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In this talk we consider the Cauchy problem for semilinear parabolic equations of the form

(CP)

{
u′(t) = Au(t) + J(u(t)),

u(0) = ϕ

in a Banach space E with norm ‖ · ‖, where u : [0, T ] → E is an unknown function, A is the
generator of a C0-semigroup {etA}t≥0 on E such that ‖etAϕ‖ ≤ Meγt‖ϕ‖ (ϕ ∈ E, t ≥ 0) for
some constants M ≥ 1 and γ ≥ 0, and J is a nonlinear function from a subset of E into E.
Suppose that the domain of J is itself a Banach space EJ with norm | · |J and J : EJ → E is
locally Lipschitz continuous, i.e., for every r > 0 there exists `(r) > 0 such that

‖Jϕ − Jψ‖ ≤ `(r)|ϕ − ψ|J , ϕ, ψ ∈ EJ (|ϕ|J ≤ r, |ψ|J ≤ r).

Also we assume that there exist positive constants N and a with a < 1 such that

|etAϕ|J ≤ Nt−a‖ϕ‖, ϕ ∈ E, t ∈ (0, T ].

Moreover, suppose that etAϕ ∈ C((0, T ]; EJ) for every ϕ ∈ E.
The first purpose is to give a detailed proof of the following existence theorem [1,Theorem

2] for “continuous” solutions to the corresponding integral equation

(IE) u(t) = etAϕ +

∫ t

0

e(t−s)AJ(u(s))ds.

Theorem 1. Let E, A, {etA}t≥0, J, EJ , `(r), N and a be as above.
a) Assume that

∫ ∞
τ

`(r)r−1/adr < ∞ for some τ > 0. Then for every ϕ ∈ E there exists a

unique solution u ∈ C([0, Tϕ); E) ∩ C((0, Tϕ); EJ) to (IE) such that limt↓0t
a|u(t)|J < ∞,

where Tϕ := sup{T ; a continuous solution to (IE) exists on [0, T ]}. Moreover, if Tϕ < ∞,
then limt↑Tϕ ‖u(t)‖ = ∞ and limt↑Tϕ|u(t)|J = ∞.

b) Assume that
∫ ∞
1

`(r)r−1/adr = ∞ and there exist constants C > 0, b ∈ (0, a) and r0 ≥ 0

such that `(r) ≤ Cr
1−a

b for every r ≥ r0. Let K0 > 0 with NBC(2K0)
1−a

b ≤ 1/2 and T2 > 0

with MeγT2C(2K0)
1−a

b (a− b)−1T a−b
2 < 1 and r0T2

b ≤ 2K0, where B :=
∫ 1

0
(1− s)−asa−1−bds.

If ϕ ∈ E satisfies tb|etAϕ|J ≤ K0 for every t ∈ (0, T2], then there exists a unique solution
u ∈ C([0, T2]; E) ∩ C((0, T2]; EJ) to (IE) such that tb|u(t)|J ≤ 2K0 for every t ∈ (0, T2].

The second purpose is to show the following corollary [1, Corollary 2.1] for the “differen-
tiability” of the solution u(t) in Theorem 1 by employing the argument in [2].

Corollary 2. Assume that {etA}t≥0 is an analytic semigroup on both E and EJ . Then the
solution u(t) in Theorem 1 is continuously differentiable on (0, T ) in E, u(t) ∈ D(A) for
every t ∈ (0, T ) and satisfies (CP), where T = Tϕ or T = T2.
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