2 次元圧縮性 Navier-Stokes 方程式の解の L^2 有界性について

小林 孝行 (Takayuki Kobayashi)

Osaka University, Japan kobayashi@sigmath.es.osaka-u.ac.jp

本講演の内容は, 熊本大学の三沢正史教授, 奈良女子大学の柳澤卓教授との共同研究である. 2 次元圧縮性 Navier-Stokes 方程式の初期値問題

$$\begin{cases} \rho_t + \operatorname{div} m = 0 \\ m_t + \operatorname{div} \left(\frac{m \otimes m}{\rho} \right) + \nabla P(\rho) = \mu \Delta \left(\frac{m}{\rho} \right) + (\mu + \nu) \nabla \operatorname{div} \left(\frac{m}{\rho} \right) \\ \rho(0) = \rho_0, \quad m(0) = m_0 \end{cases}$$
 (CNS)

を考える. ここで, $m(x,t)=(m_1(x,t),m_2(x,t))$ は流体の運動量, $\rho(x,t)$ は流体の密度を表す未知関数, $P(\rho)$ は流体の圧力で概知関数, μ と ν は粘性係数で $\mu>0$, $\mu+\nu\geq0$ である. 方程式 (CNS) は, 定常解として, 定数平衡解 $(\bar{\rho},0)$, $(\bar{\rho}>0)$ を持つ. そこで, 圧力 $P(\rho)$ に $\bar{\rho}$ の近くでは $P'(\rho)>0$ の条件を課してこの定数平衡解の安定性について考える. A. Matsumura and T. Nishida (1979, 1980) は小さい初期摂動 $(\rho_0-\bar{\rho},m_0)$ に対する解の一意存在と解の $L^2(\mathbb{R}^2)$ -ノルムにおける時間減衰評価

$$\|(\rho(t) - \bar{\rho}, m(t))\|_{L^2(\mathbb{R}^2)} \le Ct^{-1/2}$$
 $(t > 0)$

 $((\|\rho_0-\bar{\rho},m_0)\|_{L^1(\mathbb{R}^2)}<<1)$ を示した. その後, 多くの研究によって, 初期値の正則性が緩められている. D. Hoff and K. Zumbrun (1995, 1997) は, 時間無限における解の第一近似は, (CNS) の線形化方程式

$$\begin{cases} \rho_t + \gamma \operatorname{div} m = 0, \\ m_t - \alpha \Delta m - \beta \nabla \operatorname{div} m + \gamma \nabla \rho = 0 \\ \rho(0) = \rho_0, \quad m(0) = m_0 \end{cases}$$
 (L)

の解 (ρ,m) であることを示した。ここで、 α,β,γ は正の定数である。この線形化方程式 (L) から解の密度部分 ρ は次の Strong Damped Wave Equations

$$\begin{cases} \rho_{tt} - \gamma^2 \Delta \rho - (\alpha + \beta) \Delta \rho_t = 0 \\ \rho(0) = \rho_0, \quad \rho_t(0) = -\gamma \operatorname{div} m_0 \end{cases}$$
 (SDW)

を満たすことがわかる. 我々はこの Strong Damped Wave Equations (SDW) に対して, 次の結果を得ることができた.

Theorem 0.1. (T. K and M. Misawa) $(\rho_0, m_0) \in H^1(\mathbb{R}^2)$, $\rho_0 \in \mathcal{H}^1(\mathbb{R}^2)$, $\gamma m_0 + \nabla \rho_0 \in \mathcal{H}^1(\mathbb{R}^2)$ とする. このとき, (SDW) の解 ρ は

$$\int_{0}^{t} \|\rho(s)\|_{L^{2}(\mathbb{R}^{2})}^{2} ds \le C$$

を満たす. ここで、C は t に無関係な定数である.

この定理の $\mathcal{H}^1(\mathbb{R}^2)$ は Hardy 空間で、その定義は次である.

Definition 0.2 (Hardy space $\mathcal{H}^1(\mathbb{R}^n)$). 関数 $f \in L^1(\mathbb{R}^n)$ が Hardy space $\mathcal{H}^1(\mathbb{R}^n)$ に属するとは

$$||f||_{\mathcal{H}^1(\mathbb{R}^n)} = \int_{\mathbb{R}^n} \sup_{r>0} |\phi_r * f(x)| dx < \infty$$

が成り立つことである.ここで、 ϕ は $B_1(0) = \{x \in \mathbb{R}^n; |x| < 1\}$ 上にコンパクトな台を持つ \mathbb{R}^n 上の滑らかな関数で、 $\phi_r(x) = r^{-n}\phi(r^{-1}x)$ ((r > 0) である.

一方, D. Hoff and K. Zumbrun (1995, 1997) によって, (CNS) の線形化方程式 (L) の L^p (p>2) 解析から, (L) の時間無限における解の第一近似は運動量 m のソレノイダル部分, つまり, Stokes 方程式

$$\begin{cases} u_t - \alpha \Delta u + \nabla \pi = 0 \\ \nabla \cdot u = 0 \\ u(0, x) = u_0(x) \end{cases}$$
 (S)

の解の速度場 u であることが示されている. Stokes 方程式 (S) に対して我々は次の結果を得た.

Theorem 0.3. $(T, K, M. M \ and \ T. \ Yanagisawa) u_0 \in L^2(\mathbb{R}^2) \cap L^1(\mathbb{R}^2), \ \nabla \cdot u_0 = 0 \$ とする. このとき, Stokes 方程式 (S) の解 u は

$$\int_0^t \|u(s)\|_{L^2(\mathbb{R}^2)}^2 ds \le C$$

を満たす。ここで,C は t に無関係な定数である。

我々は、さらに線形化方程式 (L) のスペクトル解析と Theorem 0.1, 0.3 を合わせることにより、2 次元圧縮性 Navier-Stokes 方程式の初期値問題 (CNS) の解について、 $L^2((0,\infty)\times\mathbb{R}^2)$ ノルムに着目することで、新たな漸近挙動の結果が得られたので、本講演で紹介する.

References

- [1] T. Kobayashi and M. Misawa: L^2 boundedness for the 2D exterior problems for the semilinear heat and dissipative wave equations, $Rims\ K\hat{o}ky\hat{u}roku\ Bessatsu$, **B42**, (2013), 1-11.
- [2] M. Misawa, S. Okamura and T. Kobayashi: Decay property for the linear wave equations in two dimensional exterior domains, *Diffrential and Integral Equations*, 24 (2011), 941-964.