L^{∞}-estimates for evolution equations with p-Laplacian

Hiroshi Noguchi
(Tokyo University of Science)

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \in \mathbb{N})$ with smooth boundary $\partial \Omega$. In this talk we consider the following initial-boundary value problem:
$(\mathbf{E})_{p} \quad \begin{cases}\frac{\partial u}{\partial t}(x, t) \in \Delta_{p} u(x, t)-g(u(x, t))+h(x), & (x, t) \in \Omega \times(0, \infty), \\ u(x, t)=0, & (x, t) \in \partial \Omega \times(0, \infty), \\ u(x, 0)=u_{0}(x), & x \in \Omega .\end{cases}$
Here u is a real-valued unknown function, $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \max \left\{1, \frac{2 N}{N+2}\right\}<p<\infty$, $h: \Omega \rightarrow \mathbb{R}$ is a given function, and $g: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is a (possibly, multi-valued) function satisfying (A1) there exist functions $g_{0}: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ and $g_{1}: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(\xi)=g_{0}(\xi)+g_{1}(\xi)(\forall \xi \in \mathbb{R})$,

$$
\begin{aligned}
& \left(\eta_{1}-\eta_{2}\right)\left(\xi_{1}-\xi_{2}\right) \geq 0\left(\forall \xi_{j} \in \mathbb{R} \forall \eta_{j} \in g_{0}\left(\xi_{j}\right), j=1,2\right), \\
& \xi \mapsto \xi+g_{0}(\xi) \text { is surjective from } \mathbb{R} \text { to } \mathbb{R}, \text { and } 0 \in g_{0}(0), \\
& \left|g_{1}(\xi)-g_{1}(\eta)\right| \leq L|\xi-\eta|(\forall \xi, \eta \in \mathbb{R}) \text { for some } L>0, \text { and } g_{1}(0)=0
\end{aligned}
$$

(A2) if $p \leq 2$, then there exist constants $\theta, k_{0}, k_{1}>0$ such that for $\xi \in \mathbb{R}$,

$$
\left|\circ_{0}(\xi)\right| \geq k_{0}|\xi|^{1+\theta}-k_{1}
$$

where $\stackrel{\circ}{g}_{0}(\xi)$ denotes the minimal section of $g_{0}(\xi)$, that is, $\stackrel{\circ}{g}_{0}(\xi):=\operatorname{Proj}_{g_{0}(\xi)} 0$.
Efendiev-Ôtani [2] showed that, under condition (A1), for every $h, u_{0} \in L^{2}(\Omega)$ there exists a unique solution $u \in C\left([0, \infty) ; L^{2}(\Omega)\right) \cap W_{\mathrm{loc}}^{1,2}\left((0, \infty) ; L^{2}(\Omega)\right) \cap L_{\mathrm{loc}}^{p}\left([0, \infty) ; W_{0}^{1, p}(\Omega)\right)$ to $(\mathbf{E})_{p}$. They also obtained L^{2} - and L^{∞}-estimates of the solution under conditions (A1), (A2) when $h \in L^{\infty}(\Omega)$. The proof of the L^{∞}-estimate in [2] needs an L^{δ}-estimate ($\delta>2$) and depends strongly on the result for generalized quasilinear equations established by DiBenedetto $[\mathbf{1}$, Theorem V.3.2] of which the statement and proof are not so simple.

The purpose of this talk is to give a simplified proof of the L^{∞}-estimate without using L^{δ}-estimates $(\delta>2)$ and obtain the detailed information about the time decay. Combining the L^{2}-estimate with the argument in Takeuchi-Yokota [3], we can obtain the following theorem.
Main Theorem. Let $p>\max \left\{1, \frac{2 N}{N+2}\right\}$ and $h \in L^{\infty}(\Omega)$. Assume that conditions (A1), (A2) are satisfied. Let u be the unique solution to $(\mathbf{E})_{p}$ with $u_{0} \in L^{2}(\Omega)$. Then there exist positive constants $c_{j}=c_{j}\left(p, N,|\Omega|,\|h\|_{L^{\infty}(\Omega)}\right)(j=1,2)$, independent of u_{0}, such that for every $t>1$,

$$
\|u(t)\|_{L^{\infty}(\Omega)} \leq \max \left\{1, c_{1}+c_{2}(t-1)^{-\frac{2 p}{N(q-2)(\delta-2)}}\right\}
$$

where $q=\frac{p(N+2)}{N}, \delta=2+\theta$ if $p \leq 2$, and $\delta=p$ if $p>2$.
Remark. We can construct an infinite-dimensional attractor for $(\mathbf{E})_{p}$ by using the abovementioned L^{∞}-estimate, while a $C^{1, \alpha}$-estimate is used in their construction in [2].

References

[1] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
[2] M.A. Efendiev, M. Ôtani, Infinite-dimensional attractors for evolution equations with p-Laplacian and their Kolmogorov entropy, Differential Integral Equations 20 (2007), 1201-1209.
[3] S. Takeuchi, T. Yokota, Global attractors for a class of degenerate diffusion equations, Electron. J. Differential Equations 2003 (2003), 1-13.

