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In this talk we consider the two-point boundary value problem for the one-
dimensional Liouville type equation

(1) u′′ + λ|x|leu = 0, x ∈ (−1, 1); u(−1) = u(1) = 0,

where λ > 0 and l > 0. Jacobsen-Schmitt [1] presented the exact multiplicity result
of radial solutions for the multi-dimensional problem

(2) ∆u+ λ|x|leu = 0 in B; u = 0 on ∂B,

where λ > 0, l ≥ 0 and B := {x ∈ RN : |x| < 1}, N ≥ 1. In the case N = 1,
problem (2) is reduced to (1). We note here that every solution of (2) is positive
in B, by the strong maximum principle. Jacobsen and Schmitt [1] proved that if
1 ≤ N ≤ 2, then there exists λ∗ > 0 such that (2) has exactly two radial solutions
for 0 < λ < λ∗, a unique radial solution for λ = λ∗ and no radial solution for λ > λ∗.
Recently, Miyamoto [3] proved the following symmetry-breaking bifurcation result
for (2) when N = 2.

Theorem A ([3]). Let n0 be the largest integer that is smaller than 1 + l
2 and

let αn := 2 log 2l+4
l+2−2n . All the radial solutions of (2) with N = 2 can be written

explicitly as

λ(α) = 2(l + 2)2(e−α/2 − e−α), U(r;α) = α− 2 log(1 + (eα/2 − 1)rl+2).

The radial solutions can be parameterized by the L∞-norm, it has one turning point
at λ = λ(α0) = (l + 2)/2, and it blows up as λ ↓ 0. For each n ∈ {1, 2, · · · , n0},
(λ(αn), U(r;αn)) is a symmetry-breaking bifurcation point from which an unbounded
branch consisting of non-radial solutions of (2) with N = 2 emanates, and U(r;α) is
nondegenerate if α ̸= αn, n = 0, 1, · · · , n0. Each non-radial branch is in (0, λ(α0)))×
{u > 0} ⊂ R×H2

0 (B).

Korman [2] found the interesting property of radial solutions to (2). Let w be a
unique solution of the initial value problem

w′′ + |x|lew = 0, x > 0; w(0) = w′(0) = 0.

It is easy to show that w(x) < 0, w′(x) < 0, w′′(x) < 0 for x > 0 and limx→∞w(x) =
−∞. Hence, there exists the inverse function η of −w(x). It follows that η ∈
C2(0,∞), η(t) > 0 and η′(t) > 0 for t > 0, η(0) = 0, and limt→∞ η(t) = ∞. By a
direct calculation, we easily prove that, for each α > 0,

(3) U(x) = w(η(α)|x|) + α

satisfies ∥U∥∞ = α and is a positive even solution of (1) at λ = [η(α)]l+2e−α. By
using this fact, we can show the following result, which is a generalization of the
result by Jacobsen and Schmitt [1] for the case N = 1.

Proposition 1.For each α > 0, there exists a unique (λ(α), U(x;α)) such that (1)
with λ = λ(α) has a unique positive even solution U(x;α) such that ||U ||∞ = α,
U(x;α) ∈ C2([−1, 1]× (0,∞)), λ ∈ C2(0,∞), and

lim
α→+0

λ(α) = lim
α→∞

λ(α) = 0.

Moreover, there exist α∗ > 0 such that λ′(α) > 0 for 0 < α < α∗ and λ′(α) < 0 for
α > α∗. In particular, (2) has exactly two positive even solutions for 0 < λ < λ∗, a
unique positive even solution for λ = λ∗ and no positive even solution for λ > λ∗,
where λ∗ = λ(α∗).
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Hereafter, let λ(α), U(x;α), α∗ and λ∗ be as in Proposition 1.
Let m(α) be the Morse index of U(x;α) to (1), that is, the number of negative

eigenvalues µ of

(4) ϕ′′ + λ|x|leU(x;α)ϕ+ µϕ = 0, x ∈ (−1, 1); ϕ(−1) = ϕ(1) = 0.

A solution U(x;α) is said to be degenerate if µ = 0 is an eigenvalue of (4). Otherwise,
it is said to be nondegenerate.

The following result is the main result of this talk.

Theorem 1.Let (λ(α), U(x;α)) and α∗ > 0 be as in Proposition 1. Then there exist
constants α1, α2 and α3 such that α∗ < α1 ≤ α2 ≤ α3 and the following (i)–(vii)
hold:

(i) if 0 < α < α∗, then m(α) = 0 and U(x;α) is nondegenerate;
(ii) if α = α∗, then m(α) = 0 and U(x;α) is degenerate;
(iii) if α∗ < α < α1, then m(α) = 1 and U(x;α) is nondegenerate;
(iv) if α = α1, then m(α) = 1 and U(x;α) is degenerate;
(v) if α = α2, then m(α) = 1, U(x;α) is degenerate and (λ(α2), U(x;α2)) is

a non-even bifurcation point, that is, for each ε > 0, there exists (u, λ)
such that u is a positive non-even solution of (1) and |λ − λ(α2)| + ∥u −
U( · , α2)∥∞ < ε;

(vi) if α = α3, then m(α) = 1 and U(x;α) is degenerate;
(vii) if α > α3, then m(α) = 2 and U(x;α) is nondegenerate.

Moreover, if 0 < λ < λ(α3), then (1) has a positive non-even solutions u(x) which
satisfies limλ→+0 ∥u∥∞ = ∞.

Recalling the result by Jacobsen and Schmitt [1], the structures of radial solutions
of (2) with N = 2 and even solutions of (1) seems to be same. However, in [3]
Miyamoto proved the Morse index of the radial solution increases by one when α
passes each αn, n = 0, 1, 2, · · · , n0, where αn is as in Theorem A. On the other hand,
the Morse index of even solutions of (2) is at most 2 for each l > 0.

WhenN = 2, radial solutions of (2) can be written explicitly, and hence, Miyamoto
[3] succeeded to find the bifurcation points. That is difficult even if we know exact
solutions, much more difficult if we do not know it. When N ̸= 2, we do not know
exact radial solutions of (2) with l > 0. However, Korman [2] found the solution (3)
as we have mentioned before. When N = 1, the structure of eigenvalues {µk(α)}∞k=1
of (4) is well-known. Combining these facts, we can show (i)–(iv) of Theorem 1 and
m(α) ≤ 2 for α > 0. Moreover, by using the comparison function introduced in [4],
we can prove that m(α) ≥ 2 for all sufficiently large α > 0. Then we can obtain
a symmetry-breaking bifurcation point of (1), by using the Leray-Schauder degree,
and hence we will obtain (v)–(vii) of Theorem 1.
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