^{N} ． We assume that

$$
\begin{align*}
& (1+|x|)^{-1} b_{j} \in L^{2 p} \cap L^{\infty}, \frac{\partial b_{j}}{\partial x_{k}} \in L^{\infty} \quad(j, k=1,2, \ldots, N) \tag{A1}\\
& (1+|x|)^{-1} q \in L^{\infty}, \operatorname{Re} q \geq 0, \frac{\partial q}{\partial x_{k}} \in L^{\infty}(k=1,2, \ldots, N) \tag{A2}
\end{align*}
$$

Let $T_{\min }$ be the restriction of the formal differential expression T on $C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ ．
Under these conditions we obtain the following
Theorem．$T_{\min }$ is closable and its closure $\widetilde{T}_{\min }$ is quasi－m－accretive in L^{p} ．More precisely，for some $\lambda \in \mathbf{R}$ ，

$$
\begin{aligned}
& \operatorname{Re}\left(\left(T_{\min }+\lambda\right) u,|u|^{p-2} u\right) \geq 0, \quad u \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right), \\
& R\left(\widetilde{T}_{\min }+\lambda\right)=L^{p} .
\end{aligned}
$$

Kato［1］presented this problem in L^{2} ，and Noguchi［2］replaced Δu with $\operatorname{div}(a \nabla u)$ ．Conditions（A1）and （A2）are stronger than those in［1］．To prove this theorem we introduce the intermediate operator $T_{\text {int }}$ whose definition is different from that in［1］．

Definition．Define $T_{\text {int }}$ as

$$
\left\{\begin{aligned}
D\left(T_{\mathrm{int}}\right):= & \left\{u \in W^{1,1}\left(\mathbf{R}^{N}\right) \cap W^{1, \infty}\left(\mathbf{R}^{N}\right) \cap W_{\mathrm{loc}}^{2, p}\left(\mathbf{R}^{N}\right)\right. \\
& \left.(1+|x|)^{-1} B_{j} u \in L^{p}(j=1,2, \ldots, N), T u \in L^{p}\right\} \\
T_{\mathrm{int}} u:= & T u, \quad u \in D\left(T_{\mathrm{int}}\right)
\end{aligned}\right.
$$

Here B_{j} is formally defined as

$$
B_{j} u:=-2 \frac{\partial u}{\partial x_{j}}+b_{j} u, \quad(j=1,2, \ldots, N) .
$$

Then we present the key propositions in terms of this operator．

Proposition 1．$T_{\text {min }} \subset T_{\text {int }} \subset \widetilde{T}_{\text {min }}$ ．
Proposition 2．$C_{0}^{\infty}\left(\mathbf{R}^{N}\right) \subset R\left(T_{\text {int }}+\lambda\right)$ for some $\lambda \in \mathbf{R}$ ．
To prove these propositions we need cut－off functions presented by Kato［1］．By virtue of the functions we can give the growth rate of $(1+|x|)$－order to b and q ．

References

［1］T．Kato，Nonselfadjoint Schrödinger operators with singular first－order coefficients，Proc．Roy．Soc． Edinburgh，Sect．A 96 （1984），323－329．
［2］野口大介，L^{2}－theory of second－order elliptic operators with singular first－order coefficients，修士論文， 2007.

