Asymptotic stability of stationary waves for symmetric hyperbolic-parabolic system in half space

Shinya Nishibata Department of Mathematical and Computing Sciences Tokyo Institute of Technology

1 Introduction

We study large-time behavior of solutions to a system of viscous conservation laws over one-dimensional half space $\mathbb{R}_+ := (0, \infty)$,

$$f^{0}(u)_{t} + f(u)_{x} = (G(u)u_{x})_{x}, \quad x \in \mathbb{R}_{+}, \ t > 0.$$
(1)

Here u = u(t, x) is an unknown *m*-vector function taking values in an open convex set $\mathcal{O} \in \mathbb{R}^m$; $f^0(u)$ and f(u) are smooth *m*-vector functions; G(u) is a smooth $m \times m$ real matrix function. We assume that det $D_u f^0(u) \neq 0$ holds for $u \in \mathcal{O}$, and that G(u) is a non-negative matrix given by

$$G(u) = \begin{pmatrix} 0 & 0 \\ 0 & G_2(u) \end{pmatrix},$$

where $G_2(u)$ is an $m_2 \times m_2$ ($0 < m_2 < m$) real matrix function and non-singular for $u \in \mathcal{O}$. Thus the system (1) consists of m_1 -hyperbolic equations and m_2 -parabolic equations where $m_1 := m - m_2$.

Assuming the system (1) has a strictly convex entropy. we deduce (1) to the symmetric system

$$A^{0}(u)u_{t} + A(u)u_{x} = B(u)u_{xx} + g(u, u_{x}),$$
(2)

where $A^0(u)$ is a real symmetric and positive matrix, A(u) is a real symmetric matrix, B(u) is a real symmetric and non-negative matrix, and $g(u, u_x)$ is non-linear terms. Moreover, under suitable conditions, the system (2) is rewritten to the decomposed form

$$A_1^0(u)v_t + A_{11}(u)v_x + A_{12}(u)w_x = g_1(u, w_x),$$
(3a)

$$A_2^0(u)w_t + A_{21}(u)v_x + A_{22}(u)w_x = B_2(u)w_{xx} + g_2(u, u_x),$$
(3b)

where v and w are unknown m_1 - and m_2 -vector functions respectively, given by $u = {}^{T}(v, w)$. In the system (3), $A_1^0(u)$ and $A_2^0(u)$ are real symmetric positive matrices; $A_{ij}(u)$ (i, j = 1, 2) are real matrices satisfying

$$A(u) = \begin{pmatrix} A_{11}(u) & A_{12}(u) \\ A_{21}(u) & A_{22}(u) \end{pmatrix},$$

and A(u) is symmetric, i.e., $A_{11}(u)$ and $A_{22}(u)$ are symmetric and $A_{21}(u) = {}^{T}\!A_{12}(u)$; $B_2(u)$ is a real symmetric positive matrix; $g_1(u, w_x)$ and $g_2(u, u_x)$ are non-linear terms. We prescribe the initial and boundary conditions.

$$u(0,x) = u_0(x) = {}^T(v_0,w_0)(x),$$
(4)

$$w(t,0) = w_{\rm b},\tag{5}$$

where $w_{b} \in \mathbb{R}^{m_{2}}$ is a constant. We assume that a spatial asymptotic state of the initial data is a constant:

$$\lim_{x \to \infty} u_0(x) = u_+ = {}^T(v_+, w_+), \text{ i.e., } \lim_{x \to \infty} (v_0, w_0)(x) = (v_+, w_+).$$

We suppose that

[A1] The matrices $A_{11}(u_+)$ is negative definite.

For the system (1) in the full space \mathbb{R}^n , Umeda–Kawashima–Shizuta [3] prove the asymptotic stability of a constant state under the stability condition. The main purpose of the present talk is to show the asymptotic stability of the stationary solution in the half space \mathbb{R}_+ under the stability condition.

2 Stationary solution

The stationary solution $\tilde{u}(x) = {}^{T}(\tilde{v}, \tilde{w})(x)$ is defined as a solution to (1) independent of t. Thus $\tilde{u} = {}^{T}(\tilde{v}, \tilde{w})$ satisfies equations

$$f(\tilde{u})_{x} = (G(\tilde{u})\tilde{u}_{x})_{x}, \text{ i.e., } \begin{cases} f_{1}(\tilde{v},\tilde{w})_{x} = 0, \\ f_{2}(\tilde{v},\tilde{w})_{x} = (G_{2}(\tilde{u})\tilde{w}_{x})_{x}, \end{cases}$$
(6)

where $f = T(f_1, f_2)$. The boundary conditions are prescribed as

$$\tilde{w}(0) = w_{\rm b}, \quad \lim_{x \to \infty} \tilde{u}(x) = u_+.$$
 (7)

Under the assumption

 $[A2] \det D_v f_1(v_+, w_+) \neq 0,$

we solve the first equation in (6) by the implicit function theorem. Then there exists $V = V(\tilde{w})$ satisfying $f_1(V(\tilde{w}), \tilde{w}) = f_1(v_+, w_+)$. Let $\mu_j(w)$ $(j = 1, \ldots, m_2)$ be eigenvalues of the matrix $\tilde{A}(w) := G_2(u_+)^{-1}D_w f_2(V(w), w)$ and let $r_j(w)$ be corresponding eigenvectors. We solve the boundary value problem (6) and (7) under the following assumptions.

[A3] Eigenvalues of $\hat{A}(w)$ are distinct, i.e., $\mu_1(w) > \mu_2(w) > \cdots > \mu_{m_2}(w)$. [A4] $\mu_1(w_+) \leq 0$.

Theorem 1. Assume that $\delta := |w_{\rm b} - w_+|$ is sufficiently small.

(i) For the case of $\mu_1(w_+) < 0$, there exists a unique smooth solution $\tilde{u}(x)$ to (6) and (7) satisfying

$$|\partial_x^k(\tilde{u}(x) - u_+)| \le Ce^{-cx}$$
 for $k = 0, 1, \dots$

(i) For the case of $\mu_1(w_+) = 0$, there exists a region $\mathcal{M} \subset \mathbb{R}^{m_2}$ such that if $w_b \in \mathcal{M}$ and $D_w \mu_1(w_+) \cdot r_1(w_+) \neq 0$, then there exists a unique smooth solution $\tilde{u}(x)$ satisfying

$$|\partial_x^k(\tilde{u}(x) - u_+)| \le C \frac{\delta^{k+1}}{(1+\delta x)^{k+1}} + Ce^{-cx} \text{ for } k = 0, 1, \dots$$

3 Stability of stationary solution

We show the asymptotic stability of non-degenerate stationary solution, of which existence is shown in Theorem 1-(i), under the stability condition [SK]:

[SK] Let $\lambda A^0(u_+)\phi = A(u_+)\phi$ and $B(u_+)\phi = 0$ for $\lambda \in \mathbb{R}$ and $\phi \in \mathbb{R}^m$. Then $\phi = 0$.

Notice that Shizuta–Kawashima [2] prove the equivalence of the condition [SK] and the following condition [K]:

[K] There exists an $m \times m$ real matrix K such that $KA^0(u_+)$ is skew-symmetric and $[KA(u_+)] + B(u_+)$ is positive definite, where $[A] := (A + {}^T\!A)/2$ is a symmetric part of a matrix A.

Theorem 2. Let $\tilde{u}(x)$ be a non-degenerate stationary solution shown in Theorem 1-(i). Assume that the condition [SK] (or [K]) holds. Then there exists a positive constant ε_1 such that if

$$\|u_0 - \tilde{u}\|_{H^2} + \delta \le \varepsilon_1,$$

the problem (3), (4) and (5) has a unique solution u(t, x) globally in time satisfying

$$u - \tilde{u} \in C([0,\infty), H^2(\mathbb{R}_+)).$$

Moreover the solution u converges to the stationary solution \tilde{u} :

$$\lim_{t \to \infty} \|u(t) - \tilde{u}\|_{L^{\infty}} = 0.$$

The crucial point of a proof of Theorem 2 is to obtain a uniform a priori estimate of a perturbation from the stationary solution. Let $(\varphi, \psi) := (v, w) - (\tilde{v}, \tilde{w})$ be a perturbation and $(\varphi_0, \psi_0) := (v_0, w_0) - (\tilde{v}, \tilde{w})$ be an initial perturbation. Under the assumption that $\sup_{0 < \tau < t} ||(\varphi, \psi)(\tau)||_{H^2} + \delta$ is sufficiently small, we obtain

$$\|(\varphi,\psi)(t)\|_{H^2}^2 + \int_0^t \left(\|\varphi_x(\tau)\|_{H^1}^2 + \|\psi_x(\tau)\|_{H^2}^2\right) d\tau \le C \|(\varphi_0,\psi_0)\|_{H^2}^2.$$
(8)

To obtain (8), we first get the basic L^2 estimate of (φ, ψ) by using the energy form. To get the estimate for the derivatives of (φ, ψ) , we use Matsumura–Nishida's energy method in half space developed in [1]. Finally, using the assumption [K], we obtain the dissipative estimate of φ_x . Combining these computations, we prove (8).

Acknowledgment. The present talk is based on the joint research with Dr. Tohru Nakamura at Kyushu University.

References

- A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), no. 4, 445–464.
- [2] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985), no. 2, 249–275.
- [3] T. Umeda, S. Kawashima, and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math. 1 (1984), no. 2, 435–457.