Abstract approach to Schrödinger evolution equations

Kentarou Yoshii

(Tokyo University of Science)

Let $\{A(t); 0 \le t \le T\}$ be a family of closed linear operators in a complex Hilbert space X. We are concerned with linear evolution equations of the form

(E)
$$\frac{d}{dt}u(t) + A(t)u(t) = f(t) \quad \text{on} \quad (0,T).$$

Let S be a self-adjoint operator in X, satisfying $(u, Su) \ge ||u||^2$ for $u \in D(S)$. Then the square root $S^{1/2}$ is well-defined. Put $Y := D(S^{1/2})$ and $(u, v)_Y := (S^{1/2}u, S^{1/2}v)$, $u, v \in Y$. Then Y is a Hilbert space with norm $||v||_Y := (v, v)_Y^{1/2}$ embedded continuously and densely in X. For $\{A(t)\}$ and S assume that

(I) There is $\alpha \in L^1(0,T)$, $\alpha \ge 0$, such that

$$|\operatorname{Re}(A(t)v, v)| \le \alpha(t) ||v||^2, v \in D(A(t)), \text{ a.a. } t \in (0, T).$$

(II) $Y \subset D(A(t))$, a.a. $t \in (0, T)$.

(III) There is $\beta \in L^1(0,T), \beta \ge \alpha$, such that

$$\operatorname{Re}(A(t)u, Su) \le \beta(t) \|S^{1/2}u\|^2, \ u \in D(S), \ \text{a.a.} \ t \in (0, T).$$

(IV) $A(\cdot) \in L^2(0,T; B(Y,X)).$

Under the assumption stated above we can prove the following

Theorem. Let $f(\cdot) \in L^2(0,T;X) \cap L^1(0,T;Y)$. Then there exists a unique strong solution $u(\cdot)$ of (E) with $u(0) = u_0 \in Y$ such that $u(\cdot) \in H^1(0,T;X) \cap C([0,T];Y)$.

In particular, if $A(\cdot)$ is strongly continuous on [0, T] to B(Y, X) and α , β are constants, then Theorem has already been proved in Okazawa [1].

Now let $n \in \mathbb{N}$. By introducing $S := 1 + \Delta^{2n} + |x|^{4n}$ we can apply the above-mentioned theorem to the Cauchy problem for Schrödinger evolution equations:

(SE)
$$i\frac{\partial u}{\partial t}(x,t) - (-\Delta_x + V(x,t))u(x,t) = 0, \quad \text{a.a. } t \in (0,\infty)$$

in $L^2(\mathbb{R}^N)$. The assumption is satisfied under the following conditions: (V0) $V(\cdot, t) \in C^{2n}(\mathbb{R}^N)$ a.a. $t \in (0, \infty)$.

(V1) There is $g_0 \in L^2_{\text{loc}}[0,\infty)$ such that $|V(x,t)| \le g_0(t)(1+|x|^{2n})$.

(V2) There are $g_j \in L^1_{loc}[0,\infty)$ $(1 \le j \le 2n)$ such that

$$\begin{cases} \sum_{|\alpha|=j} \left| D_x^{\alpha} V(x,t) \right| \le g_j(t)(1+|x|^j), & (1\le j\le n), \\ \sum_{|\alpha|=n} \left| D_x^{\alpha} \Delta_x^{\frac{j-n}{2}} V(x,t) \right| \le g_j(t)(1+|x|^j), & (n< j\le 2n, \ j-n: \text{even}), \\ \sum_{|\alpha|=n-1} \left| D_x^{\alpha} \Delta_x^{\frac{j-n+1}{2}} V(x,t) \right| \le g_j(t)(1+|x|^j), & (n< j\le 2n, \ j-n: \text{odd}). \end{cases}$$

References

 N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 8 (1998), 399–423.