Asymptotic stability of stationary waves for symmetric hyperbolic-parabolic system in half space

Shinya Nishibata
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology

1 Introduction

We study large-time behavior of solutions to a system of viscous conservation laws over one-dimensional half space $\mathbb{R}_{+}:=(0, \infty)$,

$$
\begin{equation*}
f^{0}(u)_{t}+f(u)_{x}=\left(G(u) u_{x}\right)_{x}, \quad x \in \mathbb{R}_{+}, t>0 \tag{1}
\end{equation*}
$$

Here $u=u(t, x)$ is an unknown m-vector function taking values in an open convex set $\mathcal{O} \in \mathbb{R}^{m} ; f^{0}(u)$ and $f(u)$ are smooth m-vector functions; $G(u)$ is a smooth $m \times m$ real matrix function. We assume that $\operatorname{det} D_{u} f^{0}(u) \neq 0$ holds for $u \in \mathcal{O}$, and that $G(u)$ is a non-negative matrix given by

$$
G(u)=\left(\begin{array}{cc}
0 & 0 \\
0 & G_{2}(u)
\end{array}\right),
$$

where $G_{2}(u)$ is an $m_{2} \times m_{2}\left(0<m_{2}<m\right)$ real matrix function and non-singular for $u \in \mathcal{O}$. Thus the system (1) consists of m_{1}-hyperbolic equations and m_{2}-parabolic equations where $m_{1}:=m-m_{2}$.

Assuming the system (1) has a strictly convex entropy. we deduce (1) to the symmetric system

$$
\begin{equation*}
A^{0}(u) u_{t}+A(u) u_{x}=B(u) u_{x x}+g\left(u, u_{x}\right) \tag{2}
\end{equation*}
$$

where $A^{0}(u)$ is a real symmetric and positive matrix, $A(u)$ is a real symmetric matrix, $B(u)$ is a real symmetric and non-negative matrix, and $g\left(u, u_{x}\right)$ is non-linear terms. Moreover, under suitable conditions, the system (2) is rewritten to the decomposed form

$$
\begin{align*}
A_{1}^{0}(u) v_{t}+A_{11}(u) v_{x}+A_{12}(u) w_{x} & =g_{1}\left(u, w_{x}\right) \tag{3a}\\
A_{2}^{0}(u) w_{t}+A_{21}(u) v_{x}+A_{22}(u) w_{x} & =B_{2}(u) w_{x x}+g_{2}\left(u, u_{x}\right) \tag{3b}
\end{align*}
$$

where v and w are unknown $m_{1^{-}}$and m_{2}-vector functions respectively, given by $u=$ ${ }^{T}(v, w)$. In the system (3), $A_{1}^{0}(u)$ and $A_{2}^{0}(u)$ are real symmetric positive matrices; $A_{i j}(u)(i, j=1,2)$ are real matrices satisfying

$$
A(u)=\left(\begin{array}{ll}
A_{11}(u) & A_{12}(u) \\
A_{21}(u) & A_{22}(u)
\end{array}\right)
$$

and $A(u)$ is symmetric, i.e., $A_{11}(u)$ and $A_{22}(u)$ are symmetric and $A_{21}(u)={ }^{T} A_{12}(u)$; $B_{2}(u)$ is a real symmetric positive matrix; $g_{1}\left(u, w_{x}\right)$ and $g_{2}\left(u, u_{x}\right)$ are non-linear terms. We prescribe the initial and boundary conditions.

$$
\begin{gather*}
u(0, x)=u_{0}(x)={ }^{T}\left(v_{0}, w_{0}\right)(x) \tag{4}\\
w(t, 0)=w_{\mathrm{b}} \tag{5}
\end{gather*}
$$

where $w_{\mathrm{b}} \in \mathbb{R}^{m_{2}}$ is a constant. We assume that a spatial asymptotic state of the initial data is a constant:

$$
\lim _{x \rightarrow \infty} u_{0}(x)=u_{+}={ }^{T}\left(v_{+}, w_{+}\right) \text {, i.e., } \lim _{x \rightarrow \infty}\left(v_{0}, w_{0}\right)(x)=\left(v_{+}, w_{+}\right) .
$$

We suppose that
[A1] The matrices $A_{11}\left(u_{+}\right)$is negative definite.
For the system (1) in the full space \mathbb{R}^{n}, Umeda-Kawashima-Shizuta [3] prove the asymptotic stability of a constant state under the stability condition. The main purpose of the present talk is to show the asymptotic stability of the stationary solution in the half space \mathbb{R}_{+}under the stability condition.

2 Stationary solution

The stationary solution $\tilde{u}(x)={ }^{T}(\tilde{v}, \tilde{w})(x)$ is defined as a solution to (1) independent of t. Thus $\tilde{u}={ }^{T}(\tilde{v}, \tilde{w})$ satisfies equations

$$
f(\tilde{u})_{x}=\left(G(\tilde{u}) \tilde{u}_{x}\right)_{x}, \text { i.e., }\left\{\begin{array}{l}
f_{1}(\tilde{v}, \tilde{w})_{x}=0 \tag{6}\\
f_{2}(\tilde{v}, \tilde{w})_{x}=\left(G_{2}(\tilde{u}) \tilde{w}_{x}\right)_{x},
\end{array}\right.
$$

where $f={ }^{T}\left(f_{1}, f_{2}\right)$. The boundary conditions are prescribed as

$$
\begin{equation*}
\tilde{w}(0)=w_{\mathrm{b}}, \quad \lim _{x \rightarrow \infty} \tilde{u}(x)=u_{+} . \tag{7}
\end{equation*}
$$

Under the assumption
[A2] $\operatorname{det} D_{v} f_{1}\left(v_{+}, w_{+}\right) \neq 0$,
we solve the first equation in (6) by the implicit function theorem. Then there exists $V=V(\tilde{w})$ satisfying $f_{1}(V(\tilde{w}), \tilde{w})=f_{1}\left(v_{+}, w_{+}\right)$. Let $\mu_{j}(w)\left(j=1, \ldots, m_{2}\right)$ be eigenvalues of the matrix $\tilde{A}(w):=G_{2}\left(u_{+}\right)^{-1} D_{w} f_{2}(V(w), w)$ and let $r_{j}(w)$ be corresponding eigenvectors. We solve the boundary value problem (6) and (7) under the following assumptions.
[A3] Eigenvalues of $\tilde{A}(w)$ are distinct, i.e., $\mu_{1}(w)>\mu_{2}(w)>\cdots>\mu_{m_{2}}(w)$.
$[\mathbf{A} 4] \mu_{1}\left(w_{+}\right) \leq 0$.
Theorem 1. Assume that $\delta:=\left|w_{\mathrm{b}}-w_{+}\right|$is sufficiently small.
(i) For the case of $\mu_{1}\left(w_{+}\right)<0$, there exists a unique smooth solution $\tilde{u}(x)$ to (6) and (7) satisfying

$$
\left|\partial_{x}^{k}\left(\tilde{u}(x)-u_{+}\right)\right| \leq C e^{-c x} \quad \text { for } k=0,1, \ldots
$$

(i) For the case of $\mu_{1}\left(w_{+}\right)=0$, there exists a region $\mathcal{M} \subset \mathbb{R}^{m_{2}}$ such that if $w_{\mathrm{b}} \in \mathcal{M}$ and $D_{w} \mu_{1}\left(w_{+}\right) \cdot r_{1}\left(w_{+}\right) \neq 0$, then there exists a unique smooth solution $\tilde{u}(x)$ satisfying

$$
\left|\partial_{x}^{k}\left(\tilde{u}(x)-u_{+}\right)\right| \leq C \frac{\delta^{k+1}}{(1+\delta x)^{k+1}}+C e^{-c x} \text { for } k=0,1, \ldots
$$

3 Stability of stationary solution

We show the asymptotic stability of non-degenerate stationary solution, of which existence is shown in Theorem 1-(i), under the stability condition [SK]:
[SK] Let $\lambda A^{0}\left(u_{+}\right) \phi=A\left(u_{+}\right) \phi$ and $B\left(u_{+}\right) \phi=0$ for $\lambda \in \mathbb{R}$ and $\phi \in \mathbb{R}^{m}$. Then $\phi=0$.
Notice that Shizuta-Kawashima [2] prove the equivalence of the condition [SK] and the following condition $[\mathrm{K}]$:
[K] There exists an $m \times m$ real matrix K such that $K A^{0}\left(u_{+}\right)$is skew-symmetric and $\left[K A\left(u_{+}\right)\right]+B\left(u_{+}\right)$is positive definite, where $[A]:=\left(A+{ }^{T} A\right) / 2$ is a symmetric part of a matrix A.

Theorem 2. Let $\tilde{u}(x)$ be a non-degenerate stationary solution shown in Theorem 1-(i). Assume that the condition $[\mathrm{SK}]$ (or $[\mathrm{K}]$) holds. Then there exists a positive constant ε_{1} such that if

$$
\left\|u_{0}-\tilde{u}\right\|_{H^{2}}+\delta \leq \varepsilon_{1},
$$

the problem (3), (4) and (5) has a unique solution $u(t, x)$ globally in time satisfying

$$
u-\tilde{u} \in C\left([0, \infty), H^{2}\left(\mathbb{R}_{+}\right)\right)
$$

Moreover the solution u converges to the stationary solution \tilde{u} :

$$
\lim _{t \rightarrow \infty}\|u(t)-\tilde{u}\|_{L^{\infty}}=0
$$

The crucial point of a proof of Theorem 2 is to obtain a uniform a priori estimate of a perturbation from the stationary solution. Let $(\varphi, \psi):=(v, w)-(\tilde{v}, \tilde{w})$ be a perturbation and $\left(\varphi_{0}, \psi_{0}\right):=\left(v_{0}, w_{0}\right)-(\tilde{v}, \tilde{w})$ be an initial perturbation. Under the assumption that $\sup _{0 \leq \tau \leq t}\|(\varphi, \psi)(\tau)\|_{H^{2}}+\delta$ is sufficiently small, we obtain

$$
\begin{equation*}
\|(\varphi, \psi)(t)\|_{H^{2}}^{2}+\int_{0}^{t}\left(\left\|\varphi_{x}(\tau)\right\|_{H^{1}}^{2}+\left\|\psi_{x}(\tau)\right\|_{H^{2}}^{2}\right) d \tau \leq C\left\|\left(\varphi_{0}, \psi_{0}\right)\right\|_{H^{2}}^{2} \tag{8}
\end{equation*}
$$

To obtain (8), we first get the basic L^{2} estimate of (φ, ψ) by using the energy form. To get the estimate for the derivatives of (φ, ψ), we use Matsumura-Nishida's energy method in half space developed in [1]. Finally, using the assumption [K], we obtain the dissipative estimate of φ_{x}. Combining these computations, we prove (8).
Acknowledgment. The present talk is based on the joint research with Dr. Tohru Nakamura at Kyushu University.

References

[1] A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), no. 4, 445-464.
[2] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985), no. 2, 249-275.
[3] T. Umeda, S. Kawashima, and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math. 1 (1984), no. 2, 435-457.

