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Abstract

We consider a Markov modulated fluid queue with a finite buffer. It is assumed
that the fluid flow is modulated by a background Markov chain which may have
different transitions when the buffer content is empty or full. In [13], we have
studied asymptotic loss rate for this type of fluid queue when the mean drift of the
fluid flow is negative. However, the null drift case is not studied. Our major interest
is in asymptotic loss rate of the fluid queue with a finite buffer including the null
drift case. We consider the density of the stationary buffer content distribution,
and derive it in certain closed form from an occupation measure. This result is not
only useful to get the asymptotic loss rate especially for the null drift case, but also
it is interesting in its own light.

Keywords: Fluid queue, finite buffer, Markov modulated, loss rate, asymptotic
behavior, null drift.

1 Introduction

We consider a stochastic fluid queue with a finite buffer, where the fluid flow is modulated
by a background Markov chain with a finite state space. It is assumed that the transition
probability of the background Markov chain changes when the buffer content is empty or
full (e.g., see [4] and [7]). In general, it is difficult to obtain stationary characteristics such
as loss rate in analytically tractable form for a fluid queue with a finite buffer. So, there
have been some researches to study their asymptotic behavior as the buffer size gets large
(e.g., see [3], [13] and references therein). The objective of this paper is two fold. We aim
to derive asymptotic loss rate of the Markov modulated fluid queue with a finite buffer.
When the mean drift of the net fluid flow is not null, this is studied in [13] (also see [3]
for a related model). However, the null drift case is never considered to the best of our
knowledge. In this paper, we include this null drift case. For this, we consider the density
of the stationary buffer content distribution, and derive it in certain closed form. It turns
out that this density is particularly useful to get the asymptotic loss rate for the null drift
case. Thus, deriving the stationary density in tractable form is our second purpose.
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The stationary density of the fluid queue has been studied by da Silva Soares and
Latouche [4] when the mean drift is not null. They first intuitively derive the density
assuming its existence, and using some results in [12], then verify that it satisfies differen-
tial equations for the stationary distribution. In this way, they get the stationary density
in terms of combination of matrix exponentials for the non-null drift case. However, this
approach can not be used for the null drift case (see Theorem 4.4 in [5]).

In this paper, we take a different way so as to include the null drift case. We use
occupation measures of the Markov additive process which generates the buffer content
process at off boundaries. In our formulation, the existence of the density is verified
through a occupation measure, which is valid for the null drift case. Furthermore, the
stationary density is obtained in terms of hitting probabilities of a certain time-reversed
process. This is useful to derive the asymptotic loss rate especially for the null drift case.

Fluid queues have been studied in much literature (e.g., see [2], [5], [6], [12] and
references therein). A famous example among them is a fluid queue with on-off sources,
which has been studied in [2] and many other papers. This model is a special case of
a Markov modulated fluid queue with an infinite buffer. For this model, the stationary
distribution of the buffer content has been obtained in several ways, e.g, using the spectral
expansions, martingale, the matrix analytic method and the Wiener-Hopf factorization.
Recently, Asmussen and Pihlsg̊ard [3] studied the asymptotic behavior of a Levy Process
with two reflecting boundaries, and generalized it to a Markov modulated Levy Process.
They derived the asymptotic loss rate when the mean drift is not null. This model assumes
that the background process is independent of the buffer content, so it has the simpler
transition structure at the boundaries while its net fluid flow is more complicated.

As is well known, there is similarity between quasi-birth-and-death process (QBD, for
short) process and the Markov modulated fluid queues (e.g., see [12]). In this sense, our
work is related to asymptotic study for a QBD process with a finite buffer (e.g., see [11]).
In particular, our arguments for the null drift case is inspired by the results in Kim, Kim
and Lee [8], in which a finite buffer QBD process is considered when the traffic intensity
is unit.

The rest of this paper is organized in the following way. In Section 2, we introduce
the Markov additive process, and discuss its basic properties which will be used in the
subsequent sections. In Section 3 and 4, using the Markov additive process, we describe
the Markov modulated fluid queues with a finite and an infinite buffers, respectively. We
finally derive the tail asymptotics of the loss rate for the Markov modulated fluid queue
with a finite buffer in Section 5.

2 Markov additive process for fluid queues

We introduce a Markov additive process, which will be used to generate the Markov mod-
ulated fluid queues in the subsequent sections. We are interested in two basic quantities,
occupation measure and hitting probability under taboo sets, and derive key relations
among them. In the subsequent sections, they are used to get the tail asymptotics of the
fluid queue with a finite buffer.
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Throughout this paper, we shall use the following notations. For matrix A and vector
a, denote their (i, j)-th and i-th elements by [A]ij and [a]i, respectively. Let ∆a be the di-
agonal matrix whose (i, i)-th entry is the i-th entry of vector a. Denote the transpositions
for matrix A and vector a by AT and aT, respectively. Let 1 be the unit vector whose
elements all equal one, where its size can be identified in the context where it appears.
Denote the number of elements in set A by |A|. For vector a ≡ (ai; i ∈ A), denote the
vector whose i-th component is |ai| by |a|, and denote its norm by ‖a‖ =

∑
i∈A |ai|.

We define the Markov additive process in the following way. Let M(t) be a continuous
time Markov chain with finite state space S. Denote the transition rate matrix of M(t) by
the |S| × |S| matrix C. Assume that M(t) is irreducible, then there exists the stationary
distribution π satisfying πC = 0 and π1 = 1. Let X(t) be a cumulative process whose
rate at time t is given by

d

dt
X(t) = r(M(t)),

where r is a real-valued function defined on S, and r is referred to as a net flow rate. Then
(X(t),M(t)) is a two-dimensional continuous time Markov chain with state space IR× S,
where IR is the set of all real numbers. We refer to (X(t),M(t)) as a Markov additive
process, where X(t) and M(t) are called level and background processes, respectively.

Let r be the |S|-dimensional column vector whose i-th element is r(i). For simplicity,
we assume that r takes non-zero value. We divide the state space of the background
process into two disjoint subsets as follows :

S− = {i ∈ S|r(i) < 0}, S+ = {i ∈ S|r(i) > 0}.

To avoid trivial case, we assume that neither S− nor S+ is empty. We partition C, π and
r according to S− and S+ in the following way.

C =

(
C−− C−+

C+− C++

)
, π = (π−, π+), r =

(
r−

r+

)
.

Then, the mean drift of the Markov additive process is given by

d = πr(= π+r+ + π−r−).

We now introduce occupation measure and hitting probability under taboo levels for
this Markov additive process. Define the hitting time to level a ∈ IR as

τa = inf{t > 0|X(t) = a},

and denote the hitting time to level a with background state i ∈ S as

τa(i) = inf{t > 0|X(t) = a,M(t) = i}.

For a, b ∈ IR, let τab = τa ∧ τb.

Definition 2.1 For a, x, y ∈ IR, let Φa(x, y) be the |S|×|S| matrix whose (i, j)-th element
is given by

[Φa(x, y)]ij = E

[ ∫ τa

0

1(X(t) ∈ (0, y],M(t) = j)dt

∣∣∣∣X(0) = x,M(0) = i

]
,
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which is referred to as the occupation measure of subspace (0, y]×{j} before hitting level
a, starting from level x with background state i. When τa is replaced by τab for a, b ∈ IR,
we denote the corresponding occupation measure by Φab(x, y). Let Ψa(x, y) be the |S|×|S|
matrix whose (i, j)-th element is given by

[Ψa(x, y)]ij = P (M(τy) = j, τy ≤ τa, τy < ∞|X(0) = x,M(0) = i),

which is referred to as the hitting probability for level y with background state j before
hitting level a, starting from level x with background state i.

We partition Φa(x, y), Φab(x, y) and Ψa(x, y) according to S− and S+ as follows.

Φa(x, y) =

(
Φ−−

a (x, y) Φ−+
a (x, y)

Φ+−
a (x, y) Φ++

a (x, y)

)
, Φab(x, y) =

(
Φ−−

ab (x, y) Φ−+
ab (x, y)

Φ+−
ab (x, y) Φ++

ab (x, y)

)
,

Ψa(x, y) =

(
Ψ−−

a (x, y) Ψ−+
a (x, y)

Ψ+−
a (x, y) Ψ++

a (x, y)

)
.

Furthermore, for a ∈ IR, we denote

Ψ−+ = Ψ−+
a (a, a), Ψ+− = Ψ+−

a (a, a),

since they are independent of a.

In what follows, we show that the occupation measure has a density. To this end,
we first note that for x > 0, the hitting probability Ψ•+

−∞(0, x) has the following matrix
exponential form by Theorem 3.1 of [10].

Proposition 2.1 For x > 0, we have

Ψ•+
−∞(0, x) =

(
Ψ−+ exp(xQ(+))

exp(xQ(+))

)
, (2.1)

where Ψ−+ and Q(+) are the minimal solutions of the following equations.

Q(+) = ∆−1
r+(C++ + C+−Ψ−+), Ψ−+Q(+) = ∆−1

r−(C−+ + C−−Ψ−+). (2.2)

If d ≥ 0, i.e., the mean drift of the Markov additive process is not negative, Ψ−+ and
Q(+) are stochastic and non-defective matrices, respectively. Otherwise, Ψ−+ and Q(+)

are substochastic and defective matrices, respectively.

We next introduce a dual process (X̂(t), M̂(t)), which is defined by

(X̂(t), M̂(t)) = (−X(−t), M(−t)), (2.3)

where M̂(t) is the continuous time Markov chain with transition rate matrix Ĉ ≡ ∆−1
π CT∆π.

We partition Ĉ according to S− and S+ as

Ĉ =

(
Ĉ−− Ĉ−+

Ĉ+− Ĉ++

)
.

Let Ψ̂•+
−∞(0, x) be the hitting probability for the dual process with the same interpretation

as Ψ•+
−∞(0, x) for the original Markov additive process. Similarly to Proposition 2.1, we

have the following result.
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Corollary 2.1 For x > 0, we have

Ψ̂•+
−∞(0, x) =

(
Ψ̂−+ exp(xQ̂(+))

exp(xQ̂(+))

)
,

where Ψ̂−+ and Q̂(+) are the minimal solutions of the following equations.

Q̂(+) = ∆−1
r+(Ĉ++ + Ĉ+−Ψ̂−+), Ψ̂−+Q̂(+) = ∆−1

r−(Ĉ−+ + Ĉ−−Ψ̂−+).

If d ≥ 0, Ψ̂−+ and Q̂(+) are stochastic and non-defective matrices, respectively. Otherwise,
Ψ̂−+ and Q̂(+) are substochastic and defective matrices, respectively.

We show that Φ+•
0 (0, x) is obtained from the hitting probabilities of the dual process.

This result may be considered as a fluid version of Proposition 2.13 of chapter XI in [1].

Lemma 2.1 For x > 0, we have

Φ+•
0 (0, x) = ∆−1

π+∆−1
r+

(∫ x

0

(Ψ̂•+
−∞(0, y))Tdy

)
∆π.

Proof. For x > 0, i ∈ S+ and j ∈ S, we have

πi[Φ
+•
0 (0, x)]ij

= πiE

[ ∫ τX(0)

0

1(X(t) − X(0) ≤ x,M(t) = j)dt

∣∣∣∣M(0) = i

]
=

∫ ∞

0

P

(
M(t) = j, X(t) − X(0) ≤ x,X(u) − X(0) > 0, u ∈ (0, t),M(0) = i

)
dt

=

∫ ∞

0

P

(
M(0) = j,X(0) − X(−t) ≤ x,X(u − t) − X(−t) > 0, u ∈ (0, t), M(−t) = i

)
dt

=

∫ ∞

0

P

(
M̂(0) = j, M̂(t) = i, X̂(t) − X̂(0) ≤ x, X̂(t) − X̂(u) > 0, u ∈ (0, t)

)
dt

= E

[ ∫ ∞

0

1
(
M̂(0) = j, M̂(t) = i, X̂(t) − X̂(0) ≤ x, t = τ̂X̂(t)−X̂(0)

)
dt

]
,

where we have shifted the time by −t in the third equation, and τ̂a ≡ inf{t > 0|X̂(t) = a}
for a ∈ IR. Noting that M̂(t) also has the stationary distribution π, we have

πi[Φ
+•
0 (0, x)]ij

= πj
1

ri

E

[ ∫ ∞

0

1
(
M̂(t) = i, X̂(t) − X̂(0) ≤ x, t = τ̂X̂(t)−X̂(0)

)
ridt

∣∣∣∣M̂(0) = j

]
= πj

1

ri

∫ x

0

P

(
M̂(τ̂y) = i

∣∣∣∣M̂(0) = j

)
dy

= πj
1

ri

∫ x

0

[Ψ̂•+
−∞(0, y)]jidy,

where the second equation follows since rM(t)dt = dX(t) except for time epoch that X(t)
changes, which completes the proof of the lemma.
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Lemma 2.1 shows that the occupation measure is differentiable. Denoting the density
of Φ+•

0 (0, x) by ϕ+•
0 (0, x), we have the following result from Corollary 2.1 and Lemma 2.1,

which implies that the density is given by the hitting probabilities of the dual process.

Corollary 2.2 For x > 0, we have

ϕ+•
0 (0, x) = ∆−1

π+∆−1
r+

(
Ψ̂−+ exp(xQ̂(+))

exp(yQ̂(+))

)T

∆π. (2.4)

It is intuitively clear that ϕ+•
0 (0, x)∆|r| is the expected number of level crossing times

at level x before returning to the initial level 0. In fact, we have the following result,
which is proved in Appendix A.

Lemma 2.2 For i ∈ S+ and j ∈ S, the (i, j)-th element of ϕ+•
0 (0, x)∆|r| has the following

expression.

[ϕ+•
0 (0, x)∆|r|]ij = E

[ ∑
0≤t<τ0

1(X(t) = x,M(t) = j)

∣∣∣∣X(0) = 0,M(0) = i

]
.

We finally consider the stationary measure of the background process for the case of
d = 0, which will be used in Section 5. For n ≥ 0, let γn be the n-th time that the Markov
additive process crosses the initial level, where γ0 ≡ 0. We note that γn+1 − γn is finite
with probability one for d = 0. Then, {M(γn); n ≥ 0} is the embedded Markov chain
with state space S, and has the transition probability matrix

U =

(
O Ψ−+

Ψ+− O

)
.

Let ξ = (ξ−, ξ+) be the stationary distribution of this Markov chain. Then, it is given as
follows. Since the proof of this lemma is just technical, we defer it to Appendix B.

Lemma 2.3 For d = 0, we have

ξ+ =
1

π+r+ − π−r− (r+)T∆π+ , ξ− =
−1

π+r+ − π−r− (r−)T∆π− .

3 Fluid queue with a finite buffer

In this section, we put two boundaries at levels 0 and b to the Markov additive process
in the last section so that the level process stays in [0, b], where b > 0. To describe its
behavior at the two boundaries, we use Markov chains M(t) and M(t) with the transition
rate matrices (

C−− C−+

O O

)
,

(
O O

C
+−

C
++

)
,

respectively. We define the reflected additive process (Y (b)(t), J (b)(t)) in the following way.
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(i) While Y (b)(t) remains in (0, b), (Y (b)(t), J (b)(t)) has the same transition structure as
the Markov additive process (X(t),M(t)), i.e.,

d

dt
Y (b)(t) = r(J (b)(t)), J (b)(t) = M(t).

(ii) Let σ0 be the first time when the level process hits level 0. Then, for t ≥ σ0,

Y (b)(t) = 0, J (b)(t) = M(t)

with M(σ0) = M(σ0−) as long as r(J (b)(t)) < 0. Let σ+ = min{u > σ0|r(J (b)(u)) >
0}, then (Y (b)(t), J (b)(t)) restarts subject to the same transition structure as (i) with
M(σ+) = M(σ+−) for t ≥ σ+.

(iii) Similarly to (ii), let σb be the first time when the level process hits level b. Then,
for t ≥ σb,

Y (b)(t) = b, J (b)(t) = M(t)

with M(σb) = M(σb−) as long as r(J (b)(t)) > 0. Let σ− = min{u > σb|r(J (b)(u)) <
0}, then (Y (b)(t), J (b)(t)) restarts subject to the same transition structure as (i) with
M(σ−) = M(σ−−) for t ≥ σ−.

From (i), (ii) and (iii), (Y (b)(t), J (b)(t)) is a continuous time Markov chain with state
space ({0} × S−) ∪ ((0, b) × S) ∪ ({b} × S+). In applications, the net flow rate r may be
obtained as

r(i) = rin(i) − rout(i), i ∈ S,

where rin and rout are nonnegative valued functions on S, and represent the fluid input and
output rates, respectively. Then, (Y (b)(t), J (b)(t)) is referred to as a Markov modulated
fluid queue with a finite buffer of size b (finite fluid queue, for short).

The loss rate of the finite fluid queue is defined as the expected amount of lost fluid
per unit time when the buffer is full. Namely,

Definition 3.1 We define the loss rate of the finite fluid queue by

`
(b)
Loss = E

[ ∫ 1

0

rin(J
(b)(u))1(Y (b)(u) = b, J (b)(u) = j)du

]
,

where the expectation is taken under the stationary distribution of (Y (b)(t), J (b)(t)).

We tentatively assume the existence of the stationary distribution for the finite fluid
queue. Let p(b) and p(b) be the |S+| and |S−|-dimensional stationary probability vectors
of the background process when the buffer is full and empty, respectively. Then, it is easy
to see that the loss rate is given by

`
(b)
Loss = p(b)r+

in,
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where r+
in ≡ (rin(i); i ∈ S+). To get the asymptotic behavior of the loss rate, we consider

the tail asymptotics of p(b) as b gets large.

To this end, we first construct the stationary measure of the finite fluid queue in the
following way. By censoring out all the off boundary states, the transition rate matrix of
the background process at the two boundaries, levels 0 and b, is given by(

C−− + C−+Ψ+−
b (0, 0) C−+Ψ++

0 (0, b)

C
+−

Ψ−−
b (b, 0) C

++
+ C

+−
Ψ−+

0 (b, b)

)
,

which is non-defective since Ψ+−
b (0, 0)1+Ψ++

0 (0, b)1 = 1 and Ψ−−
b (b, 0)1+Ψ−+

0 (b, b)1 = 1.
Then, there exist the stationary measures of level 0 and b which is denoted by s(b) and
s(b), respectively. They are uniquely determined (up to multiplicative constant) by

s(b)(C−− + C−+Ψ+−
b (0, 0)) + s(b)C

+−
Ψ−−

b (b, 0) = 0, (3.1)

s(b)C−+Ψ++
0 (0, b) + s(b)(C

++
+ C

+−
Ψ−+

0 (b, b)) = 0. (3.2)

For 0 < x < b, let

h(b)(x) = s(b)C−+Φ+•
0b (0, x) + s(b)C

+−
Φ−•

0b (b, x). (3.3)

We can see that for 0 < x < b and j ∈ S, [h(b)(x)]j is the mean sojourn time in subset
(0, x]×{j} between two successive visiting time at the two boundaries, starting from the
boundaries according to the stationary measure (s(b), s(b)). Hence, we have the following
result.

Lemma 3.1 s(b), s(b) and h(b)(x) constitute the stationary measure µ of the finite fluid
queue in such a way that

µ(j, B) = [s(b)]j1(j ∈ S−, 0 ∈ B) + [s(b)]j1(j ∈ S+, b ∈ B) +

∫
B

[h(b)(dx)]j

for j ∈ S and Borel set B on [0, b].

The stationary probability vectors of levels 0 and b are given by normalizing their
stationary measures, that is,

p(b) =
s(b)

cb

, p(b) =
s(b)

cb

, (3.4)

where cb ≡ s(b)1 + h(b)(b−)1 + s(b)1.

Similarly to Lemma 2.1, Φ+•
0b (0, x) and Φ−•

0b (b, x) in the right hand side of (3.3) are

given by hitting probabilities as follows, which implies that h(b)(x) is differentiable. The
proof of the following lemma is deferred to Appendix C since it is similar to the ones
demonstrated in Lemma 2.1.

Lemma 3.2 For x ∈ (0, b) and j ∈ S, we have

[Φ+•
0b (0, x)]ij =

πj

riπi

∫ x

0

P (M̂(τ̂y) = i, τ̂y ≤ η̂(b)|M̂(0) = j)dy, i ∈ S+,

[Φ−•
0b (b, x)]ij =

πj

|ri|πi

∫ −(b−x)

−b

P (M̂(τ̂y) = i, τ̂y ≤ η̂(b)|M̂(0) = j)dy, i ∈ S−,

where η̂(b) ≡ min{t > 0|maxu∈(0,t) X̂(u) − minu∈(0,t) X̂(u) = b}.
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Denote the derivatives of h(b)(x), Φ+•
0b (0, x) and Φ−•

0b (b, x) by ν(b)(x) ≡ (ν(b)−(x),ν(b)+(x)),
ϕ+•

0b (0, x) and ϕ−•
0b (b, x), respectively. From (3.3) and Lemma 3.2, we have the following

result, which implies that the stationary density of the finite fluid queue is given by hitting
probabilities of the dual process (X̂(t), M̂(t)) in (2.3).

Theorem 3.1 For a Markov modulated fluid queue with a finite buffer of size b, we have

ν(b)(x) = s(b)C−+ϕ+•
0b (0, x) + s(b)C

+−
ϕ−•

0b (b, x), x ∈ (0, b), (3.5)

where ϕ+•
0b (0, x) and ϕ−•

0b (b, x) are given by

[ϕ+•
0b (0, x)]ij =

πj

riπi

P (M̂(τ̂x) = i, τ̂x ≤ η̂(b)|M̂(0) = j), i ∈ S+, j ∈ S, (3.6)

[ϕ−•
0b (b, x)]ij =

πj

|ri|πi

P (M̂(τ̂−(b−x)) = i, τ̂−(b−x) ≤ η̂(b)|M̂(0) = j), i ∈ S−, j ∈ S.

Remark 3.1 For d 6= 0, (3.5) can be rewritten in the form of combination of matrix
exponentials (see Appendix D), which is equivalent to the result in Theorem 4.4 of [5]
when r+ = 1 and r− = −1. On the other hand, as noted in Lemma 4.2 of [5], (3.5) does
not have such matrix exponential formula for d = 0. The representation in (3.5) is valid
including the case of d = 0.

Remark 3.2 Taking the limit as b → ∞ in (3.6), we obtain (2.4).

From (3.2), (3.3) and Lemma 3.2, we can see that the stationary measure of level b
has the following form, which is useful when we consider the tail asymptotics of the loss
rate for d = 0. The derivation of this formula is given in Appendix E.

Lemma 3.3 We have

s(b) = ν(b)+(b−)∆r+(−C
++

)−1. (3.7)

4 Fluid queue with an infinite buffer

By removing the boundary at level b of the finite fluid queue in the last section, we obtain
a Markov modulated fluid queue with an infinite buffer (infinite fluid queue, for short).
Denote this infinite fluid queue by (Y (t), J(t)), which is a continuous time Markov chain
with state space ({0} × S−) ∪ ((0,∞) × S).

We assume d ≤ 0 so that the recurrence time to level 0 is finite with probability one.
Similarly to the finite fluid queue, the infinite fluid queue has the stationary measure
as follows. By censoring out all the off boundaries, the transition rate matrix of the
background process at level 0 is given by C−− + C−+Ψ+−, which is non-defective since
Ψ+− is a stochastic matrix when d ≤ 0. Then, there exists the stationary measure s of
level 0, which is uniquely (up to multiplicative constant) determined by

s(C−− + C−+Ψ+−) = 0.
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For x > 0, let h(x) be the |S|-dimensional row vector given by

h(x) = s C−+Φ+•
0 (0, x).

Similarly to Lemma 3.1, s and h(x) constitute the stationary measure of the infinite fluid
queue.

From Lemma 2.1 and Corollary 2.2, h(x) has the density ν(x).

Lemma 4.1 For d ≤ 0, we have

ν(x) = s C−+∆−1
π+∆−1

r+

(
Ψ̂−+ exp(xQ̂(+))

exp(xQ̂(+))

)T

∆π, x > 0.

From Lemma 4.1, we obtain the following formula, which relates the infinite fluid
queue to the Markov additive process when d = 0.

Lemma 4.2 For d = 0, we have

lim
b→∞

ν(b/2)∆|r|

‖ν(b/2)∆|r|‖
= ξ.

Proof. Since Q̂(+) has the stationary distribution κ̂+ for d = 0 (see also Appendix B),
we have

lim
b→∞

ν(b/2)∆|r|

‖ν(b/2)∆|r|‖
=

s C−+∆−1
π+∆−1

r+

(
(Ψ̂−+1+κ̂+)T, (1+κ̂+)T

)
∆π∆|r|

s C−+∆−1
π+∆−1

r+

(
(Ψ̂−+1+κ̂+)T, (1+κ̂+)T

)
∆π∆|r|1

=
{s C−+∆−1

π+∆−1
r+(κ̂+)T}π∆|r|

{s C−+∆−1
π+∆−1

r+(κ̂+)T}π|r|
= ξ.

Instead of level b, if we remove the boundary at level 0 of the finite fluid queue, we
obtain another infinite fluid queue by changing the sign of the level process. Denote this
infinite fluid queue and its density by (Ỹ (t), J̃(t)) and ν̃(x), respectively. Similarly to the
preceding argument, we obtain the following results. Assuming that d ≥ 0, there exists
the stationary measure s such that

s(C
++

+ C
+−

Ψ−+) = 0.

Then, we have the following lemmas.

Lemma 4.3 For d ≥ 0, we have

ν̃(x) = s C
+−

∆−1
π−∆−1

|r−|

(
exp(xQ̃(−))

Ψ̃+− exp(xQ̃(−))

)T

∆π, x > 0,

where Ψ̃+− and Q̃(−) are the minimal solutions of the following equations.

Ψ̃+−Q̃(−) = (−∆r+)−1(Ĉ+− + Ĉ++Ψ̃+−), Q̃(−) = ∆−1
|r−|(Ĉ

−− + Ĉ−+Ψ̃+−). (4.1)
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Lemma 4.4 For d = 0, we have

lim
b→∞

ν̃(b/2)∆|r|

‖ν̃(b/2)∆|r|‖
= ξ.

5 Asymptotic behavior of loss rate

We obtain asymptotic behavior of the loss rate of the finite fluid queue as the buffer size
gets large. As noted in Section 3, it is sufficient to derive the tail asymptotics of p(b). We
first consider the case of d 6= 0. In this case, we can apply Theorem 1 in [13], where a finite
fluid queue may have downward jumps. However, the prefactor of the exponential term is
more complicated because of the jump structure. We here derived a simpler expression.
Since the proof is technical, it is deferred to Appendix F.

Theorem 5.1 (i) For d < 0, we have

lim
b→∞

eαb p(b) = pC−+(I − Ψ+−Ψ−+)g+η+∆−1
g+(−C

++ − C
+−

Ψ−+)−1,

where −α is the Perron Frobeneus eigenvalue of the defective matrix Q(+) in (2.2) with
a corresponding right eigenvector g+, η+ is the stationary distribution of the stochastic
matrix ∆−1

g+(αI + Q(+))∆g+ , and the row vector p is a normalized s such that

p1 + pC−+∆−1
π+∆−1

r+

(
Ψ̂−+(−Q̂(+))−1

(−Q̂(+))−1

)T

∆π1 = 1.

(ii) For d > 0, p(b) converges to p as b gets large, where p is a normalized s such that

p1 + pC
+−

∆−1
π−∆−1

|r−|

(
(−Q̃(−))−1

Ψ̃+−(−Q̃(−))−1

)T

∆π1 = 1.

The next result shows that p(b) decays proportionally to 1/b when d = 0.

Theorem 5.2 For d = 0, we have

lim
b→∞

b p(b) =
1

sC
+−

∆−1
π−∆−1

|r−|(β̃
−
)T

ν̃+(0+)∆r+(−C
++

)−1,

where ν̃+(0+) = sC
+−

∆−1
π−∆−1

|r−|(Ψ̃
+−)T∆π+ and Ψ̃+− is given by (4.1).

From Theorem 5.1 and Theorem 5.2, we obtain asymptotic behavior of the loss rate
of the finite fluid queue as follows.

Corollary 5.1 For d < 0, we have

lim
b→∞

eαb `
(b)
Loss = p C−+(I − Ψ+−Ψ−+)g+η+∆−1

g+(−C
++ − C

+−
Ψ−+)−1r+

in.
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For d > 0, we have

lim
b→∞

`
(b)
Loss = pr+

in.

For d = 0, we have

lim
b→∞

b `
(b)
Loss =

1

sC
+−

∆−1
π−∆−1

|r−|(β̃
−
)T

ν̃+(0+)∆r+(−C
++

)−1r+
in.

(Proof of Theorem 5.2) We apply a similar technique used in [8]. To this end, we prepare
the following lemmas, whose proofs are deferred to Appendix G. We first note that from
Lemma 2.2 and (3.5), the j-th element of ν(b)(x)∆|r| equals (up to multiplicative constant)
the expected number of crossing times at level x with background state j before the first
recurrence time to level b/2 with a fixed background state i∗, starting from level b/2 with
background state i∗, that is,

[ν(b)(x)∆|r|]j = E

[ ∑
0≤t<r

(b)
b/2

(i∗)

1(Y (b)(t) = x, J (b)(t) = j)

∣∣∣∣Y (b)(0) = b/2, J (b)(0) = i∗
]

(5.1)

for j ∈ S, where τ
(b)
b/2(i

∗) ≡ inf{t > 0|(Y (b)(t), J (b)(t)) = (b/2, i∗)}. Then, we can see that

[ν(b)(b/2)∆|r|]j
[ν(b)(b/2)∆|r|]i

= E

[ ∑
0≤t<τ

(b)
b/2

(i)

1
(
(Y (b)(t), J (b)(t)) = (b/2, j)

) ∣∣∣∣(Y (b)(0), J (b)(0)) = (b/2, i)

]
(5.2)

for i, j ∈ S. Since the boundary effect on the right side of (5.2) disappears as b gets large,
we obtain the following lemma.

Lemma 5.1

lim
b→∞

ν(b)(b/2)∆|r|

‖ν(b)(b/2)∆|r|‖
= ξ.

By Lemma 4.2 and Lemma 5.1, we obtain the following lemma.

Lemma 5.2

lim
b→∞

max
x∈(0,b/2),i∈S

max

(
‖ν(b/2)∆|r|‖
‖ν(b)(b/2)∆|r|‖

[ν(b)(x)]i
[ν(x)]i

,
‖ν(b)(b/2)∆|r|‖
‖ν(b/2)∆|r|‖

[ν(x)]i
[ν(b)(x)]i

)
= 1.

Similarly to Lemma 5.2, we have

Corollary 5.2

lim
b→∞

max
x∈(0,b/2),i∈S

max

(
‖ν̃(b/2)∆|r|‖
‖ν(b)(b/2)∆|r|‖

[ν(b)(b − x)]i
[ν̃(x)]i

,
‖ν(b)(b/2)∆|r|‖
‖ν̃(b/2)∆|r|‖

[ν̃(x)]i
[ν(b)(b − x)]i

)
= 1.
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From Lemma 5.2, Corollary 5.2 and Lemma 3.1, we have

Lemma 5.3

lim
b→∞

(
‖ν(b)(b/2)∆|r|‖

cb

∫ b/2

0

‖ν(x)‖
‖ν(b/2)∆|r|‖

dx +
‖ν(b)(b/2)∆|r|‖

cb

∫ b/2

0

‖ν̃(x)‖
‖ν̃(b/2)∆|r|‖

dx

)
= 1.

We return to the proof of Theorem 5.2. From the proof of Lemma 4.2, we have

lim
b→∞

ν(b/2)

‖ν(b/2)‖
= π,

which implies that for arbitrary ε > 0, there exists δ > 0 such that

1 − ε <
‖ν(x)‖
‖ν(b/2)‖

< 1 + ε, x,
b

2
≥ δ.

Then we have∫ b/2

0
‖ν(x)‖

‖ν(b/2)∆|r |‖
dx

b/2
=

h(δ) + ‖ν(b/2)‖
‖ν(b/2)∆|r |‖

∫ b/2

δ
‖ν(x)‖
‖ν(b/2)‖dx

b/2

∈

(
h(δ)

b/2
+

‖ν(b/2)‖
‖ν(b/2)∆|r|‖

(
1 − 2δ

b

)
(1 − ε),

h(δ)

b/2
+

‖ν(b/2)‖
‖ν(b/2)∆|r|‖

(
1 − 2δ

b

)
(1 + ε)

)
,

(5.3)

where h(δ) =
∫ δ

0
‖ν(x)‖

‖ν(b/2)∆|r |‖
dx. From the proof of Lemma 4.2 and taking limit of (5.3), we

have

lim
b→∞

∫ b/2

0
‖ν(x)‖

‖ν(b/2)∆|r |‖
dx

b/2
∈
(

1 − ε

π|r| ,
1 + ε

π|r|

)
.

Since ε is arbitrary, we have

lim
b→∞

∫ b/2

0
‖ν(x)‖

‖ν(b/2)∆|r |‖
dx

b/2
=

1

π|r| . (5.4)

Similarly, we have

lim
b→∞

∫ b/2

0
‖ν̃(x)‖

‖ν̃(b/2)∆|r |‖
dx

b/2
=

1

π|r| . (5.5)

From Lemma 5.3, (5.4) and (5.5), we have

‖ν(b)(b/2)∆|r|‖
cb

∼ π|r|
b

, (5.6)

where f(b) ∼ g(b) means that limb→∞ f(b)/g(b) = 1. By Corollary 5.2, for sufficiently
large b, we have

ν(b)(b − x)

cb

∼
‖ν(b)(b/2)∆|r|‖

cb

1

‖ν̃(b/2)∆|r|‖
ν̃(x), x ∈ (0, b/2), (5.7)
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From Lemma 4.3 and (5.6), (5.7) reduces to

ν(b)(b − x)

cb

∼ 1

b

1

sC
+−

∆−1
π−(−∆r−)−1(β̃

−
)T

ν̃(x), x ∈ (0, b/2),

where β̃
−

is the stationary distribution of Q̃(−). Thus, we have

ν(b)+(b−)

cb

∼ 1

b

1

sC
+−

∆−1
π−(−∆r−)−1(β̃

−
)T

ν̃+(0+),

which completes the proof of Theorem 5.2 by (3.4) and (3.7).
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Appendix

A Proof of Lemma 2.2

For x > 0, let N+•
0 (0, x) be the |S+| × |S| matrix whose (i, j)-th element is given by

[
N+•

0 (0, x)
]
ij

= E

[ ∑
0≤t<τ0

1(X(t) = x,M(t) = j)

∣∣∣∣X(0) = 0,M(0) = i

]
, (A.1)

which is the expected number of level crossing at level x with background state j ∈ S

before returning to level 0, starting from level 0 with background state i ∈ S+. In what
follows, we show that

ϕ+•
0 (0, x)∆|r| = N+•

0 (0, x). (A.2)

Since ϕ+•
0 (0, x) is the derivative of Φ+•

0 (0, x) by Corollary 2.2, we have

[ϕ+•
0 (0, x)]ij = lim inf

h→0

1

h
E

[ ∫ τ0

0

1(X(t) ∈ (x, x + h],M(t) = j)dt

∣∣∣∣X(0) = 0,M(0) = i

]
≥ E

[
lim inf

h→0

1

h

∫ τ0

0

1(X(t) ∈ (x, x + h],M(t) = j)dt

∣∣∣∣X(0) = 0,M(0) = i

]
=

1

rj

E

[
lim inf

h→0

1

h

∫ τ0

0

1(X(t) ∈ (x, x + h],M(t) = j)dX(t)

∣∣∣∣X(0) = 0,M(0) = i

]
=

1

rj

E

[ ∑
0≤t<τ0

1(X(t) = x,M(t) = j)

∣∣∣∣X(0) = 0,M(0) = i

]
=

1

rj

[N+•
0 (0, x)]ij

for i, j ∈ S+, where the first inequality follows by Fatou’s lemma, and the second equality
follows since rM(t)dt = dX(t) except for time epoch that X(t) changes. When j ∈ S−, we
can get the similar formula. Then, we have

ϕ+•
0 (0, x) ≥ N+•

0 (0, x)∆−1
|r| . (A.3)
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We next prove the reverse direction of the inequality in (A.3). To this end, we use the

truncation argument as follows. For a, x > 0, i ∈ S+ and j ∈ S, let ϕ
(a)+•
0 (0, x) be the

|S+| × |S| matrix whose (i, j)-th element is given by

[ϕ
(a)+•
0 (0, x)]ij = lim inf

h→0

1

h
E

[ ∫ τ0∧a

0

1(X(t) ∈ (x, x + h],M(t) = j)dt

∣∣∣∣X(0) = 0,M(0) = i

]
The interchange of the limit and the expectation is guaranteed as follows. Assume that
j ∈ S+. Let C(x,j) be the number of crossing time at level x with background state j
before time τ0∧a. Let D(x,j) be the number of state transitions that the background state
changes to state j while the level process stays in (x, x + h] before time τ0 ∧ a. Then we
have

1

h

∫ τ0∧a

0

1(X(t) ∈ (x, x + h],M(t) = j)dt ≤ 1

rj

(C(x,j) + D(x,j)).

Since E[C(x,j) + D(x,j)|X(0) = 0, M(0) = i] is finite, we have

[ϕ
(a)+•
0 (0, x)]ij = E

[
lim inf

h→0

1

h

∫ τ0∧a

0

1(X(t) ∈ (x, x + h],M(t) = j)dt

∣∣∣∣X(0) = 0,M(0) = i

]
by the dominated convergence theorem. When j ∈ S−, we can get the similar formula.
Hence, we have

ϕ
(a)+•
0 (0, x) ≤ N+•

0 (0, x)∆−1
|r| . (A.4)

Finally, we show that

lim
a→∞

ϕ
(a)+•
0 (0, x) = ϕ+•

0 (0, x), (A.5)

which completes the proof of the lemma by (A.3) and (A.4). For a, x > 0, let Φ
(a)+•
0 (0, x)

be the |S+| × |S| matrix whose (i, j)-th element is given by

[Φ
(a)+•
0 (0, x)]ij = E

[ ∫ τ0∧a

0

1(X(t) ≤ x,M(t) = j)dt

∣∣∣∣X(0) = 0,M(0) = i

]
.

Similarly to the proof of Lemma 2.1, we have

πi[Φ
(a)+•
0 (0, x)]ij = πj

1

ri

∫ x

0

P (M̂(τ̂y ∧ a) = i|M̂(0) = j)dy.

By differentiating the above formula, we have

πi[ϕ
(a)+•
0 (0, x)]ij = πj

1

ri

P (M̂(τ̂x ∧ a) = i|M̂(0) = j).

The monotone convergence theorem implies that

lim
a→∞

[ϕ
(a)+•
0 (0, x)]ij =

πj

πi

1

ri

P (M̂(τ̂x) = i|M̂(0) = j)

=
πj

πi

1

ri

[Ψ̂•+
−∞(0, x)]ji.

Then, we obtain (A.5) by Corollary 2.1 and (2.4).
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B Proof of Lemma 2.3

From the definition of N++
0 (0, x) (see, (A.1) in Appendix A), we have

N++
0 (0, x) = Ψ++

0 (0, x)(I − Ψ+−Ψ−+
−x (0, 0))−1. (B.1)

By conditioning on the first time that the Markov additive process returns to initial level,
we have

Ψ++
−∞(0, x) = Ψ++

0 (0, x) + Ψ+−
x (0, 0)Ψ−+Ψ++

−∞(0, x). (B.2)

From (B.1), (B.2) and (2.1), we have

N++
0 (0, x)(I − Ψ+−Ψ−+

−x (0, 0)) = (I − Ψ+−
x (0, 0)Ψ−+) exp(xQ(+)).

Since we have assumed that d = 0, Q(+) is a non-defective matrix, and Ψ+− and Ψ−+ are
stochastic matrices. Denote the stationary distribution of Q(+) by κ+, then we have

( lim
x→∞

N++
0 (0, x))(I − Ψ+−Ψ−+) = (I − Ψ+−Ψ−+)1κ+

= O,

which implies that

lim
x→∞

N++
0 (0, x) = lim

x→∞
N++

0 (0, x)Ψ+−Ψ−+. (B.3)

From (2.4) and (A.2), and noting that Q̂(+) is non-defective matrix for d = 0, (B.3)
reduces to

(κ̂+)T(r+)T∆π+ = (κ̂+)T(r+)T∆π+Ψ+−Ψ−+, (B.4)

where κ̂+ is the stationary distribution of Q̂(+). Noting that ξ+ is the stationary dis-
tribution of Ψ+−Ψ−+, we have ξ+ = m1(r

+)T∆π+ by (B.4), where m1 is a normalizing
constant. Similarly, we have ξ− = m2(−r−)T∆π− for a normalizing constant m2. Because
of d = 0, we have ξ+1 = ξ−1 = 1/2, which implies that

m1 = m2 =
1

π+r+ − π−r− .

C Proof of Lemma 3.2

Similarly to Lemma 2.1, for i ∈ S−, j ∈ S and x ∈ (0, b), we have

[Φ−•
0b (b, x)]ij = E

[ ∫ τX(0)∧τX(0)−b

0

1(X(t) ≤ X(0) − (b − x),M(t) = j)dt

∣∣∣∣M(0) = i

]
=

1

πi

∫ ∞

0

P

(
−b < X̂(t) − X̂(0) ≤ −(b − x), M̂(0) = j, M̂(t) = i,

maxu∈(0,t) X̂(u) − b < X̂(t) < minu∈(0,t) X̂(u)

)
dt

=
πj

|ri|πi

∫ −(b−x)

−b

P (M̂(τ̂y) = i, τ̂y ≤ η̂(b)|M̂(0) = j)dy, (C.1)
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where η̂(b) ≡ min{t > 0|maxu∈(0,t) X̂(u) − minu∈(0,t) X̂(u) = b}. The above equation
implies that Φ−•

0b (b, x) is differentiable with respective to x ∈ (0, b). Similarly, for i ∈
S+, j ∈ S and x ∈ (0, b), we have

[Φ+•
0b (0, x)]ij =

πj

riπi

∫ x

0

P (M̂(τ̂y) = i, τ̂y ≤ η̂(b)|M̂(0) = j)dy, (C.2)

which implies that Φ+•
0b (0, x) is differentiable.

D Expression of ν(b)(x) for d 6= 0

By conditioning on the first time that the level process hits the level b for x ∈ (0, b), we
have

Φ+•
0 (0, x) = Φ+•

0b (0, x) + Ψ++
0 (0, b)Ψ+−Φ−•

0 (b, x),

Φ−•
0 (b, x) = Φ−•

0b (b, x) + Ψ−+
0 (b, b)Ψ+−Φ−•

0 (b, x),

which reduce to

Φ+•
0 (0, x) = Φ+•

0b (0, x) + Ψ++
0 (0, b)Ψ+−(I − Ψ−+

0 (b, b)Ψ+−)−1Φ−•
0b (b, x). (D.1)

Similarly, for x ∈ (0, b), we have

Φ−•
b (b, x) = Φ−•

0b (b, x) + Ψ−−
b (b, 0)Ψ−+(I − Ψ+−

b (0, 0)Ψ−+)−1Φ+•
0b (0, x). (D.2)

From Lemma 2.2, we have

ϕ+−
0 (0, b)∆|r−| = Ψ++

0 (0, b)Ψ+−(I − Ψ−+
0 (b, b)Ψ+−)−1. (D.3)

Let ϕ̃−+
0 (0, x) be the density of the occupation measure for the level reversed additive

process (−X(t),M(t)). Similarly to (D.3), we have

ϕ̃−+
0 (0, b)∆r+ = Ψ−−

b (b, 0)Ψ−+(I − Ψ+−
b (0, 0)Ψ−+)−1. (D.4)

From (D.1), (D.2), (D.3) and (D.4), we have(
Φ−•

0b (b, x)
Φ+•

0b (0, x)

)
=

(
I ϕ̃−+

0 (0, b)∆r+

ϕ+−
0 (0, b)∆|r−| I

)−1(
Φ−•

b (b, x)
Φ+•

0 (0, x)

)
where the nonsingularity of the matrix is ensured by d 6= 0 (see Lemma 4.2 of [5]). By
differentiating the above formula, we have(

ϕ−•
0b (b, x)

ϕ+•
0b (0, x)

)
=

(
I ϕ̃−+

0 (0, b)∆r+

ϕ+−
0 (0, b)∆|r−| I

)−1(
ϕ−•

b (b, x)
ϕ+•

0 (0, x)

)
. (D.5)

From (D.5) and ϕ−•
b (b, x) = ϕ̃−•

0 (0, b−x), the right hand side of (3.5) can be rewritten by(
s(b) s(b)

)( C−+ O

O C
+−

)(
I ϕ̃−+

0 (0, b)∆r+

ϕ+−
0 (0, b)∆|r−| I

)−1(
ϕ̃−•

0 (0, b − x)
ϕ+•

0 (0, x)

)
.

Since ϕ+•
0 (0, x) and ϕ̃−•

0 (0, x) have the matrix exponential form (see Corollary 2.2), the
above formula is equivalent to the ones obtained in Theorem 4.4 of [5] when r+ = 1 and
r− = −1.
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E Proof of Lemma 3.3

By (3.3), (3.7) is rewritten by

s(b)C−+ϕ++
0b (0, b−)∆r+ + s(b)(C

++
+ C

+−
ϕ−+

0b (b, b−)∆r+) = 0. (E.1)

We show that (E.1) is equivalent to (3.2) through the following two lemmas.

Lemma E.1

ϕ++
0b (0, b−) = ∆−1

r+∆−1
π+Ψ̂++

0 (0, b)T∆π+ , (E.2)

ϕ−+
0b (b, b−) = ∆−1

|r−|∆
−1
π−Ψ̂+−

b (0, 0)T∆π+ . (E.3)

Proof. By differentiating (C.1), we have

πi[ϕ
−•
0b (b, x)]ij =

πj

|ri|
P (M̂(τ̂−(b−x)) = i, τ̂−(b−x) ≤ η̂(b)|M̂(0) = j).

Then, we have

πi[ϕ
−+
0b (b, b−)]ij =

πj

|ri|
P (M̂(τ̂0) = i, τ̂0 ≤ η̂(b)|M̂(0) = j)

=
πj

|ri|
[Ψ̂+−

b (0, 0)]ji

for i ∈ S− and j ∈ S+, which implies (E.3). Similarly, (E.2) can be derived from (C.2).

It is not hard to see that the following result is obtained by using the same techniques
used in Corollary 2.2 of [9]

Lemma E.2

Ψ++
0 (0, b) = ∆−1

r+∆−1
π+Ψ̂++

0 (0, b)T∆π+∆r+ ,

Ψ−+
0 (b, b) = ∆−1

|r−|∆
−1
π−Ψ̂+−

b (0, 0)T∆π+∆r+ .

Hence, (E.1) is equivalent to (3.2) by Lemma E.1 and Lemma E.2.

F Proof of Theorem 5.1

We first prove (i). Assuming that d < 0, we have limb→∞ cb < ∞. From (3.1), (3.2) and
(3.4), the probability vectors p(b) and p(b) satisfy

p(b)(C−− + C−+Ψ+−
b (0, 0)) + p(b)C

+−
Ψ−−

b (b, 0) = 0, (F.1)

p(b)C−+Ψ++
0 (0, b) + p(b)(C

++
+ C

+−
Ψ−+

0 (b, b)) = 0. (F.2)
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We next show that p(b) converges to zero as b gets large. By conditioning on the first time
that the level process hits level b, the hitting probability Ψ++

0 (0, b) satisfies

Ψ++
−∞(0, b) = Ψ++

0 (0, b) + Ψ+−
b (0, 0)Ψ−+Ψ++

−∞(0, b).

Then, we have

Ψ++
0 (0, b) = (I − Ψ+−

b (0, 0)Ψ−+) exp(bQ(+)) (F.3)

from Proposition 2.1. Since Q(+) is defective for d < 0, we have

lim
b→∞

Ψ++
0 (0, b) = 0.

Hence, from (F.2) and (F.3), we have

lim
b→∞

p(b)(C
++

+ C
+−

Ψ−+) = 0,

which implies that

lim
b→∞

p(b) = 0 (F.4)

since Ψ−+ is substochastic for d < 0, that is, C
++

+ C
+−

Ψ−+ is a defective matrix. From
(F.1) and (F.4), p(b) converges to p, which is the stationary measure of C−− + C−+Ψ+−

satisfying the normalizing condition

p1 +

∫ ∞

0

ν(x)1 = 1,

that is,

p1 + pC−+∆−1
π+∆−1

r+

(
Ψ̂−+(−Q̂(+))−1

(−Q̂(+))−1

)T

∆π1 = 1

by Lemma 4.1, where (−Q̂(+))−1 exists since Q̂(+) is defective for d < 0. We finally show
that p(b) exponentially converges to zero. From (F.2), we have

p(b) = p(b)C−+Ψ++
0 (0, b)(−C

++ − C
+−

Ψ−+
0 (b, b))−1. (F.5)

As b → ∞, Ψ−+
0 (b, b) converges to Ψ−+, which is substochastic for d < 0. We complete

the proof by showing that Ψ++
0 (0, b) exponentially converges to zero. Let −α < 0 be the

Perron Frobeneus eigenvalue of Q(+) with a corresponding right eigenvector g+ > 0, i.e.,
Q(+)g+ = −αg+. Since ∆−1

g+(αI + Q(+))∆g+ is a non-defective transition rate matrix of a
Markov chain, we have

lim
b→∞

exp(b∆−1
g+(αI + Q(+))∆g+) = 1+η+, (F.6)

where η+ is the stationary distribution of ∆−1
g+(αI + Q(+))∆g+ . Combining (F.3), (F.5)

and (F.6) completes the proof.

We next assume that d > 0. Similarly to the preceding argument, we have limb→∞ p(b) =

0 and limb→∞ p(b) = p, where p is the stationary measure of the non-defective transition

rate matrix C
++

+ C
+−

Ψ−+ satisfying the normalizing condition

p1 + pC
+−

∆−1
π−∆−1

|r−|

(
(−Q̃(−))−1

Ψ̃+−(−Q̃(−))−1

)T

∆π1 = 1.
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G Proof of lemmas in Section 5

(Proof of Lemma 5.1) Similarly to (5.2), we have

[ξ]j
[ξ]i

= E

[ ∑
0≤t<τ0(i)

1 ((X(t),M(t)) = (0, j))

∣∣∣∣(X(0),M(0)) = (0, i)

]
(G.1)

for i, j ∈ S. From (5.2) and the transition structure (i) of the finite fluid queue, we have

[ν(b)(b/2)∆|r|]j
[ν(b)(b/2)∆|r|]i

≥ E

[ ∑
0≤t<τ0(i)∧τ−b/2,b/2

1 ((X(t), M(t)) = (0, j))

∣∣∣∣(X(0), M(0)) = (0, i)

]
.

(G.2)

From (G.2) and (G.1), we have

lim inf
b→∞

[ν(b)(b/2)∆|r|]j
[ν(b)(b/2)∆|r|]i

≥ [ξ]j
[ξ]i

.

By interchanging the roles of i and j, we obtain another direction of the inequality, which
completes the proof.

(Proof of Lemma 5.2) We partition ν(b)(x) and ν(x) according to S− and S+ as

ν(b)(x) = (ν(b)−(x), ν(b)+(x)), ν(x) = (ν−(x),ν+(x)).

From (5.1), for x ∈ (0, b/2), we have

ν(b)(x)∆|r| = ν(b)−(b/2)∆|r−|M
−•
b/2(b/2, x), ν(x)∆|r| = ν−(b/2)∆|r−|M

−•
b/2(b/2, x),

where M−•
b/2(b/2, x) is the |S−| × |S| matrix whose (i, j)-th element is given by

[M−•
b/2(b/2, x)]ij = E

[ ∑
0≤t<σb/2

1(Y (t) = x, J(t) = j)

∣∣∣∣Y (0) = b/2, J(0) = i

]
, i ∈ S−, j ∈ S,

where σb/2 = inf{t > 0|Y (t) = b/2}. Then, we have

ν(b)(x)∆|r|

‖ν(b)(b/2)∆|r|‖
=

ν(b)−(b/2)∆|r−|

‖ν(b)(b/2)∆|r|‖
M−•

b/2(b/2, x), (G.3)

ν(x)∆|r|

‖ν(b/2)∆|r|‖
=

ν−(b/2)∆|r−|

‖ν(b/2)∆|r|‖
M−•

b/2(b/2, x). (G.4)

By applying Lemma 4.2 and Lemma 5.1 to (G.3) and (G.4), we complete the proof.

(Proof of Lemma 5.3) By Lemma 5.2 and Corollary 5.2, for arbitrary ε > 0, there
exists δ > 0 such that

1

1 + ε

∫ b/2

0

‖ν(b)(x)‖dx ≤
‖ν(b)(b/2)∆|r|‖
‖ν(b/2)∆|r|‖

∫ b/2

0

‖ν(x)‖dx ≤ (1 + ε)

∫ b/2

0

‖ν(b)(x)‖dx,

1

1 + ε

∫ b

b/2

‖ν(b)(x)‖dx ≤
‖ν(b)(b/2)∆|r|‖
‖ν̃(b/2)∆|r|‖

∫ b/2

0

‖ν̃(x)‖dx ≤ (1 + ε)

∫ b

b/2

‖ν(b)(x)‖dx
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for b ≥ δ. By combining the above inequalities and Lemma 3.1, we have

1

1 + ε
(cb − ‖s(b)‖ − ‖s(b)‖)

≤
‖ν(b)(b/2)∆|r|‖
‖ν(b/2)∆|r|‖

∫ b/2

0

‖ν(x)‖dx +
‖ν(b)(b/2)∆|r|‖
‖ν̃(b/2)∆|r|‖

∫ b/2

0

‖ν̃(x)‖dx

≤ (1 + ε)(cb − ‖s(b)‖ − ‖s(b)‖)

for b ≥ δ. Dividing the above inequalities by cb and taking limit with respect to b complete
the proof of the lemma since cb gets large for d = 0.
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