Resolvent problem for the complex Ginzburg－Landau equation with non－homogeneous term in L^{2}

Tetsuro Hori
（Tokyo University of Science）

Let Ω be a bounded domain in \mathbb{R}^{N} with C^{2}－boundary $\partial \Omega$ ．In $L^{2}(\Omega)$ we consider the following resolvent problem：
（RCGL）

$$
\begin{cases}(\xi+i \eta) u-(\lambda+i \alpha) \Delta u+(\kappa+i \beta)|u|^{q-2} u=f & \text { on } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $i=\sqrt{-1}, \xi, \lambda, \kappa \in \mathbb{R}_{+}:=(0, \infty), \eta, \alpha, \beta \in \mathbb{R}$ and $q>2$ are constants and u is a complex－ valued unknown function．（RCGL）is associated with the initial－boundary value problem for the complex Ginzburg－Landau equation（CGL）．For（CGL）see［3］．In particular，if $\lambda \geq \sqrt{\kappa^{2}+\beta^{2}}$ ， then there exists a unique strong solution to（RCGL）for＂$f \in H_{0}^{1}(\Omega)$＂（see［1］）；for the case where＂$f \in L^{q}(\Omega)$＂see［2］．In this paper we improve the result of［1］．Namely，we establish the existence and uniqueness of strong solutions to（RCGL）for＂$f \in L^{2}(\Omega)$＂without any restriction on λ, κ and β under the restriction on q ：

$$
\begin{cases}2<q<2+\frac{4}{N} & (N \geq 2) \tag{*}\\ 2<q<4 & (N=1)\end{cases}
$$

Definition．A function u is said to be a strong solution to（RCGL）if
（a）$u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \cap L^{2(q-1)}(\Omega)$ ；
（b）u satisfies the equation in（RCGL）formulated in $L^{2}(\Omega)$ ．
Main Theorem．Let $N \in \mathbb{N}, \xi, \lambda, \kappa \in \mathbb{R}_{+}$and $\eta, \alpha, \beta \in \mathbb{R}$ ．Assume that condition（＊）is satisfied．Then for any $f \in L^{2}(\Omega)$ there exists a unique strong solution u to（RCGL）with ξ satisfying $\xi>\left(C \delta R^{\theta}\right)^{\frac{1}{1+\theta}}$ ，where $R:=\|f\|_{L^{2}(\Omega)}, C=C(q, N, \lambda, \kappa, \beta)>0, \delta=\delta(q, \kappa, \beta)>0$ and $\theta=\theta(q, N)>0$ are constants．

To prove this theorem we establish a new type of inequality instead of those used in［1］．

References

［1］小山 雅賢，Stationary problem for the complex Ginzburg－Landau equation，修士論文， 2005.
［2］N．Okazawa，Semilinear elliptic problems associated with the complex Ginzburg－Landau equation， Partial Differential Equations and Functional Analysis，169－187，Oper．Theory Adv．Appl．vol．168， Birkhäuser，Basel， 2006.
［3］N．Okazawa and T．Yokota，Non－contraction semigroups generated by the complex Ginzburg－Landau equation，Nonlinear Partial Differential Equations and Their Applications（Shanghai，2003），490－504， GAKUTO Internat．Ser．Math．Sci．Appl．vol．20，Gakkōtosho，Tokyo， 2004.

