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1 Introduction

We study large-time behavior of solutions to a system of viscous conservation laws
over one-dimensional half space R+ := (0,∞),

f 0(u)t + f(u)x = (G(u)ux)x, x ∈ R+, t > 0. (1)

Here u = u(t, x) is an unknown m-vector function taking values in an open convex
set O ∈ Rm; f 0(u) and f(u) are smooth m-vector functions; G(u) is a smooth m×m
real matrix function. We assume that detDuf

0(u) ̸= 0 holds for u ∈ O, and that
G(u) is a non-negative matrix given by

G(u) =

(
0 0
0 G2(u)

)
,

where G2(u) is an m2 ×m2 (0 < m2 < m) real matrix function and non-singular for
u ∈ O. Thus the system (1) consists of m1-hyperbolic equations and m2-parabolic
equations where m1 := m−m2.

Assuming the system (1) has a strictly convex entropy. we deduce (1) to the
symmetric system

A0(u)ut + A(u)ux = B(u)uxx + g(u, ux), (2)

where A0(u) is a real symmetric and positive matrix, A(u) is a real symmetric matrix,
B(u) is a real symmetric and non-negative matrix, and g(u, ux) is non-linear terms.
Moreover, under suitable conditions, the system (2) is rewritten to the decomposed
form

A0
1(u)vt + A11(u)vx + A12(u)wx = g1(u,wx), (3a)

A0
2(u)wt + A21(u)vx + A22(u)wx = B2(u)wxx + g2(u, ux), (3b)

where v and w are unknown m1- and m2-vector functions respectively, given by u =
T (v, w). In the system (3), A0

1(u) and A
0
2(u) are real symmetric positive matrices;

Aij(u) (i, j = 1, 2) are real matrices satisfying

A(u) =

(
A11(u) A12(u)
A21(u) A22(u)

)
,

and A(u) is symmetric, i.e., A11(u) and A22(u) are symmetric and A21(u) =
TA12(u);

B2(u) is a real symmetric positive matrix; g1(u,wx) and g2(u, ux) are non-linear
terms. We prescribe the initial and boundary conditions.

u(0, x) = u0(x) =
T (v0, w0)(x), (4)

w(t, 0) = wb, (5)
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where wb ∈ Rm2 is a constant. We assume that a spatial asymptotic state of the
initial data is a constant:

lim
x→∞

u0(x) = u+ = T (v+, w+), i.e., lim
x→∞

(v0, w0)(x) = (v+, w+).

We suppose that

[A1] The matrices A11(u+) is negative definite.

For the system (1) in the full space Rn, Umeda–Kawashima–Shizuta [3] prove the
asymptotic stability of a constant state under the stability condition. The main
purpose of the present talk is to show the asymptotic stability of the stationary
solution in the half space R+ under the stability condition.

2 Stationary solution

The stationary solution ũ(x) = T (ṽ, w̃)(x) is defined as a solution to (1) independent
of t. Thus ũ = T (ṽ, w̃) satisfies equations

f(ũ)x = (G(ũ)ũx)x, i.e.,

{
f1(ṽ, w̃)x = 0,
f2(ṽ, w̃)x = (G2(ũ)w̃x)x,

(6)

where f = T (f1, f2). The boundary conditions are prescribed as

w̃(0) = wb, lim
x→∞

ũ(x) = u+. (7)

Under the assumption

[A2] detDvf1(v+, w+) ̸= 0,

we solve the first equation in (6) by the implicit function theorem. Then there
exists V = V (w̃) satisfying f1(V (w̃), w̃) = f1(v+, w+). Let µj(w) (j = 1, . . . ,m2)
be eigenvalues of the matrix Ã(w) := G2(u+)

−1Dwf2(V (w), w) and let rj(w) be
corresponding eigenvectors. We solve the boundary value problem (6) and (7) under
the following assumptions.

[A3] Eigenvalues of Ã(w) are distinct, i.e., µ1(w) > µ2(w) > · · · > µm2(w).

[A4] µ1(w+) ≤ 0.

Theorem 1. Assume that δ := |wb − w+| is sufficiently small.

(i) For the case of µ1(w+) < 0, there exists a unique smooth solution ũ(x) to (6)
and (7) satisfying

|∂kx(ũ(x)− u+)| ≤ Ce−cx for k = 0, 1, . . . .

(i) For the case of µ1(w+) = 0, there exists a region M ⊂ Rm2 such that if wb ∈ M
and Dwµ1(w+) · r1(w+) ̸= 0, then there exists a unique smooth solution ũ(x)
satisfying

|∂kx(ũ(x)− u+)| ≤ C
δk+1

(1 + δx)k+1
+ Ce−cx for k = 0, 1, . . . .
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3 Stability of stationary solution

We show the asymptotic stability of non-degenerate stationary solution, of which
existence is shown in Theorem 1-(i), under the stability condition [SK]:

[SK] Let λA0(u+)ϕ = A(u+)ϕ and B(u+)ϕ = 0 for λ ∈ R and ϕ ∈ Rm. Then
ϕ = 0.

Notice that Shizuta–Kawashima [2] prove the equivalence of the condition [SK] and
the following condition [K]:

[K] There exists an m×m real matrix K such that KA0(u+) is skew-symmetric
and [KA(u+)] + B(u+) is positive definite, where [A] := (A + TA)/2 is a
symmetric part of a matrix A.

Theorem 2. Let ũ(x) be a non-degenerate stationary solution shown in Theorem
1-(i). Assume that the condition [SK] (or [K]) holds. Then there exists a positive
constant ε1 such that if

∥u0 − ũ∥H2 + δ ≤ ε1,

the problem (3), (4) and (5) has a unique solution u(t, x) globally in time satisfying

u− ũ ∈ C([0,∞), H2(R+)).

Moreover the solution u converges to the stationary solution ũ:

lim
t→∞

∥u(t)− ũ∥L∞ = 0.

The crucial point of a proof of Theorem 2 is to obtain a uniform a priori estimate
of a perturbation from the stationary solution. Let (φ, ψ) := (v, w) − (ṽ, w̃) be a
perturbation and (φ0, ψ0) := (v0, w0)− (ṽ, w̃) be an initial perturbation. Under the
assumption that sup0≤τ≤t ∥(φ, ψ)(τ)∥H2 + δ is sufficiently small, we obtain

∥(φ, ψ)(t)∥2H2 +

∫ t

0

(
∥φx(τ)∥2H1 + ∥ψx(τ)∥2H2

)
dτ ≤ C∥(φ0, ψ0)∥2H2 . (8)

To obtain (8), we first get the basic L2 estimate of (φ, ψ) by using the energy form.
To get the estimate for the derivatives of (φ, ψ), we use Matsumura–Nishida’s energy
method in half space developed in [1]. Finally, using the assumption [K], we obtain
the dissipative estimate of φx. Combining these computations, we prove (8).
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