On the global existence of spatially periodic solutions to a class of complex Ginzburg-Landau equations

Yuta Kugo

(Tokyo University of Science)

In this talk we consider the Cauchy problem for a class of complex Ginzburg-Landau equations

(CGL)
$$\begin{cases} \frac{\partial u}{\partial t} = (\delta_1 + i\delta_2)\Delta u - i\mu|u|^{2\sigma}u, & (t,x) \in (0,\infty) \times \mathbb{R}^d, \\ u(0,x) = u_0(x), & x \in \mathbb{R}^d, \end{cases}$$

where $i = \sqrt{-1}$, $\sigma > 0$, $\delta_1 > 0$, $\delta_2, \mu \in \mathbb{R}$ and $d \in \mathbb{N}$. We discuss the existence and uniqueness of global solutions to (CGL) with initial value $u_0 \in X_2^1(\mathbb{R}^d)$, where $X_p^m(\mathbb{R}^d)$ $(m \in \mathbb{N} \cup \{0\}, 1 \leq p \leq \infty)$ is the Sobolev space of spatially periodic functions defined as follows:

$$X_p^m(\mathbb{R}^d) := \left\{ u \in W_{\text{loc}}^{m, \, p}(\mathbb{R}^d); \ u(\cdot) = u(\cdot + n) \text{ for all } n \in \mathbb{Z}^d \right\},\\ \|u\|_{m, \, p} := \left(\sum_{|\alpha| \le m} \int_{(0, 1)^d} |D^{\alpha} u(x)|^p dx\right)^{1/p} (1 \le p < \infty), \ \|u\|_{m, \infty} := \max_{|\alpha| \le m} \left(\underset{x \in (0, 1)^d}{\text{ess sup }} |D^{\alpha} u(x)| \right).$$

Definition. A function u is said to be a *global solution* to (CGL) if (i) and (ii) are satisfied:

- (i) $u \in C([0,\infty); X_2^1(\mathbb{R}^d)) \cap C((0,\infty); X_2^2(\mathbb{R}^d)) \cap C^1((0,\infty); X_2^0(\mathbb{R}^d));$
- (ii) u satisfies (CGL) on $(0, \infty)$ in $X_2^0(\mathbb{R}^d)$.

Gao and Wang [1] established the existence and uniqueness of global solutions to (CGL) in the *d*-dimensional torus \mathbb{T}^d . If we regard functions on \mathbb{T}^d as periodic functions on \mathbb{R}^d , then their result is translated as follows:

Gao-Wang's result. Let $\delta_1 > 0$, $\delta_2 \in \mathbb{R}$ and $\sigma \in \mathbb{N}$. Assume that

(*)
$$2 - \frac{2}{\sqrt{1 + (\delta_2/\delta_1)^2} + 1} and $p > \sigma d$.$$

Then for $u_0 \in X_p^1(\mathbb{R}^d)$ there exists a unique global solution to (CGL).

We focus our eyes on the case p = 2. In this case, σ and d satisfy (*) only when $\sigma = d = 1$. Namely, Gao and Wang have not dealt with the case $d \ge 2$ or $\sigma \ne 1$.

The purpose of this talk is to relax the second condition in (*) when p = 2 and to extend the restriction from $\sigma \in \mathbb{N}$ to $\sigma > 0$. Assuming further that $\delta_2 \mu > 0$, we can obtain the global existence and uniqueness of solutions to (CGL) even when $d \ge 2$ or $\sigma \ne 1$.

Let
$$\delta_1 > 0$$
, $\delta_2 \mu > 0$ and
 $0 < \sigma < \infty$ $(d = 1, 2)$, $0 < \sigma < \frac{1}{d-2}$ $(d \ge 3)$.
Then for $u_0 \in X_2^1(\mathbb{R}^d)$ there exists a unique global solution to (CGL)

References

Main Theor

 H. Gao, X. Wang, On the global existence and small dispersion limit for a class of complex Ginzburg-Landau equations, Math. Methods Appl. Sci. 32 (2009), 1396–1414.