Symmetry-breaking for positive solutions of the one-dimensional Liouville type equation

Satoshi Tanaka (Okayama University of Science)

In this talk we consider the two-point boundary value problem for the onedimensional Liouville type equation

(1)
$$u'' + \lambda |x|^{l} e^{u} = 0, \quad x \in (-1,1); \quad u(-1) = u(1) = 0,$$

where $\lambda > 0$ and l > 0. Jacobsen-Schmitt [1] presented the exact multiplicity result of radial solutions for the multi-dimensional problem

(2)
$$\Delta u + \lambda |x|^{l} e^{u} = 0 \text{ in } B; \quad u = 0 \text{ on } \partial B,$$

where $\lambda > 0$, $l \ge 0$ and $B := \{x \in \mathbf{R}^N : |x| < 1\}$, $N \ge 1$. In the case N = 1, problem (2) is reduced to (1). We note here that every solution of (2) is positive in B, by the strong maximum principle. Jacobsen and Schmitt [1] proved that if $1 \le N \le 2$, then there exists $\lambda_* > 0$ such that (2) has exactly two radial solutions for $0 < \lambda < \lambda_*$, a unique radial solution for $\lambda = \lambda_*$ and no radial solution for $\lambda > \lambda_*$. Recently, Miyamoto [3] proved the following symmetry-breaking bifurcation result for (2) when N = 2.

Theorem A ([3]). Let n_0 be the largest integer that is smaller than $1 + \frac{l}{2}$ and let $\alpha_n := 2 \log \frac{2l+4}{l+2-2n}$. All the radial solutions of (2) with N = 2 can be written explicitly as

$$\lambda(\alpha) = 2(l+2)^2(e^{-\alpha/2} - e^{-\alpha}), \quad U(r;\alpha) = \alpha - 2\log(1 + (e^{\alpha/2} - 1)r^{l+2})$$

The radial solutions can be parameterized by the L^{∞} -norm, it has one turning point at $\lambda = \lambda(\alpha_0) = (l+2)/2$, and it blows up as $\lambda \downarrow 0$. For each $n \in \{1, 2, \dots, n_0\}$, $(\lambda(\alpha_n), U(r; \alpha_n))$ is a symmetry-breaking bifurcation point from which an unbounded branch consisting of non-radial solutions of (2) with N = 2 emanates, and $U(r; \alpha)$ is nondegenerate if $\alpha \neq \alpha_n$, $n = 0, 1, \dots, n_0$. Each non-radial branch is in $(0, \lambda(\alpha_0))) \times$ $\{u > 0\} \subset R \times H_0^2(B)$.

Korman [2] found the interesting property of radial solutions to (2). Let w be a unique solution of the initial value problem

$$w'' + |x|^l e^w = 0, \quad x > 0; \quad w(0) = w'(0) = 0.$$

It is easy to show that w(x) < 0, w'(x) < 0, w''(x) < 0 for x > 0 and $\lim_{x\to\infty} w(x) = -\infty$. Hence, there exists the inverse function η of -w(x). It follows that $\eta \in C^2(0,\infty)$, $\eta(t) > 0$ and $\eta'(t) > 0$ for t > 0, $\eta(0) = 0$, and $\lim_{t\to\infty} \eta(t) = \infty$. By a direct calculation, we easily prove that, for each $\alpha > 0$,

(3)
$$U(x) = w(\eta(\alpha)|x|) + \alpha$$

satisfies $||U||_{\infty} = \alpha$ and is a positive even solution of (1) at $\lambda = [\eta(\alpha)]^{l+2}e^{-\alpha}$. By using this fact, we can show the following result, which is a generalization of the result by Jacobsen and Schmitt [1] for the case N = 1.

Proposition 1. For each $\alpha > 0$, there exists a unique $(\lambda(\alpha), U(x; \alpha))$ such that (1) with $\lambda = \lambda(\alpha)$ has a unique positive even solution $U(x; \alpha)$ such that $||U||_{\infty} = \alpha$, $U(x; \alpha) \in C^2([-1, 1] \times (0, \infty)), \lambda \in C^2(0, \infty)$, and

$$\lim_{\alpha \to +0} \lambda(\alpha) = \lim_{\alpha \to \infty} \lambda(\alpha) = 0.$$

Moreover, there exist $\alpha_* > 0$ such that $\lambda'(\alpha) > 0$ for $0 < \alpha < \alpha_*$ and $\lambda'(\alpha) < 0$ for $\alpha > \alpha_*$. In particular, (2) has exactly two positive even solutions for $0 < \lambda < \lambda_*$, a unique positive even solution for $\lambda = \lambda_*$ and no positive even solution for $\lambda > \lambda_*$, where $\lambda_* = \lambda(\alpha_*)$.

Hereafter, let $\lambda(\alpha)$, $U(x; \alpha)$, α_* and λ_* be as in Proposition 1.

Let $m(\alpha)$ be the Morse index of $U(x; \alpha)$ to (1), that is, the number of negative eigenvalues μ of

(4) $\phi'' + \lambda |x|^l e^{U(x;\alpha)} \phi + \mu \phi = 0, \quad x \in (-1,1); \quad \phi(-1) = \phi(1) = 0.$

A solution $U(x; \alpha)$ is said to be degenerate if $\mu = 0$ is an eigenvalue of (4). Otherwise, it is said to be nondegenerate.

The following result is the main result of this talk.

Theorem 1.Let $(\lambda(\alpha), U(x; \alpha))$ and $\alpha_* > 0$ be as in Proposition 1. Then there exist constants α_1 , α_2 and α_3 such that $\alpha_* < \alpha_1 \leq \alpha_2 \leq \alpha_3$ and the following (i)–(vii) hold:

- (i) if $0 < \alpha < \alpha_*$, then $m(\alpha) = 0$ and $U(x; \alpha)$ is nondegenerate;
- (ii) if $\alpha = \alpha_*$, then $m(\alpha) = 0$ and $U(x; \alpha)$ is degenerate;
- (iii) if $\alpha_* < \alpha < \alpha_1$, then $m(\alpha) = 1$ and $U(x; \alpha)$ is nondegenerate;
- (iv) if $\alpha = \alpha_1$, then $m(\alpha) = 1$ and $U(x; \alpha)$ is degenerate;
- (v) if $\alpha = \alpha_2$, then $m(\alpha) = 1$, $U(x; \alpha)$ is degenerate and $(\lambda(\alpha_2), U(x; \alpha_2))$ is a non-even bifurcation point, that is, for each $\varepsilon > 0$, there exists (u, λ) such that u is a positive non-even solution of (1) and $|\lambda - \lambda(\alpha_2)| + ||u - U(\cdot, \alpha_2)||_{\infty} < \varepsilon$;
- (vi) if $\alpha = \alpha_3$, then $m(\alpha) = 1$ and $U(x; \alpha)$ is degenerate;
- (vii) if $\alpha > \alpha_3$, then $m(\alpha) = 2$ and $U(x; \alpha)$ is nondegenerate.

Moreover, if $0 < \lambda < \lambda(\alpha_3)$, then (1) has a positive non-even solutions u(x) which satisfies $\lim_{\lambda \to +0} ||u||_{\infty} = \infty$.

Recalling the result by Jacobsen and Schmitt [1], the structures of radial solutions of (2) with N = 2 and even solutions of (1) seems to be same. However, in [3] Miyamoto proved the Morse index of the radial solution increases by one when α passes each α_n , $n = 0, 1, 2, \dots, n_0$, where α_n is as in Theorem A. On the other hand, the Morse index of even solutions of (2) is at most 2 for each l > 0.

When N = 2, radial solutions of (2) can be written explicitly, and hence, Miyamoto [3] succeeded to find the bifurcation points. That is difficult even if we know exact solutions, much more difficult if we do not know it. When $N \neq 2$, we do not know exact radial solutions of (2) with l > 0. However, Korman [2] found the solution (3) as we have mentioned before. When N = 1, the structure of eigenvalues $\{\mu_k(\alpha)\}_{k=1}^{\infty}$ of (4) is well-known. Combining these facts, we can show (i)–(iv) of Theorem 1 and $m(\alpha) \leq 2$ for $\alpha > 0$. Moreover, by using the comparison function introduced in [4], we can prove that $m(\alpha) \geq 2$ for all sufficiently large $\alpha > 0$. Then we can obtain a symmetry-breaking bifurcation point of (1), by using the Leray-Schauder degree, and hence we will obtain (v)–(vii) of Theorem 1.

References

- J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations 184 (2002), 283–298.
- [2] P. Korman, Global solution curves for self-similar equations, J. Differential Equations 257 (2014) 2543-2564.
- [3] Y. Miyamoto, Nonradial maximizers for a Hénon type problem and symmetry breaking bifurcations for a Liouville-Gel'fand problem with a vanishing coefficient, *Math. Ann.* 361 (2015) 787–809.
- [4] S. Tanaka, Morse index and symmetry-breaking for positive solutions of one-dimensional Hénon type equations, J. Differential Equations 255 (2013) 1709–1733.