Approximation theorem for evolution equations of hyperbolic type in Hilbert space

Takafumi Hattori (Tokyo University of Science)

Let X be a (complex) Hilbert space. Let $\{A(t); 0 \le t \le T\}$ be a family of closed linear operators in X. We are concerned with the linear evolution equation

(E)
$$\begin{cases} \frac{du(t)}{dt} + A(t)u(t) = f(t) & \text{on } [0, T], \\ u(0) = u_0. \end{cases}$$

Let S be a selfadjoint operator with domain D(S) in X, satisfying

$$(u, Su) \ge ||u||^2$$
 for $u \in D(S)$.

Then the square root $S^{\frac{1}{2}}$ is well-defined and its domain $Y := D(S^{\frac{1}{2}})$ is regarded as a Hilbert space with inner product $(S^{\frac{1}{2}}u, S^{\frac{1}{2}}v)$. In what follows we denote by B(Y, X) the set of all bounded linear operators on Y to X. Assume that A(t) satisfies the conditions (I), (II) and (III) stated in [1] or [2]. The solvability of (E) is proved in [2] under the condition that $A(\cdot) \in C([0,T]; B(Y,X))$.

In this paper, we consider the **approximate problem** to (E):

$$\begin{cases}
\frac{du_{\varepsilon}(t)}{dt} + A_{\varepsilon}(t)u_{\varepsilon}(t) = f(t) & \text{on } (0, T], \\
u_{\varepsilon}(0) = u_{0},
\end{cases}$$

where $A_{\varepsilon}(t) := A(t) + \varepsilon S$. Under conditions (I)–(III), $-A_{\varepsilon}(t)$ is a generator of an analytic semigroup on X. In this sense, $(\mathbf{E}_{\varepsilon})$ is an equation of parabolic type, while (\mathbf{E}) is of hyperbolic type. Namely, $(\mathbf{E}_{\varepsilon})$ is a parabolic regularization of the hyperbolic problem (\mathbf{E}) . We have tried to make it clear that each solution to (\mathbf{E}) is a limit of the corresponding family of solutions to $(\mathbf{E}_{\varepsilon})$. Thus we have the following

Theorem. Assume that there are two constants $1/2 < \alpha \le 1$, $0 < \beta \le 1$ such that $A(\cdot) \in C^{0,\alpha}([0,T];B(Y,X))$ and $f(\cdot) \in C^{0,\beta}([0,T];X) \cap L^1(0,T;Y)$. Let u(t) be a solution to (\mathbf{E}) . Then the solutions $u_{\varepsilon}(t)$ to $(\mathbf{E}_{\varepsilon})$ exist and converge to u(t), i.e.,

$$u_{\varepsilon}(t) \to u(t) \quad (\varepsilon \downarrow 0) \quad \text{in} \quad C([0,T];X).$$

Note that $C^{0,\alpha}([0,T];B(Y,X))$ is the space of all Hölder continuous B(Y,X)-valued functions on [0,T]. In the Lipschitz case (in which $\alpha = \beta = 1$) the convergence of $u_{\varepsilon}(t)$ to u(t) is already studied in [1].

References

- [1] N. Okazawa and A. Unai, Singular perturbation approach to evolution equations of hyperbolic type in Hilbert space, Adv. Math. Sci. Appl. 3 (1993/94), 267–283.
- [2] N. Okazawa and A. Unai, Linear evolution equations of hyperbolic type in Hilbert space, SUT J. Math. **29** (1993), 51–70.