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A double quasi-birth-and-death (QBD) process is the QBD process whose background process is a homogeneous
birth-and-death process, which is a synonym of a skip free random walk in the two dimensional positive quadrant
with homogeneous reflecting transitions at each boundary face. It is also a special case of a 0-partially homogenous
chain introduced by Borovkov and Mogul’skii [5]. Our main interest is in the tail decay behavior of the stationary
distribution of the double QBD process in the coordinate directions and that of its marginal distributions. In
particular, our problem is to get their rough and exact asymptotics from primitive modeling data. We first solve
this problem using the matrix analytic method. We then revisit the problem for the 0-partially homogenous chain,
refining existing results. We exemplify the decay rates for Jackson networks and their modifications.
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1. Introduction. This paper considers asymptotic behavior for a skip free random walk in the two
dimensional positive quadrant of the lattice with homogeneous reflecting transitions at each boundary
face. Take one of its coordinates as a level and the other coordinate as a phase, which is also called
a background state. Then, this random walk can be considered as a continuous-time quasi-and-birth-
and-death process, a QBD process in short, with infinitely many phases through uniformization due to
the homogeneous transition structure. Since the level and phase are exchangeable, we call this reflected
random walk a double QBD process. This process is rather simple, but has flexibility to accommodate a
wide range of queueing models, including two node networks. It is also amenable to analysis by matrix
analytic methods (e.g., see [19, 28]).

In general, a two dimensional reflected random walk is hard to study. For example, its stationary
distribution is unknown except for special cases. Not only because of this but also for its own importance,
researchers have studied the tail asymptotics of its stationary distribution. We are interested in rough
and exact asymptotics. Here, the asymptotic decay is said to be exact with respect to a given function
when the ratio of the probability mass function to the given function converges to unity as the level goes
to infinity while it is said to be rough when the ratio of their logarithms converges to unity, which is
typically used in large deviations theory.

Similar decay rate problems have been studied for a much more general two dimensional reflected
random walk, so called, N -partially homogeneous chain in [5], where the N is a positive real number and
specifies the depth of the boundary faces. Both the rough and exact asymptotics have been considered in
all directions for the 0-partially homogeneous chain, which includes the double QBD process as a special
case. However, the decay rate is not made explicit even for this special case, in particular, for the exact
asymptotics, and there is no answer for the marginal distributions (see also [17]).

In this paper, we attack these problems in a different way from the large deviations approach which
has been extensively used in the literature including [5, 17]. We are only concerned with the double QBD
process, i.e., a skip free 0-partially homogeneous chain, and consider asymptotic behavior of its stationary
distribution in the directions of coordinates. This allows us to use the nice geometric structure of the
stationary distribution, which is called a matrix geometric form in the matrix analytic literature. Thus,
we directly consider the stationary distribution itself.

We will find full spectra of a rate matrix for the matrix geometric form, and characterize the rough
decay rates as solutions of an optimization problem. We then get the rough and exact asymptotics with
help of graphical interpretation of the spectra, which can be done using only primitive modeling data,
i.e., one step transition probabilities. This approach not only sharpens existing results under weaker
assumptions for the decay rate problem on the double QBD process, but also enables us to find the rough
and exact asymptotics of the marginal distributions. Since the decay rates are computed without using
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the stability conditions, it may be questioned whether the stability is guaranteed if the geometric decay
rate is less than 1. We show that this is the case if some minor information is available.

To make clear our contributions, we revisit the decay rate problem under the framework of the 0-
partially homogeneous chain. In this case, the rough decay rate in an arbitrary direction is considered.
We present the results of [5] explaining what conditions are additionally required. Here, no skip free
condition is needed, but the decay rates are less explicit due to this generality. Namely, it requires
asymptotics of certain local processes, which are Markov additive processes obtained by removing the
boundaries except for one of them, and the optimization problem that determines the decay rates is
not solved there. Assuming a slightly stronger moment condition, we solve the optimization problem,
and show that the asymptotics is obtained through the convergence parameters of the operator moment
generating functions, called the Feynman-Kac transform, of the Markov additive kernels of the local
processes. In this way, the results of [5] are refined, and compared with those for the double QBD process
that are obtained in the first part.

We finally exemplify our computations of the decay rates using a modified Jackson network in which
one server may help the other server. This problem has been considered in [9], but has not yet fully
solved. We will solve this problem, and see how the boundary behavior affects the decay rates.

In the context of large deviations theory, the decay rate problem has been fairly well studied. For
example, the so called sample path large deviations have been established for the stationary distribution
of a multidimensional reflected process in continuous time generated by a reflection map (e.g., see [22]).
This derives the rough decay rate in principle. However, one needs to identify a so called local rate
function and to solve a variational problem. Both are generally hard problems, and individual effort
has been dedicated to each specific model. In particular, Shwartz and Weiss [33] compute the rate
functions for various models, and reduce the variational problem to a convex optimization problem.
The approach of [5] is also based on large deviations theory, but takes one more step toward an explicit
solution, concentrating on a two dimensional reflected random walk but allowing more complex boundary
behavior. We make a further step in Section 5.2, which reproduces the results in [17].

A key issue to solve the decay rate problem in two dimensions is how to incorporate boundary effects
to get a correct solution. The large deviations approach reduces this problem to find an optimal path that
minimizes a cost along it. Instead of doing so, we simultaneously consider effects from the two boundary
faces to get another optimization problem. This corresponds with how to choose the optimal path in
the large deviations approach, but it is a new feature for the existing analytic approach. For example,
the recent studies [26, 14, 16, 31] on the discrete-time QBD and GI/G/1-type processes with infinitely
many phases assume stronger conditions for handling the boundary effect. A similar problem occurs in
different analytic approach of Foley and McDonald [7, 8, 9].

Other than those two approaches, there is the much literature on the decay rate problem in two
dimensions. For example, much effort has been dedicated to numerical approximations for the stationary
distributions (e.g., see [1, 20]). In general, increasing boundaries makes the problem harder. As a first
step, asymptotic behavior has been considered for the local processes that we have discussed. For example,
Ignatiouk-Robert [18] shows how the convergence parameter of the Feynman-Kac transform determines
the local rate function. There is some effort for computing the convergence parameter by the matrix
analytic method (see, e.g., [14, 27]). The decay rate problem itself has been considered for various models
with multiple queues, e.g., join shortest queues and generalized Jackson networks (e.g., see the literature
in [7, 11, 12, 16, 34]).

This paper is made up of seven sections. In Section 2, we introduce the double QBD, and consider
its basic properties. In Section 3, we prepare key tools for computing the decay rates. In Section 4,
our main results are obtained, which gives the rough and exact asymptotics. In Section 5, we refine the
results in [5], and compare them with our results. In Section 6, we exemplify the decay rates for Jackson
network and its modifications. In Section 7, we remark that our main results on the rough decay rate
are still valid under suitable changes of notation when the irreducibility condition which we have used is
not satisfied. We also remark other possible extensions.

2. Double QBD process. Let {Ln} be a two dimensional Markov chain taking values in S+ ≡
Z+ × Z+, where Z+ = {0, 1, . . .}, with transitions as depicted in Figure 1 below.
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Figure 1: State transitions for the double QBD process

Thus, {Ln} is a skip free random walk in all directions, and reflected at the boundary ∂S+ ≡ {(j, k) ∈
S+; j = 0 or k = 0}. To be precise, subdivide the boundary ∂S+ into ∂S

(0)
+ ≡ {(0, 0)} and ∂S

(i)
+ ≡

{(j1, j2) ∈ ∂S+ \ ∂S
(0)
+ ; j3−i = 0} for i = 1, 2. Let {p(0)

jk ; j, k = 0, 1}, {p(1)
jk ; j = 0,±1, k = 0, 1},

{p(2)
jk ; j = 0, 1, k = 0,±1} and {pjk; j, k = 0,±1} be probability distributions on the sets of specified

states (j, k), respectively. Denote random vectors subject to these distributions by X(0) ≡ (X(0)
1 , X

(0)
2 ),

X(1) ≡ (X(1)
1 , X

(1)
2 ), X(2) ≡ (X(2)

1 , X
(2)
2 ) and X ≡ (X1, X2), respectively. Then, {Ln} ≡ {(L1, L2)} is a

Markov chain that has the transition probabilities:

P (Ln+1 = k|Ln = j) =


P (X = k − j), j > 0, k ≥ 0,

P (X(i) = k − j), j ∈ ∂S
(i)
+ ,k ≥ 0, i = 0, 1, 2,

0, otherwise,

where inequalities for vectors stand for their entry-wise inequalities.

We view {Ln} as a discrete time QBD process, which is a Markov chain that has two components,
called a level and a phase. The level is nonnegative integer valued, but the phase is not necessarily so.
The QBD process is usually delved in continuous time, but it can be formulated as a discrete time process
by uniformization if its transition rates are bounded, which is the case here. For Ln ≡ (L1n, L2n), we
can take either one of L1n and L2n to be the level, so we refer to {Ln} as a double QBD process. We
assume that this process is stable, that is,

(i) {Ln} is irreducible, aperiodic and positive recurrent.

Let mi = E(Xi) and m
(j)
i = E(X(j)

i ) for i, j = 1, 2. Then, Fayolle, Malyshev and Menshikov [6]
characterize this stability in the following way.

Proposition 2.1 (Theorem 3.3.1 of [6]) Assume that the double QBD process is irreducible and ape-
riodic, and either one of m1 or m2 does not vanish. Then, it is positive recurrent if and only if one of
the following conditions holds.

(S1) m1 < 0, m2 < 0, m1m
(1)
2 − m2m

(1)
1 < 0 and m2m

(2)
1 − m1m

(2)
2 < 0.

(S2) m1 ≥ 0, m2 < 0 and m1m
(1)
2 − m2m

(1)
1 < 0.

(S3) m1 < 0, m2 ≥ 0 and m2m
(2)
1 − m1m

(2)
2 < 0.

Remark 2.1 The stability condition is also obtained for m1 = m2 = 0, but it is a bit more complicated
(see Theorem 3.4.1 of [6]). However, this case is not excluded under the assumption (i) (see Remark 3.5).

We shall get back to these stability conditions to see how they are related to the decay rate problem (see
Corollary 4.2). Denote the unique stationary distribution of {Ln} by vector ν = {νnk; n, k ∈ Z+}. Our
problem is to find the asymptotic behavior of the stationary vector ν and its marginal distributions in the
direction L1 or L2 increased. We denote the marginal distribution in the L1 direction by ν

(1)
n =

∑∞
k=0 νnk



4 Miyazawa: Tail Decay Rates in Double QBD Process
Mathematics of Operations Research xx(x), pp. xxx–xxx, c⃝200x INFORMS

for n ≥ 0. Similarly, we let ν
(2)
n =

∑∞
k=0 νkn. Since coordinates are exchangeable, we mainly consider the

L1 direction in this and the next sections.

Thus, we are interested in the asymptotic behavior of νnk for each fixed k, and ν
(1)
n as n → ∞. In

general, a function f(n) of n ≥ 0 is said to have exact asymptotics g(n) if there is a positive constant c
such that

lim
n→∞

g(n)−1f(n) = c,

and to have a rough decay rate ξ if

lim
n→∞

1
n

log f(n) = −ξ.

In queueing applications, it is often convenient to talk in terms of r = e−ξ, which is referred to as a rough
geometric decay rate. In general, those decay rates may not exist. So, we need to verify their existence.

As we noted in the introduction, these decay rate problems have been studied for a more general
process in an arbitrary given direction by Borovkov and Mogul’skii [5] (see also [17]), but there remain
several problems unsolved, which will be detailed in Section 5.1 (see, e.g., (P1)–(P4)). We will solve those
problems for the double QBD process. It turns out that the rough decay rate may be different for the
marginal distribution ν

(1)
n than νnk for each fixed k. Furthermore, the exact asymptotics g(n) for νnk for

each fixed k is n−urn with u either 0, 1
2 and 3

2 , while ν
(1)
n can decay as nrn. Our approach is analytic

and different from the large deviations approach in [5, 17]. However, our results can be interpreted in
the context of large deviations. We make a few remarks on the relation in Section 5.2 (see Remarks 5.6
and 5.8).

Before going to detailed analysis, let us intuitively consider how the decay rates can be found. For
this, let us introduce the following moment generating functions with variable θ = (θ1, θ2) ∈ R2, where
R is the set of all real numbers.

ϕ(θ) = E(eθX), ϕ(i)(θ) = E(eθX(i)
), i = 0, 1, 2.

Let L̃ ≡ (L̃1, L̃2) be a random vector subject to the stationary distribution ν. Then, from the stationary
equation:

L̃ ∼=

{
L̃ + X, L̃ ∈ S+ \ ∂S+,

L̃ + X(i), L̃ ∈ ∂S
(i)
+ , i = 0, 1, 2,

where ∼= stands for the equivalence in distribution, it follows that

E(eθL̃) = ϕ(θ)E(eθL̃; L̃ ∈ S+ \ ∂S+) +
2∑

i=0

ϕ(i)(θ)E(eθL̃; L̃ ∈ ∂S
(i)
+ ).

Rearranging terms in this equation, we have

(1 − ϕ(θ))E(eθL̃) =
∑

i=1,2

(ϕ(i)(θ) − ϕ(θ))E(eθiL̃i1(L̃i ≥ 1, L̃3−i = 0)) + (ϕ(0)(θ) − ϕ(θ))P (L̃ = 0) (1)

as long as E(eθL̃) is finite, where 1(·) is the indicator function. From this equation, one may guess
that the rough decay rate in a given direction may be obtained through the rough decay rates in the
directions of coordinates. Furthermore, such a decay rate would be determined through ϕ(θ) = 1 since
this θ would be a singular point of E(eθL̃). If this is the case, then ϕ(i)(θ) ≤ 1 for i = 1 or i = 2 since
ϕ(0)(θ) > 1 = ϕ(θ). In the next section, we shall see that this observation works to get a lower bound
for the geometric decay rates in the directions of coordinates, i.e., the level direction in terminology of
QBD processes.

We now consider the stationary distribution ν for the decay rate in the L1-direction. For this, it is not
clear whether (1) is useful. Our first idea is to use the well known expression of the stationary distribution
of the QBD process. For this, we take L1n as the level and L2n as the phase, and partition the state
space by the level. Then, the transition probability matrix P of {Ln} can be written in tridiagonal block
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form as

P =


B

(1)
0 B

(1)
1 0 . . .

A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

0 A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

0 0 A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

 ,

where

A
(1)
k =


p
(1)
k0 p

(1)
k1 0 . . .

pk(−1) pk0 pk1 0 . . .
0 pk(−1) pk0 pk1 0 . . .
0 0 pk(−1) pk0 pk1 0 . . .
...

...
. . . . . . . . . . . . . . . . . .

 , k = 0,±1,

and

B
(1)
k =



p
(0)
k0 p

(0)
k1 0 . . .

p
(2)
k(−1) p

(2)
k0 p

(2)
k1 0 . . .

0 p
(2)
k(−1) p

(2)
k0 p

(2)
k1 0 . . .

0 0 p
(2)
k(−1) p

(2)
k0 p

(2)
k1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .


, k = 0, 1.

Similarly, we define A
(2)
k , B

(2)
k when L2n is taken as the level. Define the Markov additive process

{L(1)
n } by

P (L(1)
n+1 = (m + ℓ, k)|L(1)

n = (m, j)) = [A(1)
ℓ ]jk, ℓ = 0,±1.

Namely, {L(1)
n } is obtained from {Ln} removing the reflection at the boundary {(0, k); k ≥ 0}. Similarly,

{L(2)
n } is defined using {A(2)

ℓ ; ℓ = 0,±1}. Note that {L(i)
n } for i = 1, 2 can be considered as Markov

additive processes with integer-valued additive components and nonnegative integer-valued background
states. Throughout the paper, we use the following assumptions for simplicity.

(ii) For i = 1, 2, the Markov chain {L(i)
n } is irreducible, that is, P (Xℓ > 0) and P (Xℓ < 0), for ℓ = 1, 2

and P (X(i)
3−i > 0) are all positive, where Xℓ is the ℓ-th entry of X.

(iii) For i = 1, 2, the Markov additive kernel {A(i)
ℓ ; ℓ = 0,±1} is 1-arithmetic, where the kernel is said

to be m-arithmetic if, for some j ≥ 0, the greatest common divisor of {n1 + . . .+nℓ; A
(i)
n1A

(i)
n2 . . .×

A
(i)
nℓ (j, j) > 0, n1, . . . , nℓ = 0,±1} is m (see, e.g., [26]).

Remark 2.2 Condition (ii) can be removed, but special care is needed. We will discuss it in Section 7.
Note that (ii) does not imply that the random walk with one step movement subject to X is irreducible.
Such an example is given by P (X = j) > 0 only for j = (1,−1), (−1, 1), (−1, 0). Condition (iii) is not
essential for the rough decay rate (see Remark 4.2).

Let νn be the partition of ν for level n, that is, νn = {νnk; k ∈ Z+} for n ≥ 0. It is well-known that
there exists a nonnegative matrix R1 uniquely determined as the minimal nonnegative solution of the
matrix equation:

R1 = R2
1A

(1)
−1 + R1A

(1)
0 + A

(1)
1 , (2)

and the stationary distribution has the following matrix geometric form.

νn = ν1R
n−1
1 , n ≥ 1, (3)

From the notational uniformity, R1 may be better written as R(1). However, we often use its power, for
which R1 is more convenient. We sometimes use this convention.
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The matrix geometric form (3) is usually obtained when there are finitely many phases, but it is also
valid for the infinitely many phases (see, e.g., [35]). Note that the transpose of R1, denoted by Rt

1,
determines phase transitions at ladder epochs in a certain time reversed process of {L(1)

n } (see Lemma
3.2 of [26]). So, Rt

1 is irreducible due to (ii).

We first consider the rough geometric decay rate r1(k), equivalently, the rough decay rate ξ1(k), for
νnk. Define the convergence parameter cp(R1) of R1 as

cp(R1) = sup

{
z ≥ 0;

∞∑
n=0

znRn
1 < ∞

}
.

Then, one may expect the reciprocal of cp(R1) to be the rough geometric decay rate r1(k) for all k. This
is certainly true when the phase space is finite. However, it is not always the case when the phase is
infinite. Furthermore, we do not know even whether a rough decay rate exists at this stage. So, we
introduce the lower and upper geometric decay rates r1(k) ≡ e−ξ1(k) and r1(k) ≡ e−ξ

1
(k) defined to be

ξ1(k) = − lim sup
n→∞

1
n

log νnk, ξ
1
(k) = − lim inf

n→∞

1
n

log νnk, k ∈ Z+.

We denote the rough decay rate of νnk for fixed k by r1(k) if it exists. Furthermore, if it is independent
of k, it is denoted by r1. As we shall see below, the convergence parameter is useful to get a lower bound
for r1(k).

Lemma 2.1 cp(R1)−1 ≤ r1(k) for all k ∈ Z+.

Proof. Since Rt
1 is irreducible, we first pick up an arbitrary phase j, then can find some integer

m ≥ 1 for each phase k such that [Rm
1 ]jk > 0. Hence, we have

lim inf
n→∞

(νnk)
1
n ≥ lim

n→∞
(ν1j [Rn−m

1 ]jj [Rm
1 ]jk)

1
n = cp(R1)−1.

This concludes the claimed inequality. ¤
In view of the matrix geometric form (3), examining the point spectrum of R1, i.e., finding all eigen-

values, with nonnegative eigenvectors of R1, will be useful for getting the decay rate. So, we introduce
the set

VR1 = {(z, x); zxR1 = x, z ≥ 1,x ∈ X},
where X is the set of all nonnegative and nonzero vectors in R∞ and R is the set of all real numbers. We
aim to identify this set through the discrete-time Markov additive process generated by {A(1)

k ; k = 0,±1}
(see [26] for the details of this class of Markov additive processes). Note that (2) is equivalent to

I − A
(1)
∗ (z) = (I − zR1)(I − (A(1)

0 + R1A
(1)
−1 + z−1A

(1)
−1)), z ̸= 0, (4)

where A
(1)
∗ (z) is defined as A

(1)
∗ (z) = z−1A

(1)
−1 + A

(1)
0 + zA

(1)
1 . Equation (4) is known as the Wiener-Hopf

factorization (see, e.g. [26]). With the notation

VA(1) = {(z, x);xA
(1)
∗ (z) = x, z ≥ 1,x > 0},

we note the following facts.

Lemma 2.2 For z > 1, (z, x) ∈ VR1 if and only if (z, x) ∈ VA(1) . Furthermore, if sup{z ≥ 1; (z, x) ∈
VA(1)} = 1, then cp(R1) = 1.

Lemma 2.3 cp(R1) = sup{z ≥ 1;xA
(1)
∗ (z) ≤ x, x > 0}

Lemma 2.2 is obtained in [29], which is also an easy consequence of (4). We prove Lemma 2.3 in
Appendix A.

Thus, we need to work on A
(1)
∗ (z). To compute A

(1)
∗ (z), recalling random vectors (X1, X2) and

(X(ℓ)
1 , X

(ℓ)
2 ) are subject to {pij} and {p(ℓ)

ij } (ℓ = 1, 2), we introduce the following generating functions:

pi∗(v) = E(1(X1 = i)vX2), p∗j(u) = E(uX11(X2 = j)),

p
(ℓ)
i∗ (v) = E(1(X(ℓ)

1 = i)vX
(ℓ)
2 ), p

(ℓ)
∗j (u) = E(uX

(ℓ)
1 1(X(ℓ)

2 = j)), ℓ = 0, 1, 2.
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Then, A
(1)
∗ (z) has the following QBD structure.

A
(1)
∗ (z) =


p
(1)
∗0 (z) p

(1)
∗1 (z) 0 . . .

p∗(−1)(z) p∗0(z) p∗1(z) 0 . . .
0 p∗(−1)(z) p∗0(z) p∗1(z) 0 . . .
0 0 p∗(−1)(z) p∗0(z) p∗1(z) 0 . . .
...

...
. . . . . . . . . . . . . . . . . .

 (5)

Since L1n and L2n will have symmetric roles in our arguments, we can exchange their roles. That is,
we take L2n and L1n as the level and the phase, respectively. Since it will be not hard to convert results
on the original model to this case, we only consider the case that L1n is the level in the next section.

3. Basic tools for finding the geometric decay. Before working on A
(1)
∗ (z), we sort available

sufficient conditions for asymptotically exact geometric decay. To this end, we refer to the results in [26],
and extend those obtained by Li, Miyazawa and Zhao [16]. To present them, it is convenient to use the
following terminology due to Seneta [32]. A nonnegative square matrix T is said to be z-positive for z > 0
if zT has nonnegative nonzero left and right invariant vectors s and t, respectively, such that st < ∞
(see Theorem 6.4 of [32]). Throughout this section, we assume conditions (i), (ii) and (iii).

It is shown in [16] that A
(1)
∗ (z) is 1-positive if and only if R1 is z-positive. Then, the following result

is obtained in [16] (see also [26]).

Proposition 3.1 (Theorem 2.1 of [16]) Assume the following two conditions.

(F1) There exist an z > 1, a positive row vector x and a positive column vector y such that

xA
(1)
∗ (z) = x, (6)

A
(1)
∗ (z)y = y, (7)

(F2) xy < ∞ for x and y in (F1),

then we have

lim
n→∞

znνn = c, (8)

for c =
zν1q

xq
x > 0, where q is the right invariant vector of zR1 and limit is taken in component-wise.

The c may be infinite, but is finite if the condition

(F3) ν1q < ∞ for the right eigenvector q of zR1

is satisfied. The condition ν1y < ∞ is sufficient for (F3). Thus, (F1)–(F3) imply that z−1 is the
asymptotically exact geometric decay rate of νnk for each fixed k.

The next proposition, which is an extension of Theorem 2.2.1 of [16], will be a key for identifying the
decay rate. We prove it in Appendix B.

Proposition 3.2 Let x = (xk) be a positive vector satisfying (6) for some z > 1. Define d(z, x) and
d(z, x) ≥ 0 as

d(z, x) = lim inf
k→∞

ν1k

xk
, d(z, x) = lim sup

k→∞

ν1k

xk
.

Assume that d(z, x) is finite. Then, for any nonnegative column vector u satisfying xu < ∞, we have

(3a) If (F2) holds, then, for some d† > 0,

lim
n→∞

znνnu = zd†xu. (9)
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(3b) If (F2) does not hold, then there are nonegative and finite d†(x) and d
†
(x) such that

zd†(x)xu ≤ lim inf
n→∞

znνnu ≤ lim sup
n→∞

znνnu ≤ zd
†
(x)xu. (10)

Hence, the rough upper geometric decay rate r1(k) is bounded by z−1 for all k ∈ Z+. In particular,
if d(z, x) > 0, then the rough geometric decay rate r1 exists and given by r1 = z−1. Furthermore,
if d†(x) = d

†
(x), then we have (9) for d† ≡ d†(x) > 0.

Remark 3.1 If d(z, x) > 0, then x is summable, i.e., x1 < ∞. Hence, we can take u = 1, and (3a) or
(3b) with d†(x) = d

†
(x) implies that the asymptotic decay of the marginal stationary distribution for L1

is exactly geometric with rate z−1.

Remark 3.2 (3b) obviously includes the case that x = ν1. By (3), this implies that νn = z−(n−1)x. So,
the stronger version of (10) is obtained. However, this occurs in a very special way, and it is generally
not the case for the double QBD process (see [13]).

It is notable that the decay rates obtained in Propositions 3.1 and 3.2 are independent of the phase.
This may not be surprising since the state transitions are homogeneous inside the state space S+. How-
ever, both require some information on the marginal probability vector ν1. So, it is crucial to get this
information to use those results. We shall return to this point in Section 4.

We now consider how to identify VA(1) using the specific form (5) of A
(1)
∗ (z). Noting the assumption

(ii), let w1(z) and w2(z) be the solutions of the quadratic equation of w(z)

p∗(−1)(z)w2(z) + p∗0(z)w(z) + p∗1(z) = w(z) (11)

for each fixed z, then the i-th entries xi and yi of x and y satisfying (6) and (7) with this z, respectively,
must have the form

xn = x1w
n−1
1 (z) + (x2 − x1w1(z))

n−2∑
ℓ=0

wℓ
1(z)wn−2−ℓ

2 (z) n ≥ 1, (12)

and

yn = y0w
−n
2 (z) + (y1 − y0w

−1
2 (z))

n−1∑
ℓ=0

w−n+1+ℓ
1 (z)w−ℓ

2 (z) n ≥ 0, (13)

where empty sums are assumed to vanish. These two expressions are elementary, but will be a key to
finding positive invariant vectors. It is not hard to see that x and y can not be positive if the wi(z)’s
are complex numbers (see page 529 of [27] for the details). It then follows from the fact that w1(z) and
w2(z) are roots of equation (11) that they must both be positive. Thus, we can see that x2−x1w1(z) ≥ 0
is necessary and sufficient for xn to be positive for n ≥ 2.

Since the first and second entries of the vector equations in (6) are

p
(1)
∗0 (z)x0 + p∗(−1)(z)x1 = x0,

p
(1)
∗1 (z)x0 + p∗0(z)x1 + p∗(−1)(z)x2 = x1,

it can be seen after some manipulation that x2 − x1w1(z) ≥ 0 is equivalent to

p
(1)
∗0 (z)p∗1(z) + p∗(−1)(z)p(1)

∗1 (z)w1(z) ≤ p∗1(z), (14)

Hence, x of (12) is positive if and only if (14) holds. Similarly, from (7), we have

p
(1)
∗0 (z)y0 + p

(1)
∗1 (z)y1 = y0.

Hence, y of (13) is positive if and only if

p
(1)
∗0 (z) + p

(1)
∗1 (z)w−1

2 (z) ≤ 1. (15)

Note that (14) is equivalent to (15) since w1(z)w2(z) = p∗1(z)
p∗(−1)(z) from (11). We also note that the role of

w1(z) and w2(z) can be exchanged.
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We can apply a similar argument for a subinvariant positive vector x of A
(1)
∗ (z), i.e., xA

(1)
∗ (z) ≤ x.

In this argument, such a positive x exists if and only if (14), equivalently, (15) is satisfied, and (12) is
replaced by

xn ≤ x1w
n−1
1 (z) + (x2 − x1w1(z))

n−2∑
ℓ=0

wℓ
1(z)wn−2−ℓ

2 (z) n ≥ 1.

Hence, whenever there exists a positive subinvariant vector x, there also exists a positive invariant vector
x. This with Lemmas 2.2 and 2.3 leads to the conclusion

Lemma 3.1 cp(R1) = sup{z ≥ 1;xA
(1)
∗ (z) = x, x > 0}.

Recalling the notation ϕ(θ) = E(eθ1X1+θ2X2) and ϕ(i)(θ) = E(eθ1X
(i)
1 +θ2X

(i)
2 ) for i = 1, 2, the above

observations lead to the following results.

Theorem 3.1 Assume (i) and (ii), and let D1 denote the subset of all θ = (θ1, θ2) in R2
1 such that

ϕ(θ) = 1, (16)
ϕ(1)(θ) ≤ 1, (17)
θ1 ≥ 0, θ2 ∈ R.

Then, there exists a one to one relationship between a (θ1, θ2) ∈ D1 and (z, x) ∈ VA(1) , equivalently
(z, x) ∈ VR1 . Furthermore, we have the following facts.

(3c) For each θ1 for which there exists θ2 with (θ1, θ2) ∈ D1, (z, x) ∈ VA(1) is given by z = eθ1 and
x = {xn} with

xn =
{

c1e
−θ2(n−1) + c2e

−θ2(n−1), θ2 ̸= θ2,

(c′1 + c′2(n − 1)) e−θ2(n−2), θ2 = θ2,
n ≥ 1, (18)

where θ2, θ2 are the two solutions of (16) for the given θ1 such that θ2 ≤ θ2, and ci, c
′
i are given

by

c1 =
x2 − x1e

−θ2

e−θ2 − e−θ2
, c2 =

x1e
−θ2 − x2

e−θ2 − e−θ2
, c′1 = x1e

−θ2 , c′2 = x2 − x1e
−θ2 ,

where x1 and x2 are determined by the first two entries of (6). Furthermore, both of c1 and c2

are not zero only if strict inequality holds in (17).

(3d) The convergence parameter cp(R1) is obtained as the supremum of eθ1 over D1.

(3e) R1 is z-positive if and only if equality in (17) holds with θ1 = log cp(R1) and
E(X2e

θ1X1+θ2X2) ̸= 0, in which case z = cp(R1).

(3f) The vector x in (3c) is summable, i.e., the sum of its entries is finite, if and only if either the
solution θ2 of (16) is positive for the case that xn = c2e

−θ2(n−1), or the solution θ2 > 0 for the
other case.

Remark 3.3 The irreducibility condition (ii) guarantees the existence of θ2 and θ2 for each θ in (3c).
However, the set of θ satisfying (16) may not be a closed loop although it is the boundary of a convex set
(see Figure 2 below).

Remark 3.4 Since R1 and A
(1)
∗ (eθ1) have the same left eigenvector due to (4), (3d) of this theorem can

be obtained from Proposition 3 of [9] and Proposition 10 of [18].

Remark 3.5 If m1 = m2 = 0, then (16) may be reduced to a straight line. However, this case is still
included in Theorem 3.1.
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θ1

θ2

(θ
(c)
1 , θ

(c)

2 )

θ1

θ2 (θ
(c)
1 , θ

(c)

2 )

ϕ(θ) = 1

ϕ
(1)(θ) = 1

ϕ
(1)(θ) = 1

ϕ(θ) = 1

(3.9) with z = e
θ1 , w1(z) = e

−θ2 and equality

Figure 2: Typical shapes of set D1, where eθ
(c)
1 is the convergence parameter of R1.

Proof of Theorem 3.1. By Lemma 2.3, the first part of this theorem is equivalent to showing that
the matrix generating function A

(1)
∗ (z) of the Markov additive kernel has a positive left invariant vector

x for z > 1 that has a one to one mapping to a (θ1, θ2) ∈ D1. The conditions (16) and (17) for this are
equivalent to (11) with w(z) = w2(z) and (15), respectively, if we let θ1 = log z and θ2 = − log w2(z).
From the arguments before this theorem, these conditions are equivalent to the existence of the positive
left invariant vector y of A

(1)
∗ (z), where y is given by (13). Since the positive right invariant vector

of A
(1)
∗ (z) exists if and only if the corresponding positive left invariant vector exists, the conditions are

equivalent to that A
(1)
∗ (z) has the left positive invariant vector x. Thus, we have proved the first part.

We next prove (3c)–(3f). Statement (3c) is easily obtained from x of (12), where we have used the
fact that strict inequality in (14) is equivalent to strict inequality in (15). Statement (3d) is obtained by
Lemma 2.3. The remaining statements (3e) and (3f) obviously follow from (3c). ¤

We now consider the decay rate of the νn. For this, there are the following three scenarios. Let y be
the positive right invariant vector of A

(1)
∗ (z).

(R1) R1 is z-positive and ν1y < ∞.
(R2) R1 is z-positive and ν1y = ∞.
(R3) R1 is not z-positive.

For scenario (R1), we have that the asymptotic decay is exactly geometric by Proposition 3.1. However,
condition ν1y < ∞ is not easy to verify even in this case. For all the scenarios, we shall use the following
fact.

Corollary 3.1 Assume (i), (ii) and (iii), and define β as

β = sup
{

θ1;∃θ2 such that lim sup
n→∞

ν1neθ2n < ∞ and (θ1, θ2) ∈ D1

}
,

then the rough upper decay rate r1(k) is bounded by e−β for all k ∈ Z+. In particular, if β = log cp(R1),
then the rough decay rate r1 is given by r1 = e−β, independently of the phase. Furthermore, if the
asymptotic decay of ν1n is exactly geometric as n → ∞, then the stationary level distribution νn also
asymptotically decays in the exact geometric form with rate e−β.

Since the proof of this corollary is technical, we defer it to Appendix C. Corollary 3.1 may look not
so sharp since it only gives an upper bound for the rough decay rates. Furthermore, it requires some
asymptotic information on ν1n. Nevertheless, combining it with the lower bound of Lemma 2.1 will
determine the decay rates. This will be discussed in the next section. Thus, Corollary 3.1 acts as a
bridge between the tail asymptotic behavior on the two boundary faces.

4. Characterization of the decay rates. As we have seen in Propositions 3.1 and 3.2, the asymp-
totic behavior in one direction requires some information on the behavior in the other direction. In this
section, we simultaneously consider both directions to solve the decay rate problem. For this, we need
to exchange the level and the phase, that is, to take L2n and L1n as level and phase, respectively. To
avoid possible confusion, we keep the order of L1n and L2n for the state description. Thus, when the
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level direction is exchanged, the asymptotics of ν†
n = {νℓn; ℓ ∈ Z+} as n → ∞ is of our interest. We refer

to this asymptotics as in the L2-direction while the original asymptotics as in the L1-direction. In the
previous sections, we have been only concerned with the L1-direction. Obviously, the results there can
be converted for the L2-direction.

To present those results, we define D2 similarly to D1, and use ηi instead of θi when L2n is taken as
the level. That is, D1 and D2 are defined as

D1 = {θ ∈ R2;ϕ(θ) = 1, ϕ(1)(θ) ≤ 1, θ1 ≥ 0, θ2 ∈ R}
D2 = {η ∈ R2;ϕ(η) = 1, ϕ(2)(η) ≤ 1, η2 ≥ 0, η1 ∈ R},

The rough decay rates in the coordinate directions are basically known under some extra conditions (see
Theorem 3.6.3 of [17]). The following characterization not only removes the extra conditions but also
provides a new graphical interpretation for them.

Theorem 4.1 For the double QBD process satisfying the assumptions (i)–(iii), define αi for i = 1, 2 as

α1 = sup{θ1; η1 ≤ θ1, θ2 ≤ η2, (θ1, θ2) ∈ D1, (η1, η2) ∈ D2}, (19)
α2 = sup{η2; η1 ≤ θ1, θ2 ≤ η2, (θ1, θ2) ∈ D1, (η1, η2) ∈ D2}. (20)

Then, α1 and α2 are the rough decay rates, that is, e−α1 and e−α2 are the rough geometric decay rates,
of νnk and νkn, respectively, as n → ∞ for each fixed k.

Remark 4.1 The segment connecting the two points on D1 and D2, respectively, corresponding to α1

and α2 must have non positive slope. This is a convenient way of identifying those points.

Remark 4.2 For simplicity, we have assumed the non-arithmetic condition (iii), but it can be removed.
For this, we only need to update Proposition 3.1 and (3a) of Proposition 3.2 for the arithmetic case. Note
that {A(1)

ℓ ; ℓ = 0,±1} is d-arithmetic if and only if R is d-periodic (see Remark 4.4 of [26]). Hence, if
{A(1)

ℓ ; ℓ = 0,±1} is d-arithmetic, then we can prove (8) for dn instead of n, so the rough decay rate is
unchanged.

Before proving this theorem, we identify the locations of the αi on Di for i = 1, 2, which will give us
explicit form of the rough decay rates. For this, we For convenience, we put D0 = {θ ∈ R2;ϕ(θ) = 1},
and introduce the following points concerning the convergence parameters of R1 and R2.

θ(c) ≡ (θ(c)
1 , θ

(c)
2 ) = arg max

θ∈D1
θ1, θ

(c)

2 = max{θ2; (θ
(c)
1 , θ2) ∈ D0},

η(c) ≡ (η(c)
1 , η

(c)
2 ) = arg max

η∈D2
η2, η

(c)
1 = max{η1; (η1, η

(c)
2 ) ∈ D0},

where the maximum and minimum exist since D1 and D2 are bounded closed sets. We classify the
configuration of points θ(c) and η(c) according to the following conditions.

(C1) η
(c)
1 < θ

(c)
1 and θ

(c)
2 < η

(c)
2 , (C2) η

(c)
1 < θ

(c)
1 and η

(c)
2 ≤ θ

(c)
2

(C3) θ
(c)
1 ≤ η

(c)
1 and θ

(c)
2 < η

(c)
2 , (C4) θ

(c)
1 ≤ η

(c)
1 and η

(c)
2 ≤ θ

(c)
2 .

The case (C4) is impossible since θ
(c)
1 ≤ η

(c)
1 implies that η

(c)
2 > θ

(c)
2 due to the convexity of the set with

boundary (16). This classification is illustrated in Figures 3 and 4, where θmax
i , ηmax

i will be defined in
Theorem 4.2. We will see that this new classification is quite useful for finding not only the rough decay
rate but also the exact asymptotics.

Corollary 4.1 The rough decay rates α1 and α2 in Theorem 4.1 are obtained as

(α1, α2) =


(θ(c)

1 , η
(c)
2 ), if (C1) holds,

(η(c)
1 , η

(c)
2 ), if (C2) holds,

(θ(c)
1 , θ

(c)

2 ), if (C3) holds.

(21)

Remark 4.3 At least one of eαi is equal to the convergence parameter of Ri. In Section 5.2, we will
see that classifications (C1), (C2) and (C3) correspond with how to choose an optimal path in the large
deviations approach (see Remark 5.8).
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(η
(c)
1 , η

(c)
2 )

(θ
(c)
1 , θ

(c)
2 )

(η
(c)
1 , η

(c)
2 )

(θ
(c)
1 , θ

(c)
2 )

α2 α2

α1 α1

Figure 3: Case (C1) for θ
(c)
1 < θmax

1 and for θ
(c)
1 = θmax

1

(ηmax

1
, η

max

2
)

α2

α2

α1

α1

Figure 4: Cases (C2) and (C3)

Proof of Corollary 4.1. Note that α1 ≤ θ
(c)
1 and α2 ≤ η

(c)
2 . If (C1) holds, then θ = (θ(c)

1 , θ
(c)
2 )

and η = (η(c)
1 , η

(c)
2 ) satisfy the conditions in (19) and (20), respectively. Hence, we have α1 = θ

(c)
1 and

α2 = η
(c)
2 by the maximal property of θ

(c)
1 and η

(c)
2 . Next suppose that (C2) holds, then (η(c)

1 , η
(c)
2 ) ∈ D1,

so we put θ = (η(c)
1 , η

(c)
2 ) and η = (η(c)

1 , η
(c)
2 ). Then, we can see that θ and η satisfy the conditions in

(19) and (20). Hence, α2 = η
(c)
2 . Since θ2 ≤ η2 ≤ η

(c)
2 in (19), θ1 is bounded by η

(c)
1 . Hence, α1 = η

(c)
1 .

Finally, the results for (C3) are obtained by exchanging the roles of (θ1, θ2) and (η1, η2). ¤
Proof of Theorem 4.1. Let ξ1 and ξ2 be the upper rough decay rates of νn1 and ν1n, respectively.

That is, r1(1) = e−ξ1 and r2(1) = e−ξ2 are the rough upper geometric decay rates. If 0 ≤ β1 ≤ ξ1 and
0 ≤ β2 ≤ ξ2, then r1(1) ≤ e−β1 and r2(1) ≤ e−β2 , so Corollary 3.1 leads

f1(β2) ≡ max{θ1; θ2 ≤ β2, (θ1, θ2) ∈ D1} ≤ ξ1,

f2(β1) ≡ max{θ2; θ1 ≤ β1, (θ1, θ2) ∈ D2} ≤ ξ2.

We next inductively define the following sequences β
(n)
1 and β

(n)
2 for n = 0, 1, . . . with β

(0)
1 = β

(0)
2 = 0.

β
(n)
1 = f1(β

(n−1)
2 ), β

(n)
2 = f2(β

(n)
1 ), n = 1, 2, . . . .

Obviously, fi is a nondecreasing functions for i = 1, 2, β
(n)
1 = f1(f2(β

(n−1)
1 )) and β

(n)
2 = f2(f1(β

(n−1)
2 )).

Since β
(n)
i is nondecreasing in n for each i = 1, 2, we can inductively see that

β
(n)
1 ≤ ξ1, β

(n)
2 ≤ ξ2, n = 0, 1, . . . . (22)

From the definitions, we have that θ2 ≤ β
(n−1)
2 ≤ β

(n)
2 for (β(n)

1 , θ2) ∈ D1 and η1 ≤ β
(n)
1 for (η1, β

(n)
2 )

since β
(n)
2 is nondecreasing in n. Hence, β

(n)
i ≤ log αi for i = 1, 2. Again, from the fact that β

(n)
i is

nondecreasing in n for each i = 1, 2, we have

β
(∞)
i ≡ lim

n→∞
β

(n)
i ≤ αi, i = 1, 2. (23)
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Suppose either one of β
(∞)
i is strictly less than αi. Say, β

(∞)
1 < α1. Let θ

(∞)
2 = min{θ2; (β

(∞)
1 , θ2) ∈

D1}, θ
(∞)

2 = max{θ2; (β
(∞)
1 , θ2) ∈ D2}. Then, β

(∞)
2 = min(θ

(∞)

2 , α2). If θ
(∞)

2 < α2, then we can find

(θ1, θ2) ∈ D1 such that θ
(∞)
2 < θ2 ≤ θ

(∞)

2 . This means that β
(∞)
1 < f1(β

(∞)
2 ), which contradicts that

β
(∞)
1 = f1(f2(β

(∞)
1 )). On the other hand, if θ

(∞)

2 ≥ α2, then β
(∞)
2 = α2, and θ

(∞)
2 ≤ α2. If θ

(∞)
2 < α2,

then β
(∞)
1 < f1(β

(∞)
2 ), which is impossible. Hence, θ

(∞)
2 = α2, so we must have that β

(∞)
1 = α1, which

contradicts the assumption that β
(∞)
1 < α1. Consequently, we must have equalities in both inequalities

(23). Hence, (22) implies

α1 ≤ ξ1, α2 ≤ ξ2.

Combining this with Lemma 2.1, we have

cp(R1)−1 ≤ r1(1) ≤ r1(1) ≤ e−α1 , (24)
cp(R2)−1 ≤ r2(1) ≤ r2(1) ≤ e−α2 . (25)

On the other hand, as we can see from Figures 3 and 4, either one of eα1 = cp(R1) or eα2 = cp(R2)
holds. Hence, we have the rough decay rate at least for one direction. Say this one is L1, then we have
r1(1) = e−α1 . If either (C1) with η

(c)
1 ≤ α1, (C2) or (C3) holds, then this and Proposition 3.2 yield that

ν†
n has the rough decay rate e−α2 . Otherwise, if (C1) with α1 < η

(c)
1 holds, then Proposition 3.1 yields

the same result. Both imply in turn that the rough decay rate of νn is e−α1 ¤

One may wonder whether the α1 and α2 of (19) and (20) (equivalently, of (21)) provide a condition
for the existence of the stationary distribution. For example, does the condition that α1 > 1 and α2 > 1
imply stability ? Unfortunately, this is not true, but we can say that it is almost true.

Corollary 4.2 For the double QBD process that is irreducible and satisfies (ii) and (iii), if m1 < 0 or
m2 < 0, then it is stable if and only if α1 > 0 and α2 > 0. Otherwise, if m1 ≥ 0 and m2 ≥ 0, then this
is not always the case.

We prove this corollary in Appendix D. It allows us to compute αi without assuming the stability
once we know at least one of mi’s is negative. In other words, we can use (19) and (20) of Corollary 4.1
to characterize the stability.

As for the marginal distributions, we only consider ν
(1)
n ≡ νn1 since the results are symmetric for

ν
(2)
n ≡ ν†

n1.

Corollary 4.3 Under the assumptions of Theorem 4.1, assume that α2 > 0, and let α̃1 be a maximum
solution of ϕ((α̃1, 0)) = 1. Then, we have the following cases.

(4a) If θ
(c)

2 ≥ 0, then the rough decay rate of ν
(1)
n is α1.

(4b) If θ
(c)

2 < 0, then α̃1 < α1 and we have two cases.

(4b1) If ϕ(1)((α̃1, 0)) ≥ 1, then the rough decay rate of ν
(1)
n is α̃1.

(4b2) If ϕ(1)((α̃1, 0)) < 1, then the rough decay rate of ν
(1)
n is either α1 or α̃1.

Remark 4.4 It is notable that taking a marginal distribution may change the decay rate. There are
some reasons for this. For example, it happens that θ

(c)

2 < 0 when m1 ≤ 0 and m2 > 0 (see Figure 6 in
Appendix D). That is, it is most likely that L2n takes a large value inside the positive quadrant, which
would change the decay rate. We next consider where (C1) holds and θ

(c)

2 < 0. Note that x1 = ∞ for the
invariant vector x for z = eθ

(c)
1 in Theorem 3.1. Since θ

(c)
1 = α1 in this case, from (8) of Proposition 3.1

and Fatou’s lemma, we have

lim inf
n→∞

eα1(n−1)ν(1)
n ≥ ν1q

xq
x1 = ∞. (26)

Remark 4.5 ϕ(1)((α̃1, 0)) ≥ 1 is satisfied for (4b) if θ
(c)
1 ̸= max{θ1; (θ1, θ2) ∈ D0}.
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Proof. If α1 = 0, then this rough decay rate must also be 0. So, we only consider the case that
α1 > 0. For case (C2), we can apply (3b) of Proposition 3.2 with u = 1 since inf{θ2; (α1, θ2) ∈ D1} =
α2 > 0, so θ

(c)

2 > 0 and ν
(1)
n has the asymptotically exact decay rate α1. We now suppose that (C1) or

(C3) holds. In this case, we always have α1 = θ
(c)
1 . Denote the moment generating function of {ν(1)

n } by
ν̃(1)(θ) ≡ E(eθL̃1). Let β = sup{θ; ν̃(1)(θ) < ∞}. Obviously, β ≤ α1. From (1), we have, for θ < β,

(1 − ϕ((θ, 0))ν̃(1)(θ) = (ϕ(1)((θ, 0)) − ϕ((θ, 0)))E(eθL̃11(L̃1 ≥ 1, L̃2 = 0))
+(ϕ(2)((θ, 0)) − ϕ((θ, 0)))P (L̃1 = 0, L̃2 ≥ 1) + (ϕ(0)((θ, 0)) − ϕ((θ, 0)))P (L̃ = 0). (27)

Suppose that β < α1. Denote the right-hand side of (27) by g(θ), and define function h(w) of complex
variable w as

h(w) =
g(w)

1 − ϕ((w, 0))
(28)

as long as it is well defined and finite. If ϕ((β, 0)) ̸= 1, then h(w) is analytic for w in a sufficiently small
neighborhood of β since E(eθL̃11(L̃1 ≥ 1, L̃2 = 0)) is finite for θ < α1. This implies that h(w) is also
analytic in the same neighborhood, which contradicts that h(θ) = ν̃(1)(θ) diverges for θ > β. By a similar
reasoning, β can not be 0. Hence, ϕ((β, 0)) = 1 for β > 0. Thus, we have proved that β < α1 implies
β = α̃1.

We now consider the case that θ
(c)

2 ≥ 0. This and β < α1 = θ
(c)
1 imply that θ

(c)
2 > 0. Then, we can

apply (3b) of Proposition 3.2 for z = eθ1 with u = 1 and x = c1e
−θ2 + c2e

−θ2 for any θ1 such that
β < θ1 < α1. Since θ2 < θ

(c)
2 ≤ α2 implies d(z, x) = 0, we get

lim sup
n→∞

eθnν(1)
n = 0.

This contradicts the fact that ν̃(1)(θ) diverges for θ > β. Thus, β = α1 and we get (4a).

We next consider the case that θ
(c)

2 < 0. Note that ϕ(2)((α̃1, 0)) > 1 and ϕ(0)((α̃1, 0)) > 1. Hence, if
ϕ(1)((α̃1, 0)) ≥ 1, then the right-hand side of (27) converges to a positive constant as θ ↑ α̃1. From this
and the fact that (1− ϕ((θ, 0)))/(eα̃1 − eθ) converges to a positive constant as θ ↑ α̃1, it follows that the
asymptotic decay of ν

(1)
n is exactly geometric with rate e−α̃1 . Thus, we get (4b1). If ϕ(1)((α̃1, 0)) < 1,

then the right-hand side of (27) may vanish at θ = α̃1. If this is the case, the singularity of h(z) of (28)
at z = α̃1 can be removed. Hence, we can only state (4b2). ¤

Until now, we have been concerned only with the rough decay rates, but we can refine them to obtain
the exact asymptotics. We refer to Theorem 5 of [9] for this.

Theorem 4.2 For the double QBD process satisfying the assumptions (i)–(iii), let

θmax ≡ (θmax
1 , θmax

2 ) = arg sup
(θ1,θ2)∈D0

{θ1}, ηmax ≡ (ηmax
1 , ηmax

2 ) = arg sup
(θ1,θ2)∈D0

{θ2}.

If α1 > 0 and α2 > 0, then either one of the following cases holds.

(4c) If α1 ̸= θmax
1 (α2 ̸= ηmax

2 ), then the asymptotic decay of {νnk} ({νkn}) for each fixed k ∈ Z+

as n → ∞ is exactly geometric with the rate e−α1 (e−α2).

(4d) If α1 = θmax
1 (α2 = ηmax

2 ), then we have three cases.

(4d1) If (C1) holds and ϕ(1)(θmax) = 1 (ϕ(2)(ηmax) = 1), then there exists a positive constant
ck (c′k) depending on k ∈ Z+ such that

lim
n→∞

n
1
2 enα1νnk = ck ( lim

n→∞
n

1
2 enα2νkn = c′k). (29)

(4d2) If (C1) holds and ϕ(1)(θmax) ̸= 1 (ϕ(2)(ηmax) ̸= 1), then there exists a positive constant
dk (d′k) depending on k ∈ Z+ such that

lim
n→∞

n
3
2 enα1νnk = dk ( lim

n→∞
n

3
2 enα2νkn = d′

k). (30)
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(4d3) If (C2) ((C3)) holds, then, for a positive constant ek (e′k),

lim sup
n→∞

eα1nνnk = 0, lim
n→∞

eα2nνkn = ek (31)

( lim
n→∞

eα1nνnk = e′k, lim sup
n→∞

eα2nνkn = 0).

Remark 4.6 θmax
1 and ηmax

2 may be infinite since D0 may not be a closed loop. Since (4d) can not occur
in this case, the notation θmax (ηmax) is used rather than θsup (ηsup).

Remark 4.7 (4d1) and (4d2) are essentially due to Theorem 5 of [9]. However, the latter assumes that
the stationary probabilities along the other coordinate decay faster than the decay of entries in the left
invariant vector for A(i)(z), where i corresponds with the coordinate of interest. This assumption is hard
to check in applications. Theorem 4.2 resolves this difficulty replacing it by condition (C1). Theorem 4.2
also refines the results of [5], which will be detailed in Section 5.

Remark 4.8 In case (4d3), {νnk} for each fixed k decays faster than a geometric sequence if (C2) holds.
This is only the case that the exact asymptotics is not known. We conjecture that they have the same
exact asymptotics as in (4d1) and (4d2).

Proof. We first assume that α1 ̸= θmax
1 . Consider case (C3). From Theorem 4.1 and Corollary 4.1,

we have log α1 = θ
(c)
1 ≤ η

(c)
1 , so θ

(c)

2 ≡ max{θ2; (θ
(c)
1 , θ2) ∈ D0} is greater than θ

(c)
2 . Hence, vectors x and

y with entries xℓ = e−ℓθ
(c)
2 and yℓ = eℓθ

(c)
2 are the left and right eigenvectors of A

(1)
∗ (eα1) in L1-direction,

so xy < ∞. Furthermore, ν1y < ∞ since ν1 ≡ {ν1n} has the rough decay rate e−α2 = e−θ2 < e−θ
(c)
2 .

Consequently, all the conditions of Proposition 3.1 are satisfied, so the asymptotic decay of {νnk} is
exactly geometric with rate e−α1 for each fixed k. Due to Proposition 3.2, this in turn implies that the
asymptotic decay of {νkn} and its marginal distribution {ν(2)

n } is exactly geometric with rate e−α2 . For
case (C2), we have the same results by exchanging the directions. For the case (C1), it is easy to see that
the conditions (F1), (F2) and (F3) of Proposition 3.1 are satisfied. Thus, we get (4c).

We next assume that α1 = θmax
1 . In this case, (C3) is impossible, so we only need to consider cases

(C1) and (C2). First assume that (C2) holds, then we must have (η(c)
1 , η

(c)
2 ) = θmax. So, we can apply

Proposition 3.1 for the L2-direction, which implies the asymptotically exact geometric decay of {νkn} for
each fixed k. From this fact and (3c) of Theorem 3.1, we have

d(eα1 ,x) = lim sup
k→∞

ν1k

xk
= 0,

since xk = ke−θmax
1 k. Hence, (3b) of Proposition 3.2 implies (31). Thus, we get (4d3). We finally consider

case (C1) for α1 = θmax
1 . In this case, we have θ

(c)
1 = θmax

1 and α2 = η
(c)
2 > θ

(c)
2 = θmax

2 . Hence, we can
apply the bridge path and jitter cases of Theorem 5 of [9], which lead to (4d2) and (4d1), respectively.
¤

We next give the exact asymptotics version of Corollary 4.3.

Corollary 4.4 For the double QBD process satisfying the assumptions (i)–(iii), assume that α1 > 0
and α2 > 0. Then, if θ

(c)

2 < 0 and if ϕ(1)(α̃1) ≥ 1, then the asymptotic decay of ν
(1)
n is exactly geometric

with rate e−α̃1 , where α̃1 is defined in Corollary 4.3. If θ
(c)

2 ≥ 0, we have the following cases.

(4e) If α1 ̸= θmax
1 , then we have three cases.

(4e1) If θ
(c)

2 > 0 and θ
(c)
2 ̸= 0, then the asymptotic decay of {ν(1)

n } is exactly geometric with
the rate e−α1 .

(4e2) If θ
(c)

2 > 0 and θ
(c)
2 = 0, then, for some c ≥ 0,

lim
n→∞

eα1nν(1)
n = c. (32)

(4e3) If θ
(c)

2 = 0, then, for some d > 0,

lim
n→∞

n−1eα1nν(1)
n = d. (33)
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(4f) If α1 = θmax
1 , we have another three cases.

(4f1) If θ
(c)

2 > 0, then ν
(1)
n has the same exact asymptotics as νnk for each fixed k except a

multiplicative constant.

(4f2) If θ
(c)

2 = 0 and ϕ(1)((α1, 0)) = 1, then the asymptotic decay of {ν(1)
n } is exactly geometric

with the rate e−α1 .
(4f3) If θ

(c)

2 = 0 and ϕ(1)((α1, 0)) ̸= 1, then we have (32) for a c ≥ 0.

Proof. For the case that θ
(c)

2 < 0 and ϕ(1)(α̃1) ≥ 1, we have already proved the asymptotically exact
geometric decay in the proof of Corollary 4.3. So, we assume that θ

(c)

2 ≥ 0. This and Corollary 4.3 imply
that the rough decay rate of ν

(1)
n is α1. To prove (4e), assume that α1 ̸= θmax

1 . In this case, we always
have α1 ≤ θ

(c)
1 and ϕ(θ(c)) = ϕ(1)(θ(c)) = 1. If α1 ̸= θ

(c)
1 , then case (C2) occurs, and ν

(1)
n has the exactly

geometric decay with rate α1 by Proposition 3.2. Note that we must have θ
(c)
2 > 0 for this case, and

(4e1) is obtained for α1 ̸= θ
(c)
1 . Hence, we only need to consider the case where α1 = θ

(c)
1 . Assume that

θ
(c)

2 > 0, and consider two cases θ
(c)
2 ̸= 0 and θ

(c)
2 = 0 separately. If θ

(c)
2 ̸= 0 holds, then 1−ϕ((α1, 0)) and

ϕ(1)((α1, 0)) − 1 have the same sign. Hence, from (27), it can be seen that ν
(1)
n and νn0 have the same

exact asymptotics, so we have (4e1) by (4c) of Theorem 4.2. If θ
(c)
2 = 0, then ϕ((α1, 0)) = ϕ((α1, 0)) = 1.

So, letting θ ↑ α1 in (27), we can see that its right-hand side converges to a nonnegative constant.
Hence, we get (4e2). We next assume that θ

(c)

2 = 0, which excludes case (C2). So, α̃1 = α1 = θ
(c)
1 by

Corollary 4.1, and and ϕ(1)((α1, 0)) > 1 by Theorem 3.1. Since νn0 has the asymptotically exact decay
rate α1, (eα1 − eθ)E(eθL̃11(L̃1 ≥ 1, L̃2 = 0)) converges to a positive constant as θ ↑ α1. Furthermore,
ϕ((α1, 0)) = 1 implies that (1 − ϕ((θ, 0)))/(eα1 − eθ) converges to a positive constant as θ ↑ α1. Hence,
multiplying both sides of (27) with (eα1 − eθ), we have, for some positive a,

lim
θ↑α1

(eα1 − eθ)2E(eθL̃1) = a.

This yields (33), and (4e3) is obtained. To prove (4f), assume that α1 = θmax
1 . If θ

(c)

2 > 0, then
α1 = θmax

1 > α̃1, which implies that ϕ((α1, 0)) > 1 and ϕ(1)((α1, 0)) ≤ 1. But, ϕ(1)((α1, 0)) = 1 is
impossible since this and (27) with θ ↑ α1 imply that ν̃(1)(α1) < ∞ and therefore the rough decay rate of
ν

(1)
n is less than α1. So, ϕ(1)((α1, 0)) < 1, and we have (4f1) from (27). If θ

(c)

2 = 0, then α1 = θmax
1 = α̃1,

so ϕ((α1, 0)) = 1. We need to consider (27) for the two cases according to whether ϕ(1)((α1, 0)) = 1 or
not. Note that, if ϕ(1)((α1, 0)) ̸= 1, then ϕ(1)((α1, 0)) < 1 by α1 = θmax

1 . If ϕ(1)((α1, 0)) = 1, then, by
(4d1) of Theorem 4.2, where (C2) and (C3) are impossible by α2 > 0, we have

lim
θ↑α1

(ϕ(1)((α1, 0)) − ϕ((α1, 0)))E(eθL̃11(L̃1 ≥ 1, L̃1 = 0)) = 0.

Hence, (27) yields the asymptotically exact geometric decay. On the other hand, if ϕ(1)((α1, 0)) < 1,
then, by (4d2) of Theorem 4.2

lim
θ↑α1

E(eθL̃11(L̃1 ≥ 1, L̃1 = 0)) < ∞.

Hence, the right-hand side of (27) converges to a constant as θ ↑ α1. Since this constant may be zero
because of ϕ(1)((α1, 0)) < 1, we can only state that the decay is not slower than the geometric decay with
rate e−α1 . Thus, we get (4f2) and (4f3), and complete the proof. ¤

In conclusion, we have a complete answer to the rough decay rate problem for each fixed phase.
Similarly, the exact asymptotics is obtained except for (4d3). For the marginal distributions, the rough
and exact asymptotics are also obtained except for some cases. Thus, we have a fairly good view for the
rough and exact asymptotics for the double QBD process in the sense that α1 and α2 are graphically
identified through cases (C1), (C2) and (C3). However, this does not mean that the decay rates are easily
obtained in applications. Therefore, we still need to employ some effort to identify the decay rates. Such
examples are demonstrated in Section 6.

5. 0-partially homogeneous chain. In the previous sections, we have considered the decay rates
only for the coordinate directions and the marginal stationary distributions. For theoretical reasons, one
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may be interested in the decay rate for an arbitrarily given direction. In [5], this problem is studied
for much more general processes. In particular, the exact asymptotics are considered for the 0-partially
homogeneous chain there. In this section, we revisit the decay rate problem through the 0-partially
homogenous chain. We here refine the decay rates of [5] to be more explicit. We also remark on some
technical issues in the results of [5] that they require stronger conditions and the marginal stationary
distributions are not considered.

Let us formally introduce the 0-partially homogeneous chain of [5]. Let S be either R2 or Z2, where Z
is the set of all integers, and let

S+ = {(v1, v2) ∈ S; v1, v2 ≥ 0}, So
+ = {(v1, v2) ∈ S; v1, v2 > 0},

∂S
(1)
+ = {(y, 0) ∈ S+; y > 0}, ∂S

(2)
+ = {(0, y) ∈ S+; y > 0},

S(1) = {(v1, v2) ∈ S; v2 ≥ 0}, S(2) = {(v1, v2) ∈ S; v1 ≥ 0},

and let B(S+) be the Borel field on S+. Let X, X(0), X(1) and X(2) be random vectors taking values in
S, S+, S(1) and S(2), respectively.

A discrete-time Markov process {Y n} is said to be a two dimensional 0-partially homogenous chain if
it takes values in S+ and if its transition kernel K(v, B) ≡ P (Y n+1 ∈ B|Y n = v) has the following form:

K(v, B) =


P (X ∈ B − v), v ∈ So

+, B ∈ B(So
+),

P (X(0) ∈ B), v = 0, B ∈ B(S+),
P (X(1) ∈ B − v), v ∈ ∂S(1), B ⊂ S+ \ ∂S

(2)
+ , B ∈ B(S+),

P (X(2) ∈ B − v), v ∈ ∂S(2), B ⊂ S+ \ ∂S
(1)
+ , B ∈ B(S+),

where the other K(v, B) can be arbitrary as long as K(v, S) = 1. Note that K(v, B) may depend on v

for (v, B) ∈ ∂S
(1)
+ × ∂S

(2)
+ or (v, B) ∈ ∂S

(2)
+ × ∂S

(1)
+ .

Clearly, {Y n} is the double QBD process if S = Z2 and it is skip free in all directions. Similarly
to {L(1)

n } and {L(2)
n }, we define additive processes removing either the boundary ∂S

(2)
+ or ∂S

(1)
+ , which

are denoted by {Y (1)
n } and {Y (2)

n }, respectively. They are Markov additive processes. We also need a
random walk {Zn}, where Zn = X1 + . . . + Xn for independently and identically distributed random
vectors Xℓ which have the same distribution as X.

5.1 Borovkov and Mogul’skii’s solution. We briefly summarize the decay rates obtained in [5]
for the 0-partially homogenous chain {Y n}. For simplicity, we are only concerned with the case of S = Z2.
Results for S = R2 are essentially parallel although conditions are more complicated.

The approach of [5] uses the large deviations technique, and requires the following conditions in addition
to the stability condition (see (R1) and (R2) of [5]).

(G1) For each j ∈ Z2 such that P (X = j) > 0, the group generated by {k ∈ Z2; P (X = k + j) > 0}
agrees with Z2.

(G2) The local processes {Y (1)
n } and {Y (2)

n } are irreducible.
(G3) mi ≡ E(X(i)) ̸= 0 for i = 1, 2.

The same set of conditions is used in [17], which also uses the large deviations approach. In [5], the
finiteness of moment generating functions on X is assumed together with some other assumptions, but
this is required to have geometric decay.

Among these conditions, we only need (G2) for the double QBD process. That is, (G2) is identical with
(ii), and (G1) and (G3) are not needed. The latter two conditions may exclude theoretically interesting
cases (see, e.g., Section 28 of [3]). Furthermore, condition (ii) can be removed, which will be discussed
in Section 7. Thus, our approach in the previous sections can be used under much weaker assumptions
although it is only applicable for the double QBD process.

Similarly to the double QBD process, we use the following notation.

ϕ(θ) = E(eθX), θ ∈ R2.

Then, the moment condition (M+) assumed in [5] can be written as
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(M1) ϕ(θ) ≡ supv∈R2
+

∫
R2

+
eθuK(v, du) < ∞ for some θ > 0, and ϕ(θ) < ∞ for all θ such that

ϕ(θ) < ∞.

Obviously, this condition is automatically satisfied for the double QBD process.

We now present the rough decay rates of [5] for S = Z2. For this, we need some notation. For the
Markov additive process {Y (1)

n } with Y
(1)
0 = 0, we inductively define, for n = 1, 2, . . .,

τ (1)
n = inf{n ≥ τ

(1)
n−1 + 1; Y (1)

2n = 0}, ζ(1)
n = Y

(1)

1τ
(1)
n

,

where τ
(1)
0 = 0. That is, τ

(1)
n is the n-th time when the Markov component Y

(1)
2n returns to 0. Then, let

ψ(1)(t) = E(eζ
(1)
1 t; τ (1)

1 < ∞|(Y (1)
0 ) = 0) and

δ(1) = sup{t; ψ(1)(t) ≤ 1}.

We similarly define ψ(2) and δ(2). Let

D(β) = sup{βθt; ϕ(θ) ≤ 1}, β ∈ Z2

Di(0, β) = inf{δ(i)ti + D(β − t); t = (t1, t2) ∈ ∂S
(i)
+ }, β ≥ 0, i = 1, 2,

D(0, β) = min(D(β), D1(0, β), D2(0, β)), β ≥ 0,

where the original definition of D(β), defined in [5] as

D(β) = inf
t>0

tΛ(
1
t
β),

using Frenchel-Legendre transform Λ(β) = supθ∈R2{βθ − log ϕ(θ)} is different. In [2] (see also [4]), it is
proved that

lim
ℓ→∞

1
ℓ

log H(ℓβ) = −D(β), β ∈ Z2 \ {0},

where H(n) =
∑∞

ℓ=0 P (Y ℓ ∈ n). Since H is the two dimensional renewal function whose increments
have moment generating function ϕ, it is intuitively clear that the rough decay rate D(β) must be the
one which we have defined. Note that this equivalence generally holds true (see Theorem 13.5 of [30]).

In large deviations terminology, D(β) represents the minimum cost that the random walk {Zn} moves
from 0 to β under a fluid scaling for any β ̸= 0. If β ≥ 0, then it is also the minimum cost for {Y n}
when it only moves inside the quadrant. Similarly, δ(i) is the minimum unit cost when {Y n} moves on
the boundary ∂S

(i)
+ , so Di(0, β) is the minimum cost for moving from 0 on the boundary ∂S

(i)
+ then goes

to β ≥ 0. Thus, D(0, β) is the minimum cost moving from 0 to β ≥ 0, and gives the rough decay rate
of the stationary distribution ν in the direction determined by β.

Proposition 5.1 (Theorem 3.1 of Borovkov and Mogul’skii [5]) For the 0-partially homoge-
neous chain {Y n}, assume that it has the stationary distribution ν ≡ {νi; i ∈ S+} and satisfies (G1),
(G2), (G3) and (M1). Then,

lim
ℓ→∞

1
ℓ

log νℓβ = −D(0, β), β ∈ Z2
+ \ {0}. (34)

Remark 5.1 From (34), we must have D(0, tβ) = tD(0, β) for t ≥ 0, which is obtained in Theorem 1.4
of [5]. It should be noted that (34) is the rough decay rate on the ray with direction β, and the case of
β = ei does not imply the rough decay rate of the marginal stationary distribution.

This result is much more general than Theorem 4.1 except for the extra conditions (G1) and (G3), but
nothing tells about the rough decay rate of the marginal distributions. From the viewpoint of applications,
a big problem is that the rough decay rate D(0,β) is not easy to compute. Borovkov and Mogul’skii [5]
consider a slightly different characterization for β = ei for i = 1, 2, where e1 = (1, 0) and e2 = (0, 1). Let

g(1)(u) = min
v≥0

{uv + D((1,−v))}, g(2)(u) = min
v≥0

{uv + D((−v, 1))}. (35)

Obviously, D2(0, e1) = g(1)(δ(2)) and D1(0, e2) = g(2)(δ(1)). Then, it is shown in [5] that

λ(1) = min(δ(1), g(1)(λ(2))), λ(2) = min(δ(2), g(2)(λ(1))) (36)
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has a unique positive solution (λ(1), λ(2)), and λ(i) = D(0, ei) for i = 1, 2. This fixed point idea is
interesting, but (36) does not help to get λ(1) and λ(2) from the primitive modeling data since g(1)(λ(2))
and g(2)(λ(1)) are not explicitly given. As we shall see in the next section, they can be obtained in
closed form if a slightly stronger moment condition is assumed (see (41) and (42)). Then, D(0, β) can
be obtained in much nicer form.

We next consider the exact asymptotics of [5]. For this case, the results corresponding to Proposi-
tion 5.1 are obtained for νnβ as n → ∞ for each β ∈ Z2

+ further assuming a 1-arithmetic type condition
corresponding to (iii) of Section 2. We here only present their results for the coordinate directions.

Proposition 5.2 (The first part of Theorem 3.3 of [5]) Under the aforementioned condition in
addition to those of Proposition 5.1, let χ(1) = g(1)(λ(2)) and χ(2) = g(2)(λ(1)), and suppose either one of
the following conditions (A1) and (B1) holds.

(A1) δ(1) < min(χ(1), θmax
1 ) or δ(1) > χ(1), δ(2) < min(χ(2), ηmax

2 ),

(B1) λ(2) > θmax
2 , ψ(1)(δ(1)) < 1 or λ(2) < θmax

2 , λ(1) > ηmax
1 , ψ(2)(δ(2)) < 1.

Then, (A1) implies that, for a positive constant c1,

lim
n→∞

eλ(1)nνn0 = c1, (37)

and (B1) implies that, for a positive constant c′1,

lim
n→∞

n
3
2 eλ(1)nνn0 = c′1. (38)

A corresponding result is also obtained for the direction e2.

Remark 5.2 In Theorem 3.3 of [5], νn0 ≡
∑∞

ℓ=n νℓ0 is used instead of νn0, but this does not change the
exact asymptotics except for a constant multiplier since νn0 has the rough decay rate less than 1.

Conditions (A1) and (B1) are not so informative although it is remarked in [5] that they cover all the
cases except for parameter sets of Lebesque measure 0. As we remarked, we can convert them to more
explicit conditions if we assume the moment condition (M2) given in the next section. For the double
QBD process, (M2) is always satisfied, and δ(1) = θ

(c)
1 and δ(2) = η

(c)
2 by Corollary 5.2 in the next section.

From these facts, it can be seen that (A1) is equivalent to that (C1) with λ(1) ̸= θmax
1 , (C3) or (C2) with

λ
(2)

1 ̸= θ
(c)
1 , where λ

(2)

1 = max{θ1; ϕ((θ1, λ
(2))) = 1}. Since (C3) or (C2) with λ

(2)

1 ̸= θ
(c)
1 implies λ(1) ̸=

θmax
1 , (A1) indeed implies case (4c) of Theorem 4.2, but (A1) excludes (C2) with λ

(2)

1 = θ
(c)
1 < θmax

1 which
is in (4c). Thus, (A1) is a subset of (4c). On the other hand, it is not hard to see that (B1) is equivalent
to (4d2) of Theorem 4.2. The other cases, that is, (4d1) and (4d3) are dropped in Proposition 5.2.

Thus, there remain the following problems in [5].

(P1) The extra assumptions (G1) and (G3) are needed.
(P2) There are missing cases in (A1) and (B1) of Proposition 5.2,
(P3) The exact asymptotics is not studied for νnk and νkn for each fixed k ≥ 1.
(P4) Nothing is considered for the rough and exact asymptotics of the marginal stationary distri-

butions.

In particular, Borovkov and Mogul’skii [5] remark that their approach can not be used for the marginal
distributions. As we have shown in Section 4, we have resolved the above problems for the double QBD
process. Specifically, (P1), (P2) and (P3) are well resolved by Theorems 4.1 and 4.2. For the marginal
distributions, Corollaries 4.3 and 4.4 solve this decay rate problem in some extent.

5.2 Computing the decay rates. Proposition 5.1 is a general result, but it is hard to use for ap-
plications since we have to solve optimization problems to get D(0, β). Let us consider a computationally
tractable form for this rough decay rate. Theorem 4.1 suggests that it would be uniquely determined by
a point on the curve the ϕ(θ) = 1. This motivates us to define the following condition in addition to
(M1).
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(M2) For some ϵ > 0, {θ ∈ R2
+; ϕ(θ) ≤ 1 + ϵ} is a simply connected closed set, where R+ is the set of

all nonnegative numbers.

This condition is satisfied by the double QBD process. Furthermore, (G1) implies that D0 ≡ {θ ∈
R2; ϕ(θ) = 1} is a bounded closed loop. Before using (M2), we note the following fact, which is obtained
in Lemma 4.4 of [5].

Lemma 5.1 Under condition (M1), δ(i) ≤ D(ei) for i=1,2.

We now assume condition (M2), and solve the optimization problems in Di(0, β) for i = 1, 2. From
(M2), ϕ(θ) is continuously differentiable in each component of θ in the domain {θ ∈ R2;ϕ(θ) < 1 + ϵ}.
Hence, D(β) is attained on the closed loop D0, which is the boundary of a convex set. Let

θmax
1 = sup{θ1; (θ1, θ2) ∈ D0}, ηmax

2 = sup{η2; (η1, η2) ∈ D0},

then, it is not hard to see that

D(e1) = θmax
1 , D(e2) = ηmax

2 , Di(0, ei) = δ(i), i = 1, 2, (39)

which are also intuitively clear. The following lemma is a key for our arguments, and proved in Ap-
pendix E.

Lemma 5.2 Assume condition (M2). For i = 1, 2, define the function h(i)(u, β) as

h(i)(u, β) = min
v≥0

(uv + D(β − vei)), 0 ≤ u ≤ D(ei), β ∈ Z2
+,

then we have

h(i)(u, β) =
{

βu(i), u ≤ θmax
i (β),

D(β), u > θmax
i (β),

i = 1, 2, (40)

where u(1) = (u, u2)t (u(2) = (u1, u)t) for u2 = max{θ2; (u, θ2) ∈ D0} (u1 = max{θ2; (θ1, u) ∈ D0})
(respectively).

By this lemma, we can compute g(i)(u) of (35) under condition (M2). In particular,

χ(1) = g(1)(λ(2)) = h(1)(λ(2), e1) =

{
λ

(2)

1 , λ(2) ≤ θmax
1 ,

θmax
1 , λ(2) > θmax

1 ,
(41)

χ(2) = g(2)(λ(1)) = h(2)(λ(1), e2) =

{
λ

(1)

2 , λ(1) ≤ ηmax
2 ,

ηmax
2 , λ(1) > ηmax

2 .
(42)

We next compute the decay rate D(0, β). For u = δ(i), we denote u(i) by δ
(i)

. Then,

Di(0, β) = h(i)(δ(i), β), i = 1, 2.

This and Lemma 5.2 immediately lead to the next theorem since D(β) = βθmax ≥ βδ
(i)

.

Theorem 5.1 Under condition (M2) in addition to those of Proposition 5.1, we have, for each β ∈ Z2
+,

Di(0, β) =

{
βδ

(i)
, δ(i) ≤ θmax

i (β),
D(β), δ(i) > θmax

i (β),
i = 1, 2, (43)

where θmax(β) = arg max
θ∈D0

βθt, and the rough decay rate of (34) is given by

D(0, β) =


min(βδ

(1)
,βδ

(2)
), (δ(1), δ(2)) ≤ θmax(β),

βδ
(1)

, δ(1) ≤ θmax
1 (β), θmax

2 (β) < δ(2),

βδ
(2)

, θmax
1 (β) < δ(1), δ(2) ≤ θmax

2 (β),
D(β), θmax(β) < (δ(1), δ(2)).

(44)
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Remark 5.3 In the proof of Lemma 5.2, we do not use the fact that β ∈ Z2
+ as well as any lattice

property. So, this theorem is also valid for S = R2 and β ∈ R2
+.

Remark 5.4 If we view the points δ
(1)

and δ
(2)

as θ
(c)

and η(c), respectively, for the double QBD process,
then we can have a similar geometric interpretation to Remark 4.3 on how they determine the decay rate
although things are complicated due to the direction β. For example, if δ(1) > θmax

1 or δ(2) > ηmax
2 , then

it is impossible to have (δ(1), δ(2)) ≤ θmax(β) for all β. Hence, there are three regions for the decay rates,
βδ

(1)
, D(β) and βδ

(2)
, which are typically arising in applications.

Remark 5.5 If (M2) does not hold, we have to consider the convex set {θ ≥ 0;ϕ(θ) ≤ 1} instead of D0.
From the geometric interpretation of (43), we can expect to have a similar solution, but the proof does
not work. This case is left for future work.

The following corollary is immediate from Theorem 5.1 for β = ei since δ(i) ≤ θmax
i (ei) = γi always

holds.

Corollary 5.1 Under the assumptions of Theorem 5.1, we have, for i = 1, 2,

λi = D(0, ei) =

{
min(δ(i), δ

(3−i)

i ), δ(3−i) ≤ θmax
3−i (ei),

δ(i), δ(3−i) > θmax
3−i (ei).

(45)

Remark 5.6 (45) with Theorem 5.1 tells us how the optimal path is chosen for the decay rate in the
coordinate directions. For example, consider the case that i = 1. Note that D1(0, e1) = δ(1) and
D2(0, e1) = δ

(2)

1 . When D(0, e1) = D1(0, e1), the optimal path is said to be jitter and bridge, re-
spectively, if δ(1) < D(e1) and δ(1) = D(e1). When D(0, e1) = D2(0, e1), the optimal path is said to be
cascade in the literature (see, e.g., [8]). Hence, λ1 = δ(1) occurs only if the optimal path is jitter or bridge
while λ1 = δ

(2)

1 occurs only if the optimal path is cascade. The jitter and bridge cases are distinguished
according to whether δ(1) < θmax

1 (e1) holds or not.

The decay rate of (44) is more informative than its original definition and the other form D(0, β).
However, it remains to identify δ(i) for i = 1, 2. This problem can be reduced to finding the convergence
parameters of the operator moment generating functions of the Markov additive kernels, denoted by J (i),
of the local processes {Y (i)

n } for i = 1, 2. Define this operator, i.e., matrix, for i = 1 by

J
(1)
∗ (θ)(j, k) = E(eθY

(1)
11 1(Y (1)

21 = k)|Y (1)
10 = 0, Y

(1)
20 = j), j, k ∈ Z+.

Similarly we define J
(2)
∗ (θ) for Y (2)

n .

Lemma 5.3 Under the moment condition (M1),

δ(i) = sup{θ ≥ 0; cp(J
(i)
∗ (θ)) = 1}, i = 1, 2. (46)

Proof. It is sufficient to prove for i = 1. Let

H(1)(n) =
∞∑

ℓ=1

P (ζ(1)
ℓ = n|Y (1)

10 = Y
(1)
20 = 0), n ∈ Z,

then
∞∑

n=−∞
eθnH(1)(n) =

∞∑
n=−∞

eθn
∞∑

ℓ=1

P (Y (1)
1ℓ = n, Y

(1)
2ℓ = 0|Y (1)

10 = Y
(1)
20 = 0)

=
∞∑

ℓ=0

[(J (i)(θ))ℓ]00.

Since E(ζ(1)
1 ) < 0 or P (τ (1)

1 < ∞) < 1, the left-hand side of the above equation converges for some θ > 0,
and it converges (diverges) if cp(J

(1)
∗ (θ)) > 1 (< 1). On the other hand, δ(1) = sup{t ≥ 0;ψ(t) ≤ 1} is

the decay rate of H(1)(n) as n → ∞. Hence, we have (46). ¤
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Finding θ satisfying cp(J
(i)
∗ (θ)) = 1 is yet another hard problem, but we have already answered it for

the double QBD process in Section 3. From Proposition 9 of [18], we can get the same answer when the
random walk {Zn} is skip free in the directions toward the boundaries and has bounded jumps in all
directions. Thus, we define θ

(c)
1 and η

(c)
2 in the same way as in the case of the double QBD process (see

Section 4). That is,

Corollary 5.2 For the 0-partially homogenous chain {Y n} satisfying the assumptions of Theorem 5.1,
if the jumps X and X(i) for i = 1, 2 are bounded with probability one and P (X1 < −1 or X2 < −1) = 0,
then

δ(i) =

{
θ
(c)
1 , i = 1,

η
(c)
2 , i = 2.

Remark 5.7 Combining this with Corollary 5.1 reproduces the results in [17].

Remark 5.8 Let us consider how the optimal path is related to our classifications (C1), (C2) and (C3)
for the double QBD process. We first note that Corollaries 5.1 and 5.2 verify λi = αi. Consider the L1

direction. Then, by Remark 5.6, (C1) with θ
(c)
1 < θmax

1 (θ(c)
1 = θmax

1 ) is jitter (bridge), (C2) is cascade,
and (C3) is jitter. For the L2 direction, (C2) is jitter, (C3) is cascade and the others are the same. So,
the classifications exactly correspond with how the optimal path is chosen for D(0, e1) and D(0, e2).

6. Examples. We exemplify the results in the previous sections for the two node Jackson network
and its modification when one server at a specified node becomes idle. The Jackson network is well
known to have the product form stationary distribution while the modified model does not. The decay
rate problem for the latter is considered in [9], but a complete answer has not yet been obtained. Both are
toy examples, but we can see not only how the present results work but also answer to some interesting
questions. For example, we can see when server cooperation improves the decay rate.

6.1 Two node Jackson network. Consider the two node Jackson queueing network. This network
has two nodes numbered as 1 and 2. Node i has exogenous arrivals subject to a Poisson process with rate
λi, which are independent of everything else. It has a single server whose service times are i.i.d. with
the exponential distribution with mean 1/µi. Customers who complete their service at node i go to the
other node j with probability rij or leave the network with probability 1 − rij . To formulate this model
in discrete time, we assume that λ1 +λ2 +µ1 +µ2 = 1. We also assume that r12r21 < 1 to exclude trivial
cases. Let

ρi =
λi + rjiλj

(1 − rijrji)µi
, i ̸= j, i, j = 1, 2.

Then, this network has a stationary distribution if and only if ρ1 < 1 and ρ2 < 1, which is assumed
below. In this case, the stationary distribution {νmn} has the product form, namely,

νmn = (1 − ρ1)(1 − ρ2)ρm
1 ρn

2 , m, n ∈ Z+.

Thus, we know that the asymptotic decay rates are exactly geometric. What is interesting for us is
to see how Theorems 4.1 and 4.2 together with Corollary 4.1 work. In view of Propositions 3.1 and 3.2,
this is already answered in Section 5 of [23] and Section 3 of [31] (see Figures 2 and 3 of [23]). We here
consider how to apply Theorem 4.2 for the Jackson network. From the proof of Lemma 3.2 of [31], we
can see that

z = ρ−1
1 , w(z) =

ρ1

r21 + (1 − r21)ρ1

satisfy (11) and (15) with equality, and the other w(z) is given by ρ2. Denote the nonzero end point of
D1 by (θend

1 , θend
2 ), then we have

θend
1 = − log ρ1, θend

2 = − log
ρ1

r21 + (1 − r21)ρ1
,

and, if θend
2 < − log ρ2 (= ηend

2 as described later), equivalently,
r21ρ2

1 − ρ2
<

ρ1

1 − ρ1
, (47)
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then (θ(c)
1 , θ

(c)
2 ) = (θend

1 , θend
2 ). Otherwise, (θ(c)

1 , θ
(c)
2 ) = (θmax

1 , θmax
2 ), where − log ρ2 ≤ θmax

2 ≤ θend
2 .

Similarly, denoting the nonzero end point of D2 by (ηend
1 , ηend

2 ), we have

ηend
1 = − log

ρ2

r12 + (1 − r12)ρ2
, ηend

2 = − log ρ2,

and, if ηend
1 < − log ρ1(= θend

1 ), equivalently,
r12ρ1

1 − ρ1
<

ρ2

1 − ρ2
, (48)

then (η(c)
1 , η

(c)
2 ) = (ηend

1 , ηend
2 ). Otherwise, (η(c)

1 , η
(c)
2 ) = (ηmax

1 , ηmax
2 ), where − log ρ1 ≤ ηmax

1 ≤ ηend
1 .

Thus, we need to consider the four cases according to whether (47) and (48) are true or not. We first
note that at least one is true because if both are false we have

r12r21 ≥ 1,

which is impossible by our assumption. Secondly, suppose that both of them are true. Then, η
(c)
1 = ηend

1 <

θend
1 = θ

(c)
1 and θ

(c)
2 = θend

2 < ηend
2 = η

(c)
2 . Hence, we get case (C1). Since θend

1 < θmax
1 and ηend

2 < ηmax
2 ,

the asymptotic decay rates are exactly geometric in both directions by (4c) of Theorem 4.2. Thirdly,
suppose that (47) is true but (48) is not true. In this case, we have η

(c)
1 = ηmax

1 ≥ − log ρ1 = θend
1 = θ

(c)
1

and θ
(c)
2 = θend

2 < ηend
2 ≤ ηmax

2 = η
(c)
2 . Thus, we get (C3), so the asymptotic decay rates are exactly

geometric in both directions by Theorem 4.1. Finally, due to the symmetric role of L1 and L2 directions,
we get (C2) if (47) is not true but (48) is true. Consequently, we have the asymptotically exact geometric
decay rates ρ1 and ρ2 for the L1 and L2 directions, as we expect. Typical figures for (C1) and (C3) are
given in Figure 5.

(θend

1
, θ

end

2
)

(θend

1
, θ

end

2
)

(ηend

1
, η

end

2
)

(ηend

1
, η

end

2
)

(ηmax

1
, η

max

2
)

(ηmax

1
, η

max

2
)

Figure 5: Typical figures for (C1) and (C3)

We finally check Theorem 5.1. In this case, it is easy to see that, for (C1), δ
(1)

= δ
(2)

=
(log ρ−1

1 , log ρ−1
2 ), for (C2), δ

(1)
= (log ρ−1

1 , θend
2 ) and δ

(2)
= (log ρ−1

1 , log ρ−1
2 ) and, for (C3), δ

(1)
=

(log ρ−1
1 log ρ−1

2 ) and δ
(2)

= (ηend
1 , log ρ−1

2 ). In all the cases, for β = (β1, β2),

D(0, β) = β1 log ρ−1
1 + β2 log ρ−1

2 = − log(ρβ1
1 ρβ2

2 ),

as expected.

6.2 Modified Jackson network. We next modify the Jackson network in such a way that a server
at node 2 helps the service at node 1 when node 2 is empty. We describe this by changing µ1 in
p
(1)
(−1)0 = µ1(1 − r12) and p

(1)
(−1)1 = µ1r12 of the Jackson network into µ∗

1 ≥ µ1. Assume its stability
condition that ρ2 < 1 and µ∗

1 > (λ1−µ1ρ2)/(1−ρ2) (see [9]). We are interested in when this cooperation
of the servers improves the system performance. We consider this by the tail decay rates of the stationary
queue length distribution at nodes 1 and 2. Similarly in Section 6.1, we denote the nonzero end points
of D1 and D2 by (θend

1 , θend
2 ) and (ηend

1 , ηend
2 ), respectively.

For this modified Jackson network, Foley and McDonald [9] study the decay rates at node 1. They
consider the three cases (corresponding sections of [9]):
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(FM1) ρ2 ≤ exp(−θend
2 ) and θend

2 < θmax
2 (Section 7.1),

(FM2) ρ2 < exp(−θend
2 ) and θend

2 > θmax
2 (Section 7.2),

(FM3) ρ2 < exp(−θend
2 ) and θend

2 = θmax
2 (Section 7.3).

Note that ρ2 ≤ exp(−θend
2 ) is equivalent to θend

2 ≤ log(ρ−1
2 ) = ηend

2 since R2 is unchanged by the
modification. Hence, the case where θend

2 > θmax
2 is missing here. This is case (C2) in our terminology

and the cascade case in large deviations terminology (see Remark 5.8). However, the condition ρ2 ≤
exp(−θend

2 ) is crucial in [9].

Thus, if (FM1) and θend
1 ≤ η

(c)
1 hold, then we have (C3). If (FM1) and θend

1 > η
(c)
1 hold, then we have

(C1) and (4c). Both cases have asymptotically exact geometric decay rate e−θend
1 , where θend

1 is θj
1 of [9].

If (FM2) holds, then we have (C1) and (4d2) of Theorem 4.2. Finally, if (FM3) holds, then we have (C1)
and (4d). For both of (FM2) and (FM3), the rough geometric decay rate is e−θmax

1 , where θmax
1 is θb

1 of [9].
Hence, Theorem 4.2 implies the exact asymptotics obtained in [9]. Note that Theorem 4.2 gives us more.
Namely, if ρ2 > exp(−θend

2 ), equivalently, θend
2 > ηend

2 , then we have either (C1) or (C2). (C1) occurs if
θ
(c)
2 = θmax

2 < ηend
2 < θend

2 , which implies (4d2). On the other hand, (C2) occurs if ηend
2 ≤ min(θmax

2 , θend
2 ).

We now consider how the increase of µ∗
1 improves the decay rate at node 1. For this, we write (17)

with equality in the explicit form

λ1e
θ1 + µ∗

1r12e
−θ1 + (λ2 + µ∗

1(1 − r12)e−θ1)eθ2 = λ1 + λ2 + µ∗
1.

Hence,

eθ2 =
λ1(1 − eθ1) + λ2 + µ∗

1r12(1 − e−θ1) + µ∗
1(1 − r12)

λ2 + µ∗
1(1 − r12)e−θ1

.

This means that θ2 is increased as µ∗
1 is increased for each fixed θ1 ≥ 0. Let µmax

11 be the value of µ∗
1 for

which θend
1 = θmax

1 , which exists only when (47) holds. Similarly, let µmax
12 be the value of µ∗

1 for which
θend
1 = ηmax

1 if it exists. Then, we have the following conclusions.

(J1) Suppose that (47) and (48) hold. Then, increasing µ∗
1 decreases the geometric decay rate e−α1

at node 1 as long as µ1 ≤ µ∗
1 < µmax

11 , and there is no further improvement on this decay rate for
µ∗

1 ≥ µmax
11 . There is no improvement for the geometric decay rate e−α2 at node 2 for all µ∗

1 ≥ µ1.
(J2) Suppose that (47) holds and (48) does not hold. Then, increasing µ∗

1 decreases both decay
rate e−α1 and e−α2 as long as µ1 ≤ µ∗

1 < µmax
12 , and there is no further improvement on the

geometric decay rate e−α2 for µ∗
1 ≥ µmax

12 while e−α1 is decreased for µ∗
1 ∈ [µmax

12 , µmax
11 ) and

remains constant for µ∗
1 ≥ µmax

11 .
(J3) Suppose that (47) does not hold and (48) holds. Then, there is no further improvement on

both geometric decay rates e−α1 and e−α2 for all µ∗
1 ≥ µ1.

Thus, there are the cases that no improvement is made in either geometric decay rate. Condition (47)
is a crucial condition for this. This condition may be intuitively interpreted that the congestion at node
1 is greater than the congestion from node 2 to node 1. This intuition supports our conclusions. What
is more interesting is that we can mathematically characterize when the decay rates are improved.

7. Extension and concluding remarks. The results of this paper can be applied to find the decay
rates as long as a model can be formulated as a double QBD or some extensions such as a two sided
double QBD in [25]. In that paper, the author considers the generalized joining the shortest queue with
two queues introduced in [7], and derive a complete solution for the rough decay rates.

We can conceive of various extensions of the present results. We first consider removing the irreducibil-
ity condition (ii) for the local processes {L(i)

n }. This condition may be restrictive in applications. For
example, a preemptive priority queue does not satisfy it. In what follows, we outline how we can get the
rough decay rates without condition (ii). Detailed proofs for this case will be given elsewhere.

Let us consider the case that condition (ii) does not hold for the double QBD process {Ln}. As usual,
we assume the stability condition (i). Recall that X = (X1, X2) is a random vector that describes one
step movement of {Ln} inside the positive quadrant. Then, (ii) does not hold only when at least one
of P (X1 > 0), P (X1 < 0), P (X2 > 0), P (X2 < 0), P (X(1)

2 > 0) or P (X(2)
1 > 0) vanishes. The last
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two probabilities only concern ϕ(i)(θ) for i = 1, 2, and one of them must be positive because of the
irreducibility of {Ln}.

Let us consider the case that P (X(1)
2 > 0) = 0. In this case, ϕ(1)(θ) = E(eθ1X

(1)
1 ), and therefore the

region of (17) is the stripe between two vertical lines one of which goes through the origin. This stripe is
included in the left half space θ1 ≤ 0 if E(X(1)

1 ) ≥ 0, and in the right half space θ1 ≥ 0 if E(X(1)
1 ) < 0.

In either case, we obviously have (θ1, θ2), (θ1, θ2) ∈ D1 in the terminology of Theorem 3.1. Hence, the
first part of Corollary 3.1 is still valid (see its proof in Appendix C), and we can prove Theorem 4.1 if
the first four probabilities are positive since we must have P (X(2)

1 > 0) > 0.

So, we consider the first four probabilities. In principle, there are sixteen cases in total according to
which each of them vanish. However, for each i = 1, 2, if both of P (Xi > 0) and P (Xi < 0) vanish, then
the double QBD process can be considered as one dimensional process. So, these cases are not considered.
Taking the symmetric structure of the double QBD process into account, we only need to consider the
following four cases for the decay rate in the L1-direction.

(K1) P (X1 > 0) = 0 and P (X1 < 0), P (X2 > 0), P (X2 < 0) > 0.
(K2) P (X1 < 0) = 0 and P (X1 > 0), P (X2 > 0), P (X2 < 0) > 0.
(K3) P (X1 > 0) = P (X2 > 0) = 0 and P (X1 < 0), P (X2 < 0) > 0.
(K4) P (X1 < 0) = P (X2 > 0) = 0 and P (X1 > 0), P (X2 < 0) > 0.

In all cases, (11) becomes linear concerning w(z), so A
(1)
∗ (z) has only one left invariant positive vector,

and we can not use Proposition 3.1 and (3a) of Proposition 3.2. However, (3b) of Proposition 3.2 holds,
and Theorem 3.1 is still valid if we replace VA(1) and VR1 by the corresponding sets of the subinvariant
vectors. Namely, they are

VA(1) = {(z, x);xA
(1)
∗ (z) ≤ x, z ≥ 1, x > 0},

VR1 = {(z, x);xzR1 ≤ x, z ≥ 1, x > 0}.

Of course, (3c) and (3f) have to be changed appropriately, and (3e) must be removed while (3d) is valid.
Note that D1 is not a closed curve in this case. Since equation ϕ(θ) = 1 has a single solution θ for each
θ1, D1 can be described by θ2 = f(θ1) for some function f . It is easy to see that f is concave for (K1)
and (K3) while it is convex for (K2) and (K4).

Thus, for (K1) and (K3), cp(R1) = sup{eθ1 ; ϕ(θ) = 1}. In this case, we denote log cp(R1) by θ
(c)
1 , and

let θ
(c)
2 = −∞. For (K2) and (K4), cp(R1) = eθ

(c)
1 , where θ

(c)
1 is a positive solution of θ1 of the equations

ϕ(θ) = 1 and ϕ(1)(θ) = 1. Using these notation, we still have Theorem 4.1.

Other than those irreducibility issue, it may be interesting to consider the following problems.

1) It may be questioned whether Theorems 4.1 and 4.2 and Corollaries 4.3 and 4.4 hold for the
0-partially homogenous chain under appropriate moment conditions. For the discrete state case,
we need to generalize Proposition 3.2 for non-skip free processes. We conjecture that this is
possible. Foley and McDonald [10] are also investigating such a generalization.

2) In applications, it is interesting to consider the case that the double QBD process, or more
generally the 0-partially homogenous reflected random walk, is modulated by a finite state Markov
chain. For example, this enables us to answer the decay rates in the generalized Jackson network
with phase type interarrival and service time distributions, for which the decay rate problem has
been only partially answered (see, e.g., [11, 12]). A Markov modulated fluid queueing network
can be also considered under this framework.

3) It would also be interesting to extend the results for a two dimensional reflected Levy processes.
4) Of course, the extension to the more than two dimensional case is a challenging problem known

to be very hard.

Appendix A. Proof of Lemma 2.3. We use the change of measures for this proof (see, e.g.,
Section 4 of [26]). For this, we first note the following characterization by subinvariant vectors, which is
similarly obtained in the irreducible case, but it is generally not true if nothing is assumed (see Lemma
2.1 and Remark 2.3 of [15]).
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Proposition A.1 (Theorem 6.3 of [32]) For a nonnegative square matrix T which has the same size
as A, if T has a single irreducible class, then we have

cp(T ) = sup{z ≥ 0; zxT ≤ x, x ∈ X}.

Let zA = sup{z ≥ 1;xA
(1)
∗ (z) ≤ x, x > 0}. We first show that zA ≤ cp(R1). Let

G−
1∗(z) = A

(1)
0 + R1A

(1)
−1 + z−1A

(1)
−1,

which is known to be strictly substochastic for z > 1 (see [16]). Hence, from (4), we have

(I − A
(1)
∗ (z))(I − G−

∗ (z))−1 = I − zR1, z > 1.

From this and Proposition A.1, it easily follows that zA ≤ cp(R1). We next prove that cp(R1) ≤ zA. For
this, we consider two cases separately. For notational simplicity, let z = cp(R1). First assume that zR1

is recurrent, i.e., (I − zR1)−1 = ∞. In this case, there exists a left invariant positive vector x of zR1.
That is,

x(I − zR1) = 0

Multiplying both sides of (2) by x from the left, we have

xR1 = z−1x
(
z−1A

(1)
−1 + A

(1)
0 + zA

(1)
1

)
= z−1xA

(1)
∗ (z),

which yields

x(I − A
(1)
∗ (z)) = x(I − zR1) = 0.

Hence, by the definition of zA, we have z ≤ zA. We next assume that zR1 is transient, i.e., (I−zR1)−1 <
∞. In this case, from (4), we have

(I − zR1)−1(I − A
(1)
∗ (z)) = I − G−

∗ (z)

Note that all off-diagonal entries of the left-hand side matrix of this equation are non positive and the
diagonal entries are all positive due to the right-hand side matrix. Since G−

∗ (z) is substochastic, its
convergence parameter is not less than 1. Hence, from Proposition A.1, we can find a positive row vector
y such that

y(I − G−
∗ (z)) ≥ 0.

Thus, we have

y
(
(I − zR1)−1(I − A

(1)
∗ (z))

)
= y(I − G−

∗ (z)) ≥ 0. (49)

As we noted, the matrix (I − zR1)−1(I − A
(1)
∗ (z)) has the diagonal entries all of which are positive and

the off-diagonal entries all of which are negative. From this fact, we can see that

y(I − zR1)−1A
(1)
∗ (z) < ∞.

Hence, y(I − zR1)−1 must be a finite positive vector, so (49) implies that z ≤ zA. Thus, we have
cp(R1) = z ≤ zA for both cases. This completes the proof of Lemma 2.3.

Appendix B. Proof of Proposition 3.2. From the matrix geometric form (3) and the fact that
x is also the left eigenvector of zR1, we have, for any n ≥ 1,

znνnu = z
∑
k≥0

∑
ℓ≥0

ν1k

xk
xkzn−1[Rn−1

1 ]kℓuℓ

= z
∑
ℓ≥0

∑
k≥0

ν1k

xk
xℓuℓ

1
xℓ

zn−1[(Rt
1)

n−1]ℓkxk,

where Rt
1 is the transpose of R1. Then, denoting the matrix {x−1

ℓ z[Rt
1]ℓkxk; ℓ, k ∈ Z+} by Q, we get

znνnu = z
∑
ℓ≥0

∑
k≥0

ν1k

xk
xℓuℓ[Qn−1]ℓk. (50)
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From assumption (ii), R1 and therefore Q are irreducible. Hence, there can be two cases where Q,
equivalently, R1 is positive recurrent.

First consider case (3a). In this case, xy < ∞ implies that xq < ∞ and Q is positive recurrent by
Lemma 4.1 of [26]. Denote the stationary distribution of Q by π = {πk}, where πk =

xkrk

xq
for the right

invariant vector q = {rk} of zR1. Since d(z, x) < ∞ implies that

sup
ν1k

xk
< ∞,

it follows from xu < ∞ and the bounded convergence theorem that

lim
n→∞

znνnu = zxu
∑
k≥0

ν1k

xk
πk = zxu

ν1q

xq
.

Thus, we get (9).

We next consider case (3b). If Q is positive recurrent, we have already proved the stronger result (9).
So, we can assume that Q is not positive recurrent. From the assumption d(z, x) < ∞, there exists an
integer k0 for any ϵ > 0 such that

ν1k

xk
≤ d(z, x) + ϵ, k > k0.

Hence, we have, from (50), for any n ≥ 1,

znνnu ≤ z
∑
ℓ≥0

 sup
j≤k0

ν1j

xj

∑
k≤k0

xℓuℓ[Qn−1]ℓk + (d(z, x) + ϵ)
∑
k≥0

xℓuℓ[Qn−1]ℓk


= z

∑
ℓ≥0

 sup
j≤k0

ν1j

xj

∑
k≤k0

xℓuℓ[Qn−1]ℓk

 + z(d(z, x) + ϵ)
∑
ℓ≥0

xℓuℓ,

where the last equality is obtained since Q is stochastic. Since Q is not positive recurrent, this and the
dominated convergence theorem with xu < ∞ yield

lim sup
n→∞

znνnu ≤ zd(z, x)xu.

Thus, letting d
†
(x) = max

(∑
k≥0 ν1kx−1

k πk, d(z, x)
)
, we have the last inequality of (10).

Appendix C. Proof of Corollary 3.1. By Proposition 3.2, the first part is obtained if we show
that, for a (θ1, θ2) ∈ D1,

lim sup
n→∞

ν1neθ2n < ∞,

implies that there is x ∈ X for z = eθ1 such that (z, x) ∈ VA(1) and

lim sup
n→∞

ν1nx−1
n < ∞.

This is immediate from Theorem 3.1 if (θ1, θ2) ∈ D1. So, we prove this fact. Let ϕ
(1)
i (θ1) =

E(eθ1X
(1)
1 ; X(1)

2 = i), then, for θ = (θ1, θ2),

ϕ(1)(θ) = ϕ
(1)
0 (θ1) + eθ2ϕ

(1)
1 (θ1).

Since P (X(1)
2 = 1) > 0 by condition (ii), the boundary of (17), that is, {θ ∈ R2; ϕ(1)(θ) = 1}, is not a

vertical line, and can be described by θ2 = f(θ1) using a function f . Obviously, f is either convex or
concave. If D1 = {(0, 0)}, then the proof is obvious. So, we assume that D1 ̸= {(0, 0)}. We first show
that f is concave. From ϕ(1)(θ) = 1, we have

∂

∂θ1
ϕ

(1)
0 (θ1) + eθ2

∂

∂θ1
ϕ

(1)
1 (θ1) + eθ2ϕ

(1)
1 (θ1)

∂θ2

∂θ1
= 0, (51)

∂2

∂2θ1
ϕ

(1)
0 (θ1) + eθ2

∂2

∂2θ1
ϕ

(1)
1 (θ1) + 2eθ2

∂

∂θ1
ϕ

(1)
1 (θ1)

∂θ2

∂θ1

+eθ2ϕ
(1)
1 (θ1)

∂2θ2

∂2θ1
+ eθ2ϕ

(1)
1 (θ1)

(
∂θ2

∂θ1

)2

= 0. (52)
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Since
∂

∂θ1
ϕ

(1)
i (θ1)

∣∣∣∣
(θ1,θ2)=(0,0)

= E(X(1)
1 ;X(1)

2 = i), i = 0, 1,

∂2

∂2θ1
ϕ

(1)
i (θ1)

∣∣∣∣
(θ1,θ2)=(0,0)

= E((X(1)
1 )2; X(1)

2 = i), i = 0, 1,

(51) and (52) with θ1 = 0 and θ2 = 0 are written as

E(X(1)
1 ) + P (X(1)

2 = 1)f ′(0) = 0,

E((X(1)
1 )2) + 2E(X(1)

1 ; X(1)
2 = 1)f ′(0) + P (X(1)

2 = 1)(f ′′(0) + (f ′(0))2) = 0.

Since P (X(1)
2 = 1) > 0, we get

f ′(0) = − E(X(1)
1 )

P (X(1)
2 = 1)

,

f ′′(0) = − 1

P (X(1)
2 = 1)

(
E((X(1)

1 )2) − 2E(X(1)
1 ; X(1)

2 = 1)E(X(1)
1 ) + E2(X(1)

1 )
)

= − 1

P (X(1)
2 = 1)

(
E((X(1)

1 − E(X(1)
1 ))2) + 2E(X(1)

1 ; X(1)
2 = 0)E(X(1)

1 )
)

< 0.

Hence, f is concave. Note that f(0) = 0 and {θ; ϕ(θ) ≤ 1} is convex in the θ1-θ2 plane and contains
(0, 0) on its boundary. Since D1 is not singleton, the lower part of the convex curve (16) from the origin to
(cp(R1), f(cp(R1)) is included in D1 due to the concavity of f . Hence, (θ1, θ2) ∈ D1 implies (θ1, θ2) ∈ D1.
Thus, we get the desired result. The remaining part is immediate from Lemma 2.1 and Proposition 3.2.

Appendix D. Proof of Corollary 4.2. We first consider the case that m1 < 0 and m2 < 0. If
m

(1)
2 = 0, then we have m

(1)
1 < 0 if and only if the first inequality of (S1) holds. As we discussed in

Appendix C for the proof of Corollary 3.1, the region of (17) is the closed stripe surrounded by two
vertical lines which go through the origin and some other point (θ1, 0). This θ1 is positive if and only if
m

(1)
1 < 0. Since the θ1 > 0 implies that D1 has a point (θ1, θ2) with θ1 > 0, the first inequality of (S1)

holds if and only if α1 > 0.

If m
(1)
2 ̸= 0, then m

(1)
2 = P (X(1)

2 = 1) > 0. Hence, for (θ1, θ2) satisfying (16), we have
∂θ2

∂θ1

∣∣∣∣
(θ1,θ2)=(0,0)

= −m1

m2
.

Similarly, for (θ′1, θ
′
2) satisfying the boundary of (17),

∂θ′2
∂θ′1

∣∣∣∣
(θ′

1,θ′
2)=(0,0)

= −m
(1)
1

m
(1)
2

.

Since m2 < 0 and m
(1)
2 > 0, the first inequality of (S1) is equivalent to −m1

m2
< −m

(1)
1

m
(1)
2

, and therefore

equivalent to
∂θ2

∂θ1

∣∣∣∣
(θ1,θ2)=(0,0)

<
∂θ′2
∂θ′1

∣∣∣∣
(θ′

1,θ′
2)=(0,0)

. (53)

This implies that D1 again has a point (θ1, θ2) with θ1 > 0, so α1 > 0. Hence, the first inequality of (S1)
holds if and only if α1 > 0. Similarly, we can prove that the second inequality of (S1) holds if and only
if α2 > 0.

We next consider case that m1 ≥ 0 and m2 < 0. In this case, −m1
m2

≥ 0, and m
(1)
1 < 0 for m

(1)
2 = 0.

Note that the second derivative of the curve described by ϕ(θ) = 1 is positive (see Figure 6). Hence,
similarly to the above arguments, we can see that the inequality of (S2) holds if and only if α1 > 0. In
this case, D2 always has a point (θ1, θ2) with θ2 > 0 since ϕ(2)(θ) = 1 is a convex curve with nonnegative
derivative at the origin. So, we always have α2 > 0.

There remains the case that m1 < 0 and m2 ≥ 0, but this case is symmetric with the previous case.
Hence, the inequality of (S3) holds if and only if α2 > 0 and we always have α1 > 0. This completes the
proof of Corollary 4.2.
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(c)
1 , θ
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(c)
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2 )
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−
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α̃2

Figure 6: Typical figures for the case that m1/m2 < 0

Appendix E. Proof of Lemma 5.2. We only prove (40) for i = 1 since (40) is symmetric for
i = 1, 2. Fix β ≡ (β1, β2) ∈ Z2

+, and define F (v, θ) as

F (v, θ) = uv + (β1 − v)θ1 + β2θ2, v ≥ 0,θ ≡ (θ1, θ2) ∈ D0.

Then, by the definitions of h(1)(u, β) and D(θ) and condition (M2), we have

h(1)(u, β) = min
v≥0

max
(θ1,θ2)∈D0

F (v, θ).

For each fixed v, let us consider to maximize F (v, θ) under constrain θ ∈ D0. Note that there can be
two θ2 for each θ1 since θ ∈ D0. However, we have to choose θ2 defined for each θ1 as

θ2 = max{θ2; (θ1, θ2) ∈ D0},

for maximizing F (v, θ). In what follows, we always use this version of F (v, θ).

We separately consider two cases whether β2 = 0 or not. First assume that β2 = 0. In this case,
F (v, θ) = uv + (β1 − v)θ1, which implies that

max
(θ1,θ2)∈D0

F (v, θ) =
{

uv, v ≥ β1,
uv + (β1 − v)θmax

1 , v < β1.

Hence, h(1)(u, β) = uβ1 = βu(1). Since u ≤ θmax
1 = θmax

1 (β), we have (40).

We next consider the case that β2 ̸= 0. Applying the Karush-Kuhn-Tucker necessary condition to the
Lagrangian:

L(θ, λ) = uv + (β1 − v)θ1 + β2θ2 + λ(1 − ϕ(θ)),

we have

β1 − v − λ
∂ϕ

∂θ1
(θ) = 0, β2 − λ

∂ϕ

∂θ2
(θ) = 0.

Since β2 ̸= 0 implies λ ̸= 0, we have

β2
∂ϕ

∂θ1
(θ) + (v − β1)

∂ϕ

∂θ2
(θ) = 0. (54)

Let θ(v) ≡ (θ1(v), θ2(v)) be the solution of this maximization. From (54), at point θ(v), the vector which
is normal to the curve D0 must be proportional to vector (β1 − v, β2). Thus, when v increases from 0 to
infinity, the θ(v) moves on the curve D0 counterclockwise from θmax(β) to θmin(e1) ≡ arg min

θ∈D0
θ1. It is

also not hard to see that each entry of θ(v) is continuously differentiable in v. Hence, θ(v) ∈ D0 yields

θ′1(v)
∂ϕ

∂θ1
(θ(v)) + θ′2(v)

∂ϕ

∂θ2
(θ(v)) = 0. (55)
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For minimizing F (v, θ(v)), we take its derivative.

d

dv
F (v, θ(v)) = u − θ1(v) + (β1 − v)θ′1(v) + β2θ

′
2(v).

Let us compute (β1 − v)θ′1(v) + β2θ
′
2(v). From (54) and (55),

((β1 − v)θ′1(v) + β2θ
′
2(v))

∂ϕ

∂θ1
(θ(v)) = θ′2(v)

(
β2

∂ϕ

∂θ1
(θ(v)) + (v − β1)

∂ϕ

∂θ2
(θ(v))

)
= 0,

((β1 − v)θ′1(v) + β2θ
′
2(v))

∂ϕ

∂θ2
(θ(v)) = −θ′1(v)

(
β2

∂ϕ

∂θ1
(θ(v)) + (v − β1)

∂ϕ

∂θ2
(θ(v))

)
= 0.

Since θ(v) ∈ D0, ∂ϕ
∂θ1

(θ(v)) = ∂ϕ
∂θ2

(θ(v)) = 0 is impossible, so we have (β1 − v)θ′1(v) + β2θ
′
2(v) = 0. This

concludes
d

dv
F (v, θ(v)) = u − θ1(v).

Note that F (v, θ(v)) is convex in v by its definition, max(θ1,θ2)∈D0 F (v, θ), and

F (0,θ(0)) = max
θ∈D0

F (0, θ) = max
θ∈D0

βθt = D(β) > 0.

Hence, if there is a v ≥ 0 such that θ1(v) = u, then F (v, θ(v)) is minimized at this v. From the observation
that we made for θ(v) movement, this holds only if u ≤ θmax

1 (β). In this case, we have

h(1)(u, β) = F (v, u(1)) = βu(1),

since θ1(v) = u implies θ2(v) = u
(1)
2 . Otherwise, F (v, θ(v)) is minimized at v = 0 since it can be

arbitrarily large for large v from the fact that maxθ∈D0 F (v, θ) ≥ F (v,0) = uv. Hence,

h(1)(u, β) = F (0, θ(0)) = D(β).

Thus, we have (40), which completes the proof.

Acknowledgments. I am much indebted to Yiqiang Zhao of Carleton University for his invaluable
comments on the original version of this paper, which include pointing out flaws in the proof of The-
orem 4.1 and the necessity to prove Lemma 2.3. I am grateful to Robert Foley and David McDonald
for stimulating discussions with them and letting me know the great paper [5]. This paper was also
pointed out by an anonymous referee. I sincerely thank the referees for their invaluable comments and
suggestions. A part of this research was presented in the Second Asia-Pacific Symposium on Queueing
Theory and Network Applications, 2007, Kobe, Japan (see [24]). This work is supported in part by JSPS
under grant No. 18510135.

References

[1] I.J.B.F. Adan, J. Wessels and W.H.M. Zijm, A compensation approach for two-dimensional Markov processes,
Advances in Applied Probability, 25 (1993), 783–817.

[2] A.A. Borovkov, The second rate function and the asymptotic problems of renewal and hitting the boundary
for multidimensional random walk, Siberian Mathematical Journal 37 (1996), 647–682.

[3] A.A. Borovkov, Ergodicity and Stability of Stochastic Processes, Translated by V. Yurinsky, John Wiley &
Sons, Chichester, 1998.

[4] A.A. Borovkov and A.A. Mogul’skii, The second rate function and the asymptotic problems of renewal and
hitting the boundary for multidimensional random walks, Siberian Mathematical Journal 37 (1996), 647-682.

[5] A.A. Borovkov and A.A. Mogul’skii, Large deviations for Markov chains in the positive quadrant, Russian
Math. Surveys 56 (2001), 803-916.

[6] G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topics in the Constructive Theory of Countable Markov
Chains, Cambridge University Press, Cambridge, 1995.

[7] R.D. Foley and D.R. McDonald, Join the shortest queue: stability and exact asymptotics, The Annals of
Applied Probability 11 (2001), 569–607.

[8] R.D. Foley and D.R. McDonald, Large deviations of a modified Jackson network: Stability and rough asymp-
totics, The Annals of Applied Probability 15 (2005), 519–541.

[9] R.D. Foley and D.R. McDonald, Bridges and networks: exact asymptotics, The Annals of Applied Probability,
15 (2005), 542–586.

[10] R.D. Foley and D.R. McDonald, private communication, 2008.



Miyazawa: Tail Decay Rates in Double QBD Process
Mathematics of Operations Research xx(x), pp. xxx–xxx, c⃝200x INFORMS 31

[11] K. Fujimoto, Y. Takahashi and N. Makimoto, Asymptotic properties of stationary distributions in two-stage
tandem queueing Systems, Journal of the Operations Research Society of Japan 41 (1998). 118–141.

[12] Ken’ichi Katou, Naoki Makimoto and Yukio Takahashi, Upper bound for the decay rate of the marginal
queue-length distribution in a two-node Markovian queueing system, Journal of the Operations Research
Society of Japan 47 (2004). 314–338.

[13] D.P. Kroese, W.C.W. Scheinhardt and P.G. Taylor (2004) Spectral Properties of the Tandem Jackson Net-
work, Seen as a Quasi-Birth-and-Death Process, The Annals of Applied Probability 14, 2057–2089.

[14] L. Haque, L. Liu and Y.Q. Zhao, Sufficient conditions for a geometric tail in a QBD process with countably
many levels and phases, Stochastic Models 21 (2005), 77–99.

[15] Q. He, H. Li and Y.Q. Zhao, Light-tailed behavior in QBD process with countably many phases, to appear
in Stochastic Models, submitted, 2007.

[16] H. Li, M. Miyazawa and Y.Q. Zhao, Geometric decay in a QBD process with countable background states
with applications to shortest queues, Stochastic Models 23 (2007), 413–438.

[17] I.A. Ignatyuk, V.A. Malyshev and V.V. Scherbakov, Boundary effects in a large deviation problems, Russian
Mathematical Survey 49 (1994), 41–99.

[18] I. Ignatiouk-Robert, Sample path large deviations and convergence parameters, The Annals of Applied Prob-
ability 11 (2001), 1292–1329.

[19] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, American
Statistical Association and the Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[20] H. Leemans, Probable bounds for the mean queue lengths in a heterogeneous priority queue, Queueing
Systems 36 (2000), 269–286.

[21] V.A. Malyshev, Asymptotic behavior of the stationary probabilities for two-dimensional positive random
walks, Siberian Mathematical Journal 14 (1973), 109–118.

[22] K. Majewski, Large deviations of the steady state distribution of reflected processes with applications to
queueing systems, Queueing Systems 29 (1998), 351–381.

[23] M. Miyazawa, Conjectures on decay rates of tail probabilities in generalized Jackson and batch movement
networks, Journal of the Operations Research Society of Japan 46 (2003), 74–98.

[24] M. Miyazawa, Doubly QBD process and a solution to the tail decay rate problem, in the proceedings of the
Second Asia-Pacific Symposium on Queueing Theory and Network Applications, 2007, Kobe, Japan.

[25] M. Miyazawa, Two Sided DQBD Process and Solutions to the Tail Decay Rate Problem and Their Appli-
cations to the Generalized Join Shortest Queue, in Advances in Queueing Theory and Network Applications,
edited by Y. Takahashi and H. Takagi, Springer (2009), 3–33.

[26] M. Miyazawa and Y.Q. Zhao, The stationary tail asymptotics in the GI/G/1 type queue with countably
many background states, Advances in Applied Probability 36 (2004), 1231–1251.

[27] A.J. Motyer and P.G. Taylor, Decay rates for quasi-birth-and-death processes with countably many phases
and tridiagonal block generators, Advances in Applied Probability 38 (2006), 522–544.

[28] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, Baltimore,
1981.

[29] V. Ramaswami and P.G. Taylor, Some properties of the rate operators in level dependent quasi-birth-and-
death processes with a countable number of phases, Stochastic Models 12 (1996), 143-164.

[30] R.T. Rockafellar, Convex Analysis Princeton University Press, Princeton, 1970.

[31] Y. Sakuma and M. Miyazawa, On the effect of finite buffer truncation in a two node Jackson network. Journal
of Applied Probability 42 (2005), 199–222.

[32] E. Seneta, Non-negative Matrices and Markov chains, second edition; Springer-Verlag: New York, 1981.

[33] A. Shwartz and A. Weiss, Large Deviations For Performance Analysis, Queues, communications, and com-
puting, Chapman & hall, London, 1995.

[34] Y. Takahashi, K. Fujimoto and N. Makimoto, Geometric decay of the steady-state probabilities in a quasi-
birth-and-death process with a countable number of phases, Stochastic Models 17 (2001), 1–24.

[35] R.L. Tweedie, Operator-geometric stationary distributions for Markov chains with applications to queueing
models, Advances in Applied Probability 14 (1982), 368–391.


