Continuous dependence on modelling parameters for the complex Ginzburg-Landau equation with inhomogeneous boundary condition

Satoru Sunaga
(Tokyo University of Science)

Let Ω be a star-shaped (with respect to the origin) bounded domain in $\mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$. Then we consider the following initial-boundary value problem for the complex Ginzburg-Landau equation with "inhomogeneous" Dirichlet boundary condition:
$(\mathbf{C G L})_{\mu, \nu}$

$$
\begin{cases}\frac{\partial u}{\partial t}=\gamma u-(\mu+i \nu)|u|^{2} u+(\alpha+i \beta) \Delta_{x} u & \text { in } \Omega \times(0, T), \\ u=u_{B} & \text { on } \partial \Omega \times(0, T), \\ u(x, 0)=u_{0}(x), & x \in \Omega\end{cases}
$$

where $i=\sqrt{-1}, \mu>0, \alpha>0, \gamma, \nu, \beta \in \mathbb{R}, \Delta_{x} u:=\sum_{k=1}^{d} \partial^{2} u / \partial x_{k}^{2}$ and u is a complex-valued unknown function. Here Ω and $\mu+i \nu$ satisfy the following additional conditions:
(A1) min $\{x \cdot n(x) ; x \in \partial \Omega\}>0$, where $n(x)$ is the unit outward normal vector at $x \in \partial \Omega$; (A2) $|\nu| \leq \sqrt{3} \mu$,
where (A2) is determined by the Liskevich-Perelmuter inequality (see e.g., [1, Lemma 1.2]).
Yang-Gao [2] showed that the solution to (CGL) $)_{\mu, \nu}$ depends continuously on the modelling parameter $\mu+i \nu$ under the various cases. Their results and ours are summarized as follows.

	$[\mathbf{2 ,}$ Th. 2.2]	$[\mathbf{2 ,}$ Th. 2.4]	$[\mathbf{2 ,}$ Th. 3.1]	Main Theorem
spatial dimension	$2 \leq d \leq 4$	$d \geq 2$	$2 \leq d \leq 6$	$d \geq 2$
initial value	$u_{0} \in L^{2}(\Omega)$	$u_{0} \in L^{4}(\Omega)$	$u_{0} \in L^{2}(\Omega)$	$u_{0} \in L^{2}(\Omega)$
boundary value	$u_{B} \in H^{2}$	$\left\|u_{B}\right\|^{2} u_{B} \in H^{2}$	$u_{B} \in H^{3 / 2,3 / 4}$	$u_{B} \in W^{2,4}$
restriction on α, β	nothing	$\|\beta\| \leq \sqrt{3} \alpha$	nothing	nothing

The purpose of this talk is to establish the following theorem which improves all the three theorems [$\mathbf{2}$, Theorems 2.2, 2.4 and 3.1].
Main Theorem. Let Ω satisfy (A1) and let μ_{j}, ν_{j} satisfy (A2), i.e., $\left|\nu_{j}\right| \leq \sqrt{3} \mu_{j}(j=1,2)$. Assume that $d \geq 2, u_{0} \in L^{2}(\Omega)$ and $u_{B} \in W^{2,4}(\partial \Omega \times(0, T))$. Let u_{j} be a solution to (CGL) $\mu_{\mu_{j}, \nu_{j}}$ $(j=1,2)$. Then the solution depends continuously on the modelling parameter $\mu+i \nu$, i.e.,

$$
\left\|u_{1}(t)-u_{2}(t)\right\|_{L^{2}(\Omega)}^{2} \leq 4 \sqrt{\left(\mu_{1}-\mu_{2}\right)^{2}+\left(\nu_{1}-\nu_{2}\right)^{2}}\left(1+\mu_{1}^{-1}+\mu_{2}^{-1}\right) e^{C_{1} t} C_{2}(t)
$$

where $C_{1}=C_{1}(\gamma, \alpha,|\Omega|)$ and $C_{2}(t)=C_{2}\left(t, \alpha, \beta, \gamma,\left\|u_{B}\right\|_{W^{2,4}(\partial \Omega \times(0, t))},\left\|u_{0}\right\|_{L^{2}(\Omega)}\right)$ are constants.
The following proposition plays an essential role in the proof of Main Theorem.
Proposition. Assume (A1). Let $u_{B} \in W^{2,4}(\partial \Omega \times(0, T))$. Then there exists the auxiliary function ψ such that $\psi(t) \in W^{2,4}(\Omega)$ a.a. $t \in(0, T), \psi \in L^{4}(\Omega \times(0, T)) \cap H^{1}(\Omega \times(0, T))$ and

$$
\begin{cases}\Delta_{x} \psi=0 & \text { in } \Omega \times(0, T) \\ \psi=u_{B} & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

References

[1] N. Okazawa, T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-Laplacian, J. Differential Equations 182 (2002), 541-576.
[2] Y. Yang, H. Gao, Continuous dependence on modelling for a complex Ginzburg-Landau equation with complex coefficients, Math. Meth. Appl. Sci. 27 (2004), 1567-1578.

