Approximation theorem for evolution equations of hyperbolic type in Hilbert space

Takafumi Hattori
(Tokyo University of Science)

Let X be a (complex) Hilbert space. Let $\{A(t) ; 0 \leq t \leq T\}$ be a family of closed linear operators in X. We are concerned with the linear evolution equation

$$
\left\{\begin{align*}
\frac{d u(t)}{d t}+A(t) u(t) & =f(t) \quad \text { on } \quad[0, T], \tag{E}\\
u(0) & =u_{0} .
\end{align*}\right.
$$

Let S be a selfadjoint operator with domain $D(S)$ in X, satisfying

$$
(u, S u) \geq\|u\|^{2} \quad \text { for } \quad u \in D(S)
$$

Then the square root $S^{\frac{1}{2}}$ is well-defined and its domain $Y:=D\left(S^{\frac{1}{2}}\right)$ is regarded as a Hilbert space with inner product $\left(S^{\frac{1}{2}} u, S^{\frac{1}{2}} v\right)$. In what follows we denote by $B(Y, X)$ the set of all bounded linear operators on Y to X. Assume that $A(t)$ satisfies the conditions (I), (II) and (III) stated in [1] or [2]. The solvability of (E) is proved in [2] under the condition that $A(\cdot) \in C([0, T] ; B(Y, X))$.

In this paper, we consider the approximate problem to (\mathbf{E}) :
$\left(\mathbf{E}_{\varepsilon}\right)$

$$
\left\{\begin{aligned}
\frac{d u_{\varepsilon}(t)}{d t}+A_{\varepsilon}(t) u_{\varepsilon}(t) & =f(t) \quad \text { on } \quad(0, T], \\
u_{\varepsilon}(0) & =u_{0},
\end{aligned}\right.
$$

where $A_{\varepsilon}(t):=A(t)+\varepsilon S$. Under conditions (I)-(III), $-A_{\varepsilon}(t)$ is a generator of an analytic semigroup on X. In this sense, $\left(\mathbf{E}_{\varepsilon}\right)$ is an equation of parabolic type, while (\mathbf{E}) is of hyperbolic type. Namely, $\left(\mathbf{E}_{\varepsilon}\right)$ is a parabolic regularization of the hyperbolic problem (E). We have tried to make it clear that each solution to (\mathbf{E}) is a limit of the corresponding family of solutions to $\left(\mathbf{E}_{\boldsymbol{\varepsilon}}\right)$. Thus we have the following

Theorem. Assume that there are two constants $1 / 2<\alpha \leq 1,0<\beta \leq 1$ such that $A(\cdot) \in$ $C^{0, \alpha}([0, T] ; B(Y, X))$ and $f(\cdot) \in C^{0, \beta}([0, T] ; X) \cap L^{1}(0, T ; Y)$. Let $u(t)$ be a solution to (\mathbf{E}). Then the solutions $u_{\varepsilon}(t)$ to $\left(\mathbf{E}_{\varepsilon}\right)$ exist and converge to $u(t)$, i.e.,

$$
u_{\varepsilon}(t) \rightarrow u(t) \quad(\varepsilon \downarrow 0) \quad \text { in } \quad C([0, T] ; X) .
$$

Note that $C^{0, \alpha}([0, T] ; B(Y, X))$ is the space of all Hölder continuous $B(Y, X)$-valued functions on $[0, T]$. In the Lipschitz case (in which $\alpha=\beta=1$) the convergence of $u_{\varepsilon}(t)$ to $u(t)$ is already studied in [1].

References

[1] N. Okazawa and A. Unai, Singular perturbation approach to evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 3 (1993/94), 267-283.
[2] N. Okazawa and A. Unai, Linear evolution equations of hyperbolic type in Hilbert space, SUT J. Math. 29 (1993), 51-70.

