L^{∞} -estimates for evolution equations with p-Laplacian

Hiroshi Noguchi (Tokyo University of Science)

Let Ω be a bounded domain in $\mathbb{R}^N (N \in \mathbb{N})$ with smooth boundary $\partial \Omega$. In this talk we consider the following initial-boundary value problem:

$$(\mathbf{E})_{p} \qquad \begin{cases} \frac{\partial u}{\partial t}(x,t) \in \Delta_{p}u(x,t) - g(u(x,t)) + h(x), & (x,t) \in \Omega \times (0,\infty), \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times (0,\infty), \\ u(x,0) = u_{0}(x), & x \in \Omega. \end{cases}$$

Here u is a real-valued unknown function, $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, $\max\{1, \frac{2N}{N+2}\} ,$ $<math>h: \Omega \to \mathbb{R}$ is a given function, and $g: \mathbb{R} \to 2^{\mathbb{R}}$ is a (possibly, multi-valued) function satisfying (A1) there exist functions $g_0: \mathbb{R} \to 2^{\mathbb{R}}$ and $g_1: \mathbb{R} \to \mathbb{R}$ such that $g(\xi) = g_0(\xi) + g_1(\xi) \ (\forall \xi \in \mathbb{R})$,

$$(\eta_1 - \eta_2)(\xi_1 - \xi_2) \ge 0 \ (\forall \xi_j \in \mathbb{R} \ \forall \eta_j \in g_0(\xi_j), j = 1, 2),$$

$$\xi \mapsto \xi + g_0(\xi) \text{ is surjective from } \mathbb{R} \text{ to } \mathbb{R}, \text{ and } 0 \in g_0(0),$$

$$|g_1(\xi) - g_1(\eta)| \le L|\xi - \eta| \ (\forall \xi, \eta \in \mathbb{R}) \text{ for some } L > 0, \text{ and } g_1(0) = 0;$$

(A2) if $p \leq 2$, then there exist constants θ , k_0 , $k_1 > 0$ such that for $\xi \in \mathbb{R}$,

$$|\mathring{g}_{0}(\xi)| \ge k_{0}|\xi|^{1+\theta} - k_{1}$$

where $\mathring{g}_0(\xi)$ denotes the minimal section of $g_0(\xi)$, that is, $\mathring{g}_0(\xi) := \operatorname{Proj}_{g_0(\xi)} 0$.

Efendiev-Ôtani [2] showed that, under condition (A1), for every $h, u_0 \in L^2(\Omega)$ there exists a unique solution $u \in C([0, \infty); L^2(\Omega)) \cap W^{1,2}_{loc}((0, \infty); L^2(\Omega)) \cap L^p_{loc}([0, \infty); W^{1,p}_0(\Omega))$ to $(\mathbf{E})_p$. They also obtained L^2 - and L^∞ -estimates of the solution under conditions (A1), (A2) when $h \in L^\infty(\Omega)$. The proof of the L^∞ -estimate in [2] needs an L^δ -estimate ($\delta > 2$) and depends strongly on the result for generalized quasilinear equations established by DiBenedetto [1, Theorem V.3.2] of which the statement and proof are not so simple.

The purpose of this talk is to give a simplified proof of the L^{∞} -estimate without using L^{δ} -estimates ($\delta > 2$) and obtain the detailed information about the time decay. Combining the L^2 -estimate with the argument in Takeuchi-Yokota [**3**], we can obtain the following theorem.

Main Theorem. Let $p > \max\{1, \frac{2N}{N+2}\}$ and $h \in L^{\infty}(\Omega)$. Assume that conditions (A1), (A2) are satisfied. Let u be the unique solution to $(\mathbf{E})_p$ with $u_0 \in L^2(\Omega)$. Then there exist positive constants $c_j = c_j(p, N, |\Omega|, ||h||_{L^{\infty}(\Omega)})$ (j = 1, 2), independent of u_0 , such that for every t > 1,

$$\|u(t)\|_{L^{\infty}(\Omega)} \leq \max\{1, c_1 + c_2(t-1)^{-\frac{2p}{N(q-2)(\delta-2)}}\}$$

where $q = \frac{p(N+2)}{N}$, $\delta = 2 + \theta$ if $p \leq 2$, and $\delta = p$ if $p > 2$.

Remark. We can construct an infinite-dimensional attractor for $(\mathbf{E})_p$ by using the abovementioned L^{∞} -estimate, while a $C^{1,\alpha}$ -estimate is used in their construction in [2].

References

- [1] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
- [2] M.A. Efendiev, M. Ôtani, Infinite-dimensional attractors for evolution equations with p-Laplacian and their Kolmogorov entropy, Differential Integral Equations 20 (2007), 1201–1209.
- [3] S. Takeuchi, T. Yokota, Global attractors for a class of degenerate diffusion equations, Electron. J. Differential Equations 2003 (2003), 1–13.