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Abstract

We consider a Lévy-driven tandem queue with an intermediate input assuming
that its buffer content process obtained by a reflection mapping has the station-
ary distribution. For this queue, no closed form formula is known, not only for its
distribution but also for the corresponding transform. In this paper we consider
only light-tailed inputs, and derive exact asymptotics for the tail distribution of
convex type combination of two buffer contents. This includes the marginal sta-
tionary distributions of the buffer contents and their sum as special cases. These
results generalize those of Lieshout and Mandjes from the recent paper [13] for the
corresponding tandem queue without an intermediate input.

1 Introduction

Brownian fluid networks have been studied for many years, and they are well understood
as reflected Brownian motions (see, e..g., [5, 8, 9]). They can be easily extended to
spectrally positive Lévy inputs. These extended networks are referred here to as Lévy
driven network queues. In applications of those networks, it may be interesting to look
for their stationary behavior, provided the existence of their stationary distributions are
assumed. Since it is hard to get the stationary distributions except for special cases,
asymptotic tail behavior of those distributions is interesting. However, it is still hard to
get the asymptotics such as tail decay rates from primitive modeling data even for two
node fluid networks although there are some notable results for rough asymptotics on the
two dimensional reflected Brownian motions (see, e.g., [2]). This is contrasted with their
discrete time version, so called a reflected random walk in a nonnegative two dimensional
quadrant, for which the asymptotic behavior has been studied (see, e.g., [4, 17]).

Recently, Lieshout and Mandjes [12, 13] solve this asymptotic decay problem for a
Lévy-driven two node tandem queue when there is no intermediate input, which means
that the second queue has no exogenous input. For this tandem queue, the joint Laplace
transform of the stationary distribution is obtained in closed form by Dȩbicki, Dieker and
Rolski [6]. Using this closed form expression, Lieshout and Mandjes [13] get rough decay
rates in all directions and exact asymptotics for distribution of separate nodes or their
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convex combinations. Here, the tail probability is said to have rough decay rate α if its
logarithm at level x divided by x converges to −α as x → ∞, and said to have exact
asymptotics h for some function h if the ratio of the tail probability at level x and h(x)
converges to one.

The results in [13] are very interesting since the rough decay rates and exact asymp-
totics h can be computed. However, their approach heavily depends on the explicit form
of the Laplace transform, which is only available for a pure tandem case. For example, if
an intermediate input is added, we cannot get such a closed form formula for the Laplace
transform. We consider this tandem queue. This model is more flexible for applica-
tions. Its asymptotic behavior is theoretically interesting since nothing is known about
the stationary distributions except for some basic facts such as stability.

We solve this asymptotic decay problem mainly for the marginal stationary distribu-
tions. Since the marginal distribution for the first node is obtained in term of Laplace
transform as the Pollaczek-Khinchine formula, our main interest is in exact asymptotics
on the second node. These results exhibit some analogy to the discrete time counterpart,
that is, the reflected random walk. Similar exact asymptotics are also reported for hitting
probabilities of two dimensional risk processes in [3]. As a by product, we also get exact
asymptotics when a convex combination of the two buffer contents gets large.

The approach of this paper is analytic, and exact asymptotics is studied only for
marginal distributions. This enables us to use classical results on one dimensional distri-
butions through their transforms. In other words, our results may not be so informative
on sample path behavior, which has been extensively studied in the large deviations
theory. Nevertheless, the results has multidimensional, precisely, two-dimensional, fea-
ture. For example, we identify the domain of the moment generation function for the
two-dimensional stationary distribution. This may be related to the rate function in the
sample path large deviations. We hope the present results would be also useful for the
large deviations theory.

This paper is composed of six sections. In Section 2, we first derive stationary equation
using Itô’s integral formula, and show that the recent result from [6] is easily obtained from
the stationary equation. In Sections 3 and 4, we assume that there is no jump input at
both nodes for simplicity. In Section 3, we identify the domain of the moment generating
function of the joint buffer contents. In Section 4, exact asymptotics are obtained. In
Section 5, we outline how those results can be extended when there are jump inputs at
both nodes. We finally discuss consistency with existing results and possible extensions
of the presented results in Section 6.

2 Stationary equation for moment generating func-

tions (MGFs)

We now formally introduce a Lévy-driven tandem fluid queue with an intermediate input.
This tandem queue has two nodes, numbered as 1 and 2. Both nodes has exogenous
input processes, and constant processing rates. Outflow from node 1 goes to node 2, and
outflow from node 2 leaves the system. As usual, we always assume that all processes are
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right-continuous and have left-hand limits.

We assume that those exogenous inputs are independent Lévy processes of the form:
for node i

Xi(t) = ait + Bi(t) + J
(0)
i (t) + J

(1)
i (t), i = 1, 2, (2.1)

where ai is a nonnegative constant, Bi(t) is a Brownian motion with variance σ2
i and null

drift, and J
(0)
i (t) and J (1) are given by

J
(0)
i (t) =

∫ t

0

∫ 1

0

x(Λi(du, dx) − duνi(dx)),

J
(1)
i (t) =

∫ t

0

∫ ∞

1+

xΛi(du, dx),

where Λi is a time homogeneous compound Poisson process and νi(dx) = E(Λi((0, 1], dx))
such that ∫ ∞

0

min(x2, 1)νi(dx) < ∞, i = 1, 2,

and Λ1 and Λ2 are independent of each other as well as of the other processes. It should be
noted that J

(0)
i (t) is a martingale with respect to filtration FX

t generated by {X(t); t ≥
0} ≡ {(X1(t), X2(t)); t ≥ 0}. It is known that the one-dimensional Levy process has the
form (2.1) (e.g., see [11, 18]).

Denote the Lévy exponent of Xi(t) by κi(·), i.e.

E(eθXi(t)) = etκi(θ), θ ≤ 0.

Clearly, κi(θ) is increasing and convex for all θ ∈ R as long as it is well defined. Since we
are interested in the light tail behavior, we assume now

(2-i) κi(θ
(0)
i ) < ∞ for some θ

(0)
i > 0 for i = 1, 2.

This implies that E(Xi(1)) = κ′
i(0) is positive and finite. Let λi = E(Xi(1)), which is the

mean input rate at node i.

Then, according to the decomposition of Xi(t), the exponent κi(·) can be decomposed
as

κi(θ) = aiθ +
1

2
σ2

i θ
2 + κ

(0)
i (θ) + κ

(1)
i (θ), i = 1, 2, (2.2)

where

κ
(0)
i (θ) =

∫ 1

0

(eθx − 1 − θx)νi(dx), κ
(1)
i (θ) =

∫ ∞

1+

(eθx − 1)νi(dx).

From the definitions,

λi = ai + E(J
(1)
i (1)), i = 1, 2,
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so λi = ai if the exogenous input at queue i has no jump.

Denote the processing rate at node i by ci > 0. Let Li(t) be buffer content at node i
at time t ≥ 0 for i = 1, 2, which are formally defined as

L1(t) = L1(0) + X1(t) − c1t + Y1(t), (2.3)

L2(t) = L2(0) + X2(t) + c1t − Y1(t) − c2t + Y2(t), (2.4)

where Yi(t) is a regulator at node i, that is, a minimal nondecreasing process for Li(t) to
be nonnegative. Namely, (L1(t), L2(t)) is a generated by a reflection mapping from net
flow processes (X1(t) − c1t,X2(t) + c1t − c2t) with reflection matrix

R =

(
1 0
−1 1

)
.

See Section 6.3 for R, and the literature [5, 8, 19] for the reflection mapping. Thus,
(L1(t), L2(t)) is adapted to filtration FX

t . We refer to the model described by this reflected
process as a Lévy-driven tandem queue.

It is easy to see that this tandem queue has the stationary distribution if and only if

(2-ii) λ1 < c1 and λ1 + λ2 < c2.

We assume this stability condition throughout the paper, and denote the stationary dis-
tribution by π.

We consider two types of asymptotic tail behavior of π, called rough and exact asymp-
totics. Let g(x) a positive valued function of x ∈ [0,∞). If

α = lim
x→∞

−1

x
log g(x)

exists, g(x) is said to have rough decay rate α. On the other hand, if there exists a
function h such that

lim
x→∞

g(x)

h(x)
= 1,

then g(x) is said to have exact asymptotics h(x). Let (L1, L2) be a random vector with
distribution π. Our main interest is to find exact asymptotics of P (d1L1 + d2L2 > x) for
d ≡ (d1, d2) ≥ 0. We are particularly interested in exact asymptotics of the marginal
distributions of L1 and L2, and denote their rough decay rates by α1 and α2, respectively.

Those exact asymptotics will be determined by their moment generating functions
(see, e.g., [1]). In the sequel we will use

ϕ(θ1, θ2) = Eπ(eθ1L1+θ2L2),

ϕ1(θ2) = Eπ(

∫ 1

0

eθ2L2(u)dY1(u)), ϕ2(θ1) = Eπ(

∫ 1

0

eθ1L1(u)dY2(u)),

where ϕi for i = 1, 2 are not directly related to ϕ, but will be useful. It will be shown
in Lemma 2.2 that Eπ(Yi(1)) for i = 1, 2 are finite. Using this fact, we can see that
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ϕi(θi)/ϕi(0) is the moment generating function of L3−i under Palm distribution concerning
the random measure

∫
B

dYi(u) for B ∈ B(R), where Y1(t) and Y2(t) are extended on the
whole line R under the stationary probability measure for the reflected process generated
by the initial distribution π (e.g., see [16] for Palm distribution). Intuitively, it may be
considered as the conditional moment generating function of L3−i given that Li = 0.
However, it should be noted that Yi(t) increases on the set of Lebesgue measure 0 if the
input has a continuous component.

We start with deriving the stationary equation for the moment generating functions
of π. For this, we use Itô’s integral formula (see, e.g., Chapter 26 of [11]). Let C2(R2) be
the set of all functions from R2 to R such that they have continuous second order partial
derivatives. Denote ∂

∂xi
f(x1, x2) by f ′

i((x1, x2), and ∂2

∂xi∂xi
f(x1, x2) by f ′′

ij((x1, x2). Then,

for f ∈ C2(R2), applying Itô’s integral formula to f(L1(t), L2(t)) we have

f(L1(t), L2(t)) − f(L1(0), L2(0)) =

∫ t

0

f ′
1(L1(u), L2(u))((a1 − c1)du + dB1(u))

+

∫ t

0

f ′
2(L1(u), L2(u))((c1 + a2 − c2)du + dB2(u))

+

∫ t

0

f ′
1(0, L2(u))dY1(u) −

∫ t

0

f ′
2(0, L2(u))dY1(u) +

∫ t

0

f ′
2(L1(u), 0)dY2(u)

+
2∑

i=1

( ∫ t

0

f ′
i(L2(u), L2(u))dJ

(0)
i (u) +

1

2

∫ t

0

f ′′
ii(L1(u), L2(u))σ2

i du

+
∑

0<u≤t

(∆if(L1(u), L2(u))1(J
(0)
i (u) > 0) − f ′

i(L1(u−), L2(u−))∆J
(0)
i (u))

+
∑

0<u≤t

∆if(L1(u), L2(u))1(∆J
(1)
i (u) > 0)

)
, (2.5)

where we have used the fact that Yi(t) is increasing if and only if Li(t) = 0, and ∆i’s are
defined by

∆1f(L1(u), L2(u))) = f(L1(u), L2(u−))) − f(L1(u−), L2(u−))),

∆2f(L1(u), L2(u))) = f(L1(u−), L2(u))) − f(L1(u−), L2(u−))).

Writing Itô’s integral formula (2.5) we used the fact that Yi(t)’s are continuous, which
follows from the assumption that Xi(t)’s have positive jumps only. Taking the expectation
of (2.5) for t = 1 given that (L1(0), L2(0)) is subject to the stationary distribution π,
denote this expectation by Eπ. Then, as long as all expectations but one below are finite,
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we have

(a1 − c1)Eπ(f ′
1(L1, L2)) + Eπ(

∫ 1

0

f ′
1(0, L2(u))dY1(u)) − Eπ(

∫ 1

0

f ′
2(0, L2(u))dY1(u))

+(c1 + a2 − c2)Eπ(f ′
2(L1, L2)) + Eπ(

∫ 1

0

f ′
2(L1(u), 0)dY2(u)) +

2∑
i=1

σ2
i

2
Eπ(f ′′

ii(L1, L2)))

+
2∑

i=1

Eπ(
∑

0<u≤t

(∆if(L1(u), L2(u))1(∆J
(0)
i > 0) − f ′

i(L1(u−), L2(u−))∆J
(0)
i (u)))

+
2∑

i=1

Eπ(
∑

0<u≤t

∆if(L1(u), L2(u))1(∆J
(1)
i > 0)) = 0. (2.6)

There arise two small technical problems in obtaining (2.6). One is that the expectation
of the left-hand side of (2.5) must be finite. However, this can be easily overcome by
truncation arguments (see, e.g., [16]), so f, f ′

i , f
′′
ij can be unbounded. Another problem is

the finiteness of Eπ(Yi(1)) for i = 1, 2. This will be verified in Lemma 2.2 below.

We now derive the basic stationary equation for moment generating function of (L1, L2).
For this, we prepare two lemmas.

Lemma 2.1 Let L(u) = (L1(u), L2(u)), and let f be a component-wise differentiable
function from R2

+ to R+. Then, if 1
x2 (f(y + xei) − f(y) − xf ′(y)) is uniformly bounded

for all x ∈ (0, 1] and y ≥ 0, then

Eπ(
∑

0<u≤1

(∆if(L(u))1(∆J
(0)
i (u) > 0) − f ′

i(L(u−))∆J
(0)
i (u)))

=

∫ 1

0

Eπ(f(L(0) + xei) − f(L(0)) − f ′(L(0))x)νi(dx), (2.7)

and, if 1
x
(f(y + xei) − f(y)) is uniformly bounded for all x > 1 and y ≥ 0, then

Eπ(
∑

0<u≤1

∆if(L(u))1(∆J
(1)
i (u) > 0)) =

∫ ∞

1

Eπ(f(L(0) + xei) − f(L(0)))νi(dx), (2.8)

where e1 = (1, 0) and e2 = (0, 1).

Proof. From the definition of Li(u) and Λi, we have

Eπ

( ∑
0<u≤1

(∆if(L(u))1(∆J
(0)
i (u) > 0) − f ′

i(L(u−))∆J
(0)
i (u))

)
= Eπ

( ∫ 1

0

∫ 1

0

(f(L(u−) + xei) − f(L(u−)) − xf ′
i(L(u−)))Λi(du, dx)

)
= Eπ

( ∫ 1

0

∫ 1

0

E(f(L(u−) + xei) − f(L(u−)) − xf ′
i(L(u−))|Fu−)duνi(dx)

)
=

∫ 1

0

∫ 1

0

Eπ

(
f(L(u−) + xei) − f(L(u−)) − xf ′

i(L(u−))
)
duνi(dx)

=

∫ 1

0

Eπ

(
f(L(0) + xei) − f(L(0)) − xf ′

i(L(0))
)
νi(dx),
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where the third equality is obtained by the Fubini’s theorem due to the uniformly bounded
assumption. Similarly, (2.8) is obtained.

Lemma 2.2 Under the conditions (2-i) and (2-ii),

Eπ(Y1(1)) = c1 − λ1, (2.9)

Eπ(Y2(1)) = c2 − (λ1 + λ2). (2.10)

Proof. Let f(x1, x2) = x1 in (2.6), then we get (2.9) using Lemma 2.1 since all terms
but Eπ(Y1(1)) in the left-hand side of (2.6) are finite. Similarly, letting f(x1, x2) = x2

yields

(c1 − c2) − Eπ(Y1(1)) + Eπ(Y2(1)) = 0.

Hence, we have (2.10).

Remark 2.1 One may think that (2.9) and (2.10) are immediate from (2.3) and (2.4)
by taking the expectation under π. However, this requires the finiteness of Eπ(L1) and
Eπ(L2), which we cannot use at this stage.

Proposition 2.1 For θ1, θ2 ≤ 0 we have

γ(θ1, θ2)ϕ(θ1, θ2) = (θ1 − θ2)ϕ1(θ2) + θ2ϕ2(θ1), (2.11)

where

γ(θ1, θ2) = c1θ1 + (c2 − c1)θ2 − κ1(θ1) − κ2(θ2).

Proof. Substituting f(x1, x2) = eθ1x1+θ2x2 into (2.6) we obtain

(a1 − c1)θ1Eπ(eθ1L1+θ2L2) + θ1Eπ(

∫ 1

0

eθ2L2(u)dY1(u)) − θ2Eπ(

∫ 1

0

eθ2L2(u)dY1(u))

+(c1 + a2 − c2)θ2Eπ(eθ1L1+θ2L2) + θ2Eπ(

∫ 1

0

eθ1L1(u)dY2(u))

+
2∑

i=1

σ2
i

2
θ2

i Eπ(eθ1L1+θ2L2)

+
2∑

i=1

Eπ

( ∑
0<u≤1

eθ1L1(u−)+θ2L2(u−)(eθi∆iJ
(0)
i (u) − 1 − θi∆iJ

(0)
i (u))

)
+

2∑
i=1

Eπ

( ∑
0<u≤1

eθ1L1(u−)+θ2L2(u−)(eθi∆iJ
(1)
i (u) − 1)

)
.

We apply Lemma 2.1 to this equation, then, using the definition of the Lévy exponent
κi(θi), we get (2.11).

Remark 2.2 Equation (2.11) can be directly obtained by applying the Kella-Whitt mar-
tingale of [10]. However, Itô’s integral formula is more flexible for our arguments.
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In general, it is hard to get the stationary distribution π or its moment generating
function in closed form from (2.6). There is one special case that ϕ is obtained in closed
form. This is the case that X2(t) ≡ 0, that is, there is no intermediate input. This case
has been recently studied in [6]. We revisit it as an example for (2.6), which shows how
(2.6) can be used to get useful information.

Example 2.1 (Tandem queue without an intermediate input) Suppose X2(t) ≡
0 in the Lévy-driven tandem queue satisfying the stability condition (2-ii). We assume
that c1 > c2 since L2(t) ≡ 0 otherwise.

Since L2(u) = 0 implies L1(u) = 0, so L1(u) = 0 when Y2(u) is increasing, we have
ϕ2(θ1) = EπY2(1) = c2−λ1 from Lemma 2.2. Hence by Proposition 2.1 (with λ2 = 0, and
κ2(θ) = 0) we have

(c1θ1 − (c1 − c2)θ2 − κ1(θ1))ϕ(θ1, θ2) = (θ1 − θ2)ϕ1(θ2) + (c2 − λ1)θ2. (2.12)

Since ϕ1(0) = c1 − λ1 by (2.9), letting θ2 = 0 in (2.12) implies the well known Pollaczek-
Khinchine formula:

E(eθ1L1) = ϕ(θ1, 0) =
(c1 − λ1)θ1

c1θ1 − κ1(θ1)
, θ1 ≤ 0. (2.13)

Assume that c1θ1 − κ1(θ1) = 0 has a positive solution, which must be the rough decay
rate α1. Furthermore, it is not hard to see that P (L1 > x) has exact asymptotic ce−α1x

with known constant c.

We next let θ1 = 0 in (2.12), then we have

ϕ1(θ2) = (c1 − c2)ϕ(0, θ2) + c2 − λ1. (2.14)

Substituting this into (2.12), we have

(c1θ1 − (c1 − c2)θ2 − κ1(θ1))ϕ(θ1, θ2) = (c1 − c2)(θ1 − θ2)ϕ(0, θ2) + (c2 − λ1)θ1. (2.15)

For each θ2 ≤ 0, let ξ1(θ2) be the smallest solution θ1 of the equation

c1θ1 − κ1(θ1) = (c1 − c2)θ2,

which always exists and is negative since κ1(0) = 0 and c1 − κ′
1(0) = c1 − λ1 > 0. Then,

letting θ1 = ξ1(θ2) in (2.15) yields

ϕ(0, θ2) =
(c2 − λ1)ξ1(θ2)

(c1 − c2)(θ2 − ξ1(θ2))
(2.16)

Plugging this into (2.15), we arrive at

ϕ(θ1, θ2) =
(c2 − λ1)(θ1 − ξ1(θ2))θ2

(θ2 − ξ1(θ2))(c1θ1 − (c1 − c2)θ2 − κ1(θ1))
. (2.17)

This is the formula obtained in [6]. Based on it, asymptotic behavior of the stationary
distribution π is studied in [13]. We will extend (2.17) to the case of n nodes in Section 6.3.
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3 Domain of the MGF

We now consider the Lévy-driven tandem queue with the intermediate input. In the
stationary equation (2.6), we may rewrite function γ(θ1, θ2) in the form:

γ(θ1, θ2) = c1θ1 + (c2 − c1)θ2 − κ1(θ1) − κ2(θ2). (3.1)

To avoid complicated presentation, we assume in this and next sections that there are
no jump inputs at nodes 1 and 2, that is, J1(t) = J2(t) ≡ 0. In this case, the tandem
queue is referred to as a Brownian tandem queue with an intermediate input. We will
include those jump inputs in Section 5. The main purpose of this section is to identify
the domain of ϕ

D = {(θ1, θ2) ∈ R2; ϕ(θ1, θ2) < ∞}.

The knowledge of the domain allows us to study asymptotic decay of some interesting tail
distributions. We first note that D is convex since ϕ is a convex function, and it obviously
includes the set {(θ1, θ2) ∈ R2; θ1, θ2 ≤ 0}.

Since there are no jump inputs here, (3.1) is simplified to

γ(θ1, θ2) = r1θ1 + r2θ2 −
1

2
(σ2

1θ
2
1 + σ2

2θ
2
2), (3.2)

and condition (2-i) is always satisfied, where

r1 = c1 − λ1, r2 = c2 − c1 − λ2.

Furthermore, r1, r1 + r2 > 0 by the stability condition (2-ii), but r2 can be negative or
positive.

Note that the stationary equation (2.11) of Proposition 2.1 holds as long as ϕ(θ1, θ2),
ϕ2(θ1) and ϕ1(θ2) are finite. Hence, γ(z1, z2)ϕ(z1, z2) is an analytic function of two com-
plex variables z1, z2 for ℜz1 < 0 and ℜz2 < 0, and this domain is extendable as long as
ϕ2(z1) and ϕ1(z2) are finite, where a complex valued function of two complex variables is
said to be analytic if it is analytic as a one variable function for each fixed other variable
(see, e.g., II.15 of [15]). Hence, we have proved the following fact.

Lemma 3.1 If both of ϕ2(θ1) and ϕ1(θ2) are finite, then γ(θ1, θ2)ϕ(θ1, θ2) is finite. In
particular, if γ(θ1, θ2) ̸= 0 in this case, then ϕ(θ1, θ2) is finite. Conversely, if ϕ(θ1, θ2) is
finite, then ϕ2(θ1) and ϕ1(θ2) are finite.

Using r1 and r2, (2.9) and (2.10) of Lemma 2.2 are written as

Eπ(Y1(1)) = r1, Eπ(Y2(1)) = r1 + r2. (3.3)

Since ϕ2(0) = Eπ(Y2(1)), substituting θ1 = 0 in (2.11) yields

ϕ1(θ2) = (
1

2
σ2

2θ2 − r2)ϕ(0, θ2) + r1 + r2. (3.4)
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Note that both sides of (3.4) are simultaneously finite or infinite due to Lemma 3.1.
Furthermore, z2 = 2r2

σ2
2

is a removable singular point of ϕ(0, z) since

ϕ(0, θ2) =
ϕ1(θ2) − ϕ1(z2)

1
2
σ2

2θ2 − r2

.

Hence, we have

Lemma 3.2 ϕ1(z) and ϕ(0, z) have the same singularity.

We cannot get a similar direct relation between ϕ2(θ1) and ϕ(θ1, 0), but the following
result will be sufficient. Recall that α1 is the rough decay rate of L1.

Lemma 3.3 ϕ2(θ) is finite for θ < α1, where α1 = 2r1

σ2
1
.

Remark 3.1 This result will be sharpened in Corollary 3.1.

Proof. α1 = 2r1

σ2
1

is immediate from Example 2.1 since the first queue is unchanged by the

intermediate input. Let Γ0 = {(θ1, θ2) ∈ R2; γ(θ1, θ2) > 0, θ1 < α1}. Since Γ0 is an open

convex set, we can find (θ
(ϵ)
1 , θ

(ϵ)
2 ) ∈ Γ0 for any ϵ > 0 such that max(0, α1 − ϵ) < θ

(ϵ)
1 < α1

and θ
(ϵ)
2 < 0. Substituting this (θ

(ϵ)
1 , θ

(ϵ)
2 ) into (2.11), we have

−θ
(ϵ)
2 ϕ1(θ

(ϵ)
2 ) + γ(θ

(ϵ)
1 , θ

(ϵ)
2 )ϕ(θ

(ϵ)
1 , θ

(ϵ)
2 ) = (θ

(ϵ)
1 − θ

(ϵ)
2 )ϕ2(θ

(ϵ)
1 ).

Since all the coefficients of ϕ(θ
(ϵ)
1 , θ

(ϵ)
2 ), ϕ1(θ

(ϵ)
2 ) and ϕ2(θ

(ϵ)
1 ) are positive and ϕ1(θ

(ϵ)
2 ) <

ϕ1(0) = r1 < ∞, ϕ2(θ
(ϵ)
1 ) must be finite. This proves the lemma since ϕ2(θ) is increasing

and ϵ can be arbitrarily small.

We next rewrite (2.11) as

γ(θ1, θ2)ϕ(θ1, θ2) + (θ2 − θ1)ϕ1(θ2) = θ2ϕ2(θ1). (3.5)

Since both sides of (3.5) are simultaneously finite or infinite, similarly to Lemma 3.1, it
follows from Lemma 3.3 that ϕ(θ1, θ2) and ϕ1(θ2) must be positive and finite for (θ1, θ2)
in the region:

D(1)
+ = {(θ1, θ2) ∈ R2; θ1 < α1, γ(θ1, θ2) > 0, 0 < θ1 < θ2}.

Since γ(θ1, θ2) = 0 is an ellipse, we let

(θmax
1 , θmax

2 ) = arg max
(θ1,θ2)

{θ2; γ(θ1, θ2) = 0}, (θmin
1 , θmin

2 ) = arg min
(θ1,θ2)

{θ2; γ(θ1, θ2) = 0},

(ηmax
1 , ηmax

2 ) = arg max
(θ1,θ2)

{θ1; γ(θ1, θ2) = 0}, (ηmin
1 , ηmin

2 ) = arg min
(θ1,θ2)

{θ1; γ(θ1, θ2) = 0},

β = max{θ; γ(θ, θ) = 0}.

It is easy to compute these values. For example, θmax
1 = 1

2
α1 < α1, and solving

γ(β, β) = 0 we have

β =
2(r1 + r2)

σ2
1 + σ2

2

, (3.6)
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where β > 0 by the stability condition (2-ii). However, we will not use these specific
values as long as possible for applying our arguments to more general Lévy inputs. We
next let

(βmax
1 , βmax

2 ) = arg max
(θ1,θ2)

{θ2; (θ1, θ2) ∈ D(1)
+ }.

It is easy to see from the definition of D(1)
+ that

βmax
2 =

{
β, β < 1

2
α1,

θmax
2 , 1

2
α1 ≤ β,

(3.7)

and ϕ1(θ) is finite for θ < βmax
2 (see Figures 1 and 2).

α1

β

θ2 = θ1

θ1

θ2

1

2
α1

γ(θ1, θ2) = 0

(θmax

1
, θ

max

2
)

(ηmax

1
, η

max

2
)

α2

α1 − β

α1

β

θ2 = θ1

θ1

θ2

1

2
α1

γ(θ1, θ2) = 0

(θmax

1
, θ

max

2
)

(ηmax

1
, η

max

2
)

α2

α1 − β

(a−) β <
1

2
α1 with r2 < 0 (a+) β <

1

2
α1 with r2 > 0

Figure 1: Typical regions of Do for β < 1
2
α1

α2

θ1

θ2
θ2 = θ1

β

α1

θ1

θ2

θ2 = θ1

β

α1

α2

1

2
α1

1

2
α1

(c) α1 < β

γ(θ1, θ2) = 0
γ(θ1, θ2) = 0

(θmax

1
, θ

max

2
)

(θmax

1
, θ

max

2
)

(ηmax

1
, η

max

2
)

(ηmax

1
, η

max

2
)

(b−) 1

2
α1 ≤ β ≤ α1 with r2 < 0

θ2

θ2 = θ1

β α1

α2

1

2
α1

γ(θ1, θ2) = 0

(θmax

1
, θ

max

2
)

(b+) 1

2
α1 ≤ β ≤ α1 with r2 > 0

θ1

Figure 2: Typical regions of Do for 1
2
α1 ≤ β

Having this βmax
2 in mind, we define D(2)

+ as

D(2)
+ = {(θ1, θ2) ∈ R2; θ1 < α1, θ2 < βmax

2 , γ(θ1, θ2) > 0, 0 ≤ θ2 ≤ θ1},

11



and consider (2.11). Since ϕ2(θ1) and ϕ1(θ2) are finite for (θ1, θ2) ∈ D(2)
+ , the right-hand

side of (2.11) is finite and therefore ϕ(θ1, θ2) must be positive and finite for (θ1, θ2) ∈ D(2)
+ .

Let D+ = D(1)
+ ∪ D(2)

+ . Since (θ1, θ2) ∈ D(1)
+ implies θ2 < βmax

2 , we have

D+ = {(θ1, θ2) ∈ R2; θ1 < α1, θ2 < βmax
2 , γ(θ1, θ2) > 0, θ2 ≥ 0}.

We finally rewrite (2.11) as

γ(θ1, θ2)ϕ(θ1, θ2) − θ2ϕ2(θ1) = (θ1 − θ2)ϕ1(θ2), (3.8)

and define D− as

D− = {(θ1, θ2) ∈ R2; γ(θ1, θ2) > 0, 0 ≤ θ2 ≤ θ1, θ2 < 0}.

Since ϕ1(θ2) is finite for θ2 < 0, ϕ(θ1, θ2) must be finite for (θ1, θ2) ∈ D− similarly to the
previous cases.

We are now in a position to identify D except for its boundary. Let ξ1(θ2) be the
minimal solution θ1 for γ(θ1, θ2) = 0 for each θ2, and let ξ2(θ1) be the maximal solution
θ2 for γ(θ1, θ2) = 0 for each θ1, as long as they exists. Clearly, for ηmin

2 ≤ θ2 ≤ θmax
2 ,

θ1 = ξ1(θ2) if and only if θ2 = ξ2(θ1).

Proposition 3.1 For the Brownian tandem queue with an intermediate input satisfying
the condition (2-ii), let Do be interior of D. Then,

Do = {(θ1, θ2) ∈ R2; (θ1, θ2) < (θ′1, θ
′
2) for some (θ′1, θ

′
2) ∈ D+ ∪ D−}. (3.9)

Proof. Denote the right-hand side of (3.9) by A. We have already proved that
D+ ∪ D− ⊂ D, which implies A ⊂ D. So, we only need to prove that ϕ(θ1, θ2) = ∞ if
(θ1, θ2) ̸∈ A, where A is the closure of A. We consider the following three cases separately.

If β < 1
2
α1, then (β, β) ∈ A (see Figure 1). Hence, ϕ(θ1, θ2) < ∞ for θ1, θ2 < β, and

ϕ1(θ2) =
θ2ϕ2(ξ1(θ2))

θ2 − ξ1(θ2)
, 0 < θ2 < β. (3.10)

Since β = ξ1(β) < α1, ϕ1(z) has a simple pole at z = β. By Lemma 3.2, ϕ(0, z) has the
same pole at z = β. Hence, θ2 > β and θ1 ≥ 0 imply ϕ(θ1, θ2) = ∞.

If 1
2
α1 ≤ β, then (θmax

1 , θmax
2 ) ∈ A (see Figure 2). We rearrange (3.5) as

(θ2 − θ1)ϕ1(θ2) = −γ(θ1, θ2)ϕ(θ1, θ2) + θ2ϕ2(θ1).

Choose any point (θ1, θ2) ∈ Ac ∩{(θ1, θ2) ∈ R2; θ1 < α1}, and assume that ϕ(θ1, θ2) < ∞.
Since ϕ2(θ1) is finite, ϕ1(θ2) must be finite, which is proved by partial differentiation with
respect to θ1. Since the left-hand side is always finite for any θ1, we let θ1 go to θ2 or
increase to α1. Both leads to contradiction, and we have ϕ(θ1, θ2) = ∞. If β < 1

2
α1, we

can similarly prove that (θ1, θ2) ∈ Ac ∩ {(θ1, θ2) ∈ R2; θ1 < α1} implies ϕ(θ1, θ2) = ∞.

Obviously, if θ1 > α1 and θ2 ≥ 0, then ϕ(θ1, θ2) = ∞ while, if θ1 ≤ α1 and θ2 ≤ 0,
then ϕ(θ1, θ2) < ∞. Furthermore, θ1 < ηmax

1 and θ2 < ηmax
2 imply ϕ(θ1, θ2) < ∞ from

the definition of A. Thus, it remains to prove that (θ1, θ2) ∈ Ac ∩ {(θ1, θ2) ∈ R2; α1 <

12



θ1, η
max
2 < θ2 < 0} implies ϕ(θ1, θ2) = ∞. For this (θ1, θ2), assume that ϕ(θ1, θ2) < ∞.

From the definition of A, γ(θ1, θ2) < 0, and ϕ1(θ2) < ∞ for θ2 < 0. Hence, rearranging
(3.5) as

−γ(θ1, θ2)ϕ(θ1, θ2) + (θ1 − θ2)ϕ1(θ2) = −θ2ϕ2(θ1),

we can see that ϕ2(θ1) must be finite. Let negative θ2 goes to zero, then the left-hand
side must be positive while the right hand side vanishes. This implies that ϕ2(θ1) cannot
be finite. Thus, we have a contradiction, and the proof is completed.

The following corollary sharpens Lemma 3.3.

Corollary 3.1 Let αmax
1 = sup{θ ≥ 0; ϕ2(θ) < ∞}. Then,

αmax
1 =

{
α1, ηmax

2 ≥ 0,
ηmax

1 , ηmax
2 < 0,

(3.11)

Proof. From (3.5),

−γ(θ1, θ2)ϕ(θ1, θ2) = (θ1 − θ2)ϕ1(θ2) − θ2ϕ2(θ1),

This implies that, if θ2 < βmax
2 , then ϕ(θ1, θ2) < ∞ if and only if ϕ2(θ1) < ∞. Since

(θ1, θ2) ∈ Do implies θ2 < βmax
2 , αmax

1 = sup{θ1; (θ1, θ2) ∈ Do}. Hence, Proposition 3.1
concludes (3.11).

We can write (3.9) in a more explicit form. For this, let

D1 = {(θ1, θ2) ∈ R2; θ1 < αmax
1 , θ2 < βmax

2 },
D2 = {(θ1, θ2) ∈ R2; θ1 < θ′1, θ2 < θ′2, for some (θ′1, θ

′
2) such that γ(θ′1, θ

′
2) ≤ 0},

then it is easy to get the following corollary from Proposition 3.1 and Corollary 3.1.

Corollary 3.2 Do = D1 ∩ D2, and Do is a convex set.

The open domain Do is typical for the discrete-time two dimensional reflected process
on the quadrant, but does not cover all the cases because of the structure of a tandem
queue. In the terminology of the sample path large deviations, it is important to find the
optimal path for the rate function in each direction. For the direction to increase L2, this
path goes up along the 2nd coordinate in Figure 1 while it straightly moves inside the
quadrant in cases (b) and (c). So, we do not have the case that the optimal path firstly
goes along the 1st coordinate, then straightly move inside the quadrant.

4 Exact asymptotic behavior

In this section, we first derive the exact asymptotics of the tail probability of L2. For
this, we will study the type of singularity of ϕ(0, θ) at the boundary of D. In a similar
way, we work out the exact asymptotics of the tail distribution function of d1L1 +d2L2 for
d1, d2 > 0. We follow the idea from [1, 13], which is based on the Heaviside’s operational
principle. Thus suppose that ψ(θ) =

∫ ∞
0

eθxF (x) dx has the leftmost singularity α. Then,
by Tauberian theorem for ultimately monotone density (e.g., see Section XIII.5 of [7]),
applied to ψ(−θ + α),
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(S1) if, for s > 0,

lim
θ↑α

(α − θ)sψ(θ) = C ′
1, θ ↑ α,

then

F (x) =
C ′

1

Γ(s)
xs−1e−αx(1 + o(1)),

where Γ(s) is the gamma function, while, by the Heaviside’s operational principle,

(S2) if for some constant K and non integer s > 0

ψ(θ) = K − C ′
2(α − θ)s + o((α − θ)s), θ ↑ α

then

F (x) =
C ′

2

Γ(−s)
x−s−1e−αx(1 + o(1)) .

Theorem 4.1 For the Brownian tandem queue satisfying the stability condition (2-ii),
P (L2 > x) has the exact asymptotics h(x) of the following type.

(4a) If β < 1
2
α1, then h(x) = C1e

−βx.

(4b) If 1
2
α1 = β, then h(x) = C2x

− 1
2 e−θmax

2 x.

(4c) If 1
2
α1 < β, then h(x) = C3x

− 3
2 e−θmax

2 x.

Constants C1, C2 and C3 are given in the proof. Hence, the rough decay rate α2 is identical
with βmax

2 of (3.7)

Remark 4.1 Quantities α1, β and θmax
2 are defined in Section 3. Specifically they are

given by

α1 =
2r1

σ2
1

, β =
2(r1 + r2)

σ2
1 + σ2

2

, θmax
2 =

1

σ2
2

(
r2 +

√
r2
2 + r2

1

σ2
2

σ2
1

)
.

For the proof of Theorem 4.1, we consider ψ(θ) =
∫ ∞
0

eθxP (L2 > x) dx. Since ϕ(0, θ) =
1 + θψ(θ), it follows from (3.4), (3.10) and Proposition 3.1 that, for θ2 < α2,

ψ(θ2) =
ϕ(0, θ2) − 1

θ2

=
ϕ1(θ2) − (r1 + r2)

θ2f(θ2)
− 1

θ2

=
ϕ2(ξ1(θ2))

f(θ2)(θ2 − ξ1(θ2))
−

1
2
σ2

2θ2 + r2

θ2f(θ2)
, (4.1)

where f(θ) = 1
2
σ2

2θ − r2.

For cases (4b) and (4c), we prepare the following lemma.
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Lemma 4.1 For θ2 ↑ θmax
2 ,

θmax
1 − ξ1(θ2) =

√
2(θmax

2 − θ2)

−ξ′′2 (θmax
1 )

+ o(|θmax
2 − θ2|

1
2 ), (4.2)

and, particularly if β = θmax
2 , then

θ2 − ξ1(θ2) =

√
2(θmax

2 − θ2)

−ξ′′2 (θmax
1 )

+ o(|θmax
2 − θ2|

1
2 ), (4.3)

where

ξ′′2 (θmax
1 ) = − σ3

1√
r2
1σ

2
1 + r2

2σ
2
2

< 0.

Proof. Since ξ2(θ1) is concave from its definition and ξ′2(θ
max
1 ) = 0, its Taylor expansion

at θ1 = θmax
1 yields

ξ2(θ1) = ξ2(θ
max
1 ) +

1

2
ξ′′2 (θmax

1 )(θ1 − θmax
1 )2 + o((θ1 − θmax

1 )2),

which implies, for ηmin
2 < θ2 < θmax

2 , or equivalently, ηmin
1 < θ1 < θmax

1 ,

θmax
1 − θ1 =

√
2(ξ2(θmax

1 ) − ξ2(θ1))

−ξ′′2 (θmax
1 )

+ o(|θ1 − θmax
1 |). (4.4)

Since θ2 = ξ2(θ1) is equivalent to θ1 = ξ1(θ2) for ηmin
2 < θ2 < θmax

2 , this can be written as

θmax
1 − ξ1(θ2) =

√
2(θmax

2 − θ2)

−ξ′′2 (θmax
1 )

+ o(|θ2 − θmax
2 |

1
2 ).

Hence, we have (4.2). If β = θmax
2 , then θmax

1 = θmax
2 , so we have

θ2 − ξ1(θ2) = θmax
1 − ξ1(θ2) − (θmax

2 − θ2) + o(|θ1 − θmax
1 |2).

This and (4.2) yield (4.3). It remains to compute ξ′′2 (θmax
1 ), but this is easily done by

differentiating γ(θ, θ′) = 0 with respect to θ at (θ, θ′) = (θmax
1 , θmax

2 ).

The proof of Theorem 4.1 We consider the singularity of ψ(z), which is the same
as ϕ(0, z), and therefore the same as ϕ1(z) by Lemma 3.2. We prove the three cases
separately.

For (4a), we assume that β < 1
2
α1. In this case, we have already observed in the proof

of Proposition 3.1 that ϕ1(z) has a simple pole at z = β (see (3.10)), so ψ(z) also has the
same pole by the above singularity arguments. Hence, (S1) with s = 1 leads to (4a). The
constant C1 is computed from (4.1) as,

C1 = lim
θ→β

(β − θ)ψ(θ)

= lim
θ→β

(β − θ)

θ(θ − ξ1(θ))

θϕ2(ξ1(θ)) − (r1 + r2)(θ − ξ1(θ))

f(θ)

=
−1

β(1 − ξ′1(β))
lim
θ→β

θϕ2(ξ1(θ)) − (r1 + r2)(θ − ξ1(θ))

f(θ)
.
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The condition β < 1
2
α1 is equivalent to

r1σ
2
2 − r1σ

2
1 − (r1 + r2)σ

2
1 > 0.

This implies that f(β) = 1
2
σ2

2β − r2 =
r1σ2

2−r2σ2
1

σ2
1+σ2

2
> 0. From (A.1) of Appendix A,

ξ′1(β) = 1 +
(r1 + r2)(σ

2
1 + σ2

2)

r1σ2
2 − r1σ2

1 − (r1 + r2)σ2
1

> 1.

Hence, we have

C1 =
(r1σ

2
2 − r1σ

2
1 − (r1 + r2)σ

2
1)ϕ2(β)

(r1 + r2)(r1σ2
2 − r2σ2

1)
.

For (4b), we first note that f(θmax
2 ) ̸= 0 since f(θmax

2 ) = 0 and β = θmax
2 imply the

contradiction that r1σ
2
1 = 0. Then, we simply apply (4.3) of Lemma 4.1 to (4.1), and get

lim
θ2↑θmax

2

(θmax
2 − θ2)

1
2 ψ(θ2) =

ϕ2(θ
max
1 )

f(θmax
2 )

√
−ξ′′2 (θmax

1 )

2
≡ C ′

1.

Hence, by (S1) with s = 1
2
, we have (4b), where C2 is given by

C2 =
C ′

1

Γ(1
2
)

=
ϕ2(θ

max
1 )

1
2
σ2

2θ
max
2 − r2

√
−ξ′′2 (θmax

1 )

2π
.

For (4c), we assume that 1
2
α1 < β, which implies β ̸= θmax

2 . From (4.1),

ψ(θ2) =
ϕ2(ξ1(θ2))

f(θ2)(θ2 − θmax
1 + θmax

1 − ξ1(θ2))
−

1
2
σ2

2θ2 + r1

θ2f(θ2)

=
ϕ2(ξ1(θ2))(θ2 − θmax

1 − (θmax
1 − ξ1(θ2)))

f(θ2)((θ2 − θmax
1 )2 − (θmax

1 − ξ1(θ2))2)
−

1
2
σ2

2θ2 + r1

θ2f(θ2)
. (4.5)

Since θmax
2 − ξ1(θ

max
2 ) > 0, the denominators in (4.5) do not vanish at θ2 = θmax

2 . By the
Taylor expansion of ϕ2(z) at z = θmax

1 (= 1
2
α1),

ϕ2(ξ1(θ2)) = ϕ2(θ
max
1 ) + ϕ′

2(θ
max
1 )(ξ1(θ2) − θmax

1 ) + o(|ξ1(θ2) − θmax
1 |),

where we have used the fact that ϕ2(z) is analytic for ℜz < α1 by Lemma 3.3. Hence,
(4.5) can be written as

ψ(θ2) = (ξ1(θ2) − θmax
1 )K1(θ2) + K2(θ2) + o(|ξ1(θ2) − θmax

1 |),

where K1(θ2) and K2(θ2) are given by

K1(θ2) =
ϕ2(θ

max
1 ) + (θ2 − θmax

1 )ϕ′
2(θ

max
1 )

f(θ2)((θ2 − θmax
1 )2 − (θmax

1 − ξ1(θ2))2)

K2(θ2) =
ϕ2(θ

max
1 )(θ2 − θmax

1 )

f(θ2)((θ2 − θmax
1 )2 − (θmax

1 − ξ1(θ2))2)
− σ2

2θ2 + 2r1

θ2(σ2
2θ2 − 2r2)

.
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Note that K1(θ
max
2 ) is a positive constant since f(θmax

2 ) = 1
2
σ2

2θ
max
2 − r2 > 0 and θmax

2 −
θmax
1 > 0. Thus, by Lemma 4.1, we have

ψ(θ2) = −(θmax
2 − θ2)

1
2 K1(θ

max
2 )

√
2

−ξ′′2 (θmax
1 )

+ K2(θ
max
2 ) + o((θmax

2 − θ2)
1
2 ).

Hence, (4c) is obtained by (S2), where C3 is given by

C3 =
1

Γ(−1
2
)
K1(θ

max
2 )

√
2

−ξ′′2 (θmax
1 )

=
ϕ2(θ

max
1 ) + (θmax

2 − θmax
1 )ϕ′

2(θ
max
1 )

(1
2
σ2θmax

2 − r2)(θmax
2 − θmax

1 )2
√

−2πξ′′2 (θmax
1 )

.

In principle, the rough decay rate α2 is known for a more general two dimensional
reflected Brownian queueing network in the framework of large deviations theory. Namely,
the rate function for the sample path large deviations is obtained in [2]. We here sharpen
the rough decay rate to exact asymptotics. Nevertheless, the rough decay rate in the
present form may be also interesting since it clearly explains how the presence of the
exogenous input at node 2 decreases α2.

We next consider exact asymptotics for convex type combination d1L1 + d2L2 with
d1, d2 > 0. Technically, they can be obtained by the same method as Theorem 4.1.
However, a new prefactor occurs in asymptotic functions, which corresponds to similar
results in Corollary 4.4 of [17]. Furthermore, the exact asymptotics for L1 + L2 may have
its own interest. So, it may be interesting to see what happens in this case. Let

ψd(θ) =

∫ ∞

0

eθxP (d1L1 + d2L2 > x)dx.

Then,

ψd(θ) =
1

θ
(ϕ(d1θ, d2θ) − 1),

where it follows from (2.11) that

γ(d1θ, d2θ)ϕ(d1θ, d2θ) = (d1 − d2)θϕ1(d2θ) + d2θϕ2(d1θ). (4.6)

Hence, we only need to consider the singularity of ϕ(d1θ, d2θ) similarly to Theorem 4.1.
It must occur at the point θ(d1, d2) across the boundary of D, so d1θ ≤ α1 and d2θ ≤ α2.
Furthermore, (4.6) and Lemma 3.1 tell that this singularity is caused by the following
factors:

(F1) γ(d1θ, d2θ) = 0,

(F2) the singularity of ϕ2(d1θ),

(F3) the singularity of ϕ1(d2θ).
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For example, the first case occurs when θ < min(α1

d1
, α2

d2
). Note that this singularity is a

simple pole since both sides of (4.6) are finite for all θ less than min(α1

d1
, α2

d2
). On the other

hand, if either θ = α1

d1
or θ = α2

d2
holds, the singularity is also caused by the corresponding

ϕi(diθ). Taking these facts into account, we have the following exact asymptotics.

Theorem 4.2 Under the assumptions of Theorem 4.1, for d1, d2 > 0, let δ(d1, d2) be the
non-zero solution θ of γ(d1θ, d2θ) = 0. Then, we have

δ(d1, d2) =
2(r1d1 + r2d2)

(σ2
1d

2
1 + σ2

2d
2
2)

, ξ2(α1) =
2r+

2

σ2
2

,

and the exact asymptotics of P (d1L1+d2L2 > x) has the form of Ch(x) for some constant
C > 0, where h(x) is given by

(4d) If β < 1
2
α1, then

h(x) =



e
− β

d2
x
, βd1 < (α1 − β)d2,

xe
− β

d2
x
, βd1 = (α1 − β)d2,

e−δ(d1,d2)x (α1 − β)d2 < βd1, ξ2(α1)d1 < α1d2,

xe
−α1

d1
x

0 < ξ2(α1)d1 = α1d2,

e
−α1

d1
x

α1d2 < ξ2(α1)d1.

(4e) If 1
2
α1 = β , then

h(x) =


x− 1

2 e
− θmax

2
d2

x
, d1 ≤ d2,

e−δ(d1,d2)x d1 > d2, ξ2(α1)d1 < α1d2,

xe
−α1

d1
x

0 < ξ2(α1)d1 = α1d2,

e
−α1

d1
x

α1d2 < ξ2(α1)d1.

(4f) If 1
2
α1 < β < α1 , then

h(x) =



x− 3
2 e

− θmax
2
d2

x
, θmax

2 d1 < 1
2
α1d2,

x− 1
2 e

− θmax
2
d2

x
, θmax

2 d1 = 1
2
α1d2,

e−δ(d1,d2)x 1
2
α1d2 < θmax

2 d1, ξ2(α1)d1 < α1d2,

xe
−α1

d1
x

0 < ξ2(α1)d1 = α1d2,

e
−α1

d1
x

α1d2 < ξ2(α1)d1.

(4g) If α1 ≤ β , then

h(x) =



x− 3
2 e

− θmax
2
d2

x
, θmax

2 d1 < 1
2
α1d2,

x− 1
2 e

− θmax
2
d2

x
, θmax

2 d1 = 1
2
α1d2,

e−δ(d1,d2)x, ξ2(α1)
α1

< d2

d1
<

2θmax
2

α1
,

xe
−α1

d1
x

0 < ξ2(α1)d1 = α1d2,

e
−α1

d1
x

α1d2 < ξ2(α1)d1.
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Remark 4.2 In (4d), (4e) and (4f), the last two cases vanish if r2 ≤ 0, equivalently,
ξ2(α1) = 0, but they are always the cases in (4g) since α1 ≤ β implies r2 > 0. See Figures
1 and 2 for these facts.

Proof. Consider case (4d). From our discussions, we only need to consider the case
that d1 = d2, βd1 = (α1 − β)d2 or ξ2(α1)d1 = α1d2 with r2 > 0 holds. If d1 = d2, then,
from (4.6)

γ(d1θ, d2θ)ϕ(d1θ, d2θ) = d2θϕ2(d1θ).

Hence, the singularity of ϕ(d1θ, d2θ) has a simple pole at θ = β
d2

since (F1) occurs there.
Clearly, this case is included in the first case of h(x) in (4d). Consider the case that
βd1 = (α1 − β)d2. In this case, the singularity is caused by (F1) and (F3). From this fact
and Theorem 4.1, it is not hard to see that, for some positive constant C,

lim
θ↑

θmax
2
d2

(d2θ − θmax
2 )2ϕ(d1θ, d2θ) = C.

Hence, (S1) yields the second case of h(x) in (4d). Similarly, we can get the forth case
for ξ2(α1)d1 = α1d2.

Case (4e) is simpler, and similarly proved. For case (4f), we only consider the case
that θmax

2 d1 = 1
2
α1d2. In this case, the singularity is again caused by (F1) and (F3). By

Theorem 4.1, for some positive constants K ′, C ′,

ϕ1(θ) = K ′ − C ′(θmax
2 − θ)

1
2 + o((θmax

2 − θ)
1
2 ), θ ↑ θmax

2 ,

so (F1) yields, for some positive constant C ′′,

lim
θ↑

θmax
2
d2

(d2θ − θmax
2 )

3
2 ϕ(d1θ, d2θ) = C ′′.

Hence, (S1) implies the second case of h(x) in (4f). We finally consider case (4f). In this
case, there are two cases that the singularity is caused by (F1) and either (F2) or (F3),
but they can be similarly handled to those in (4f) and (4d). Hence, it is not hard to verify
(4g). This completes the proof.

5 Extensions for the Levy inputs case

We now extend the Brownian tandem queue to the Lévy-driven tandem queue, provided
X1(t) and X2(t) are independent with positive jumps. In this case, we have to use (3.1)
for γ instead of (3.2), but all the arguments can be straightforwardly extended with some
extra light-tail conditions. So, we outline the arguments. As mentioned in Example 2.1,
we need the following condition for the first queue to have the light-tailed stationary
distribution.

(5-i) c1θ = κ1(θ) has a positive solution α1, and κ1(α1 + ϵ) < ∞ for some ϵ > 0.
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Note that (5-i) implies that c1−κ′
1(θ) = 0 has a positive solution since κ1(θ) is convex and

non-decreasing, and vanishes at θ = 0. This solution θ is identical with θmax
1 of Section

3, so we continue to use the same notation. From the arguments on the domain of ϕ in
Section 3, we need a positive solution θ for the equation γ(θmax

1 , θ) = 0 for the second
queue to be light-tailed in some cases. So, we assume

(5-ii) (c2−c1)θ−κ2(θ) = κ1(θ
max
1 )−c1θ

max
1 has a positive solution θmax

2 , and κ2(θ
max
2 +ϵ) <

∞ for some ϵ > 0.

This θmax
2 also corresponds with that of Section 3. Throughout this section, we assume

(5-i) and (5-ii) in addition to the stability condition (2-ii). Note that our first requirement
(2-i) is automatically satisfied under these two conditions.

We next show how to extend Lemmas 3.1, 3.2 and 3.3. Obviously, Lemmas 3.1 and
3.3 are still valid since the specific form of γ is not used there. To consider Lemma 3.2,
recall that r1 and r2 are:

r1 = c1 − λ1, r2 = c2 − c1 − λ2,

and let κ̃i(θ) = κi(θ) − λiθ, that is,

κ̃i(θ) =
1

2
σ2

i θ
2 + κ

(0)
i (θ) + κ

(1)
i (θ) − λiθ, i = 1, 2.

Then, γ of (3.1) can be written as

γ(θ1, θ2) = r1θ1 + r2θ2 − κ̃1(θ1) − κ̃2(θ2).

Since κ̃i(0) = κ̃′
i(0) = 0, κ̃i(θ) can play the same role as 1

2
σ2

i θ
2
i in (3.2). Thus, we have

(3.3), but (3.4) is replaced by

ϕ1(θ2) = (
1

θ2

κ̃2(θ2) − r2)ϕ(0, θ2) + r1 + r2. (5.1)

Hence, Lemma 3.2 is still valid.

We further note that γ(θ1, θ2) is well defined for θ1 ≤ α1, θ2 ≤ θmax
2 . Hence, we can

consider the sign of the derivative dθ2

dθ1
as θ1 ↑ α1 when (θ1, θ2) moves on the curve C that

is defined by

C = {(θ1, θ2) ∈ R2; γ(θ1, θ2) = 0, θ1 < α1, θ2 < θmax
2 }.

On this curve, we obviously have

c1 − κ′
1(θ1) + (c2 − c1 − κ′

2(θ2))
dθ2

dθ1

= 0. (5.2)

This implies that r1 + r2
dθ2

dθ1

∣∣∣
θ1=θ2=0

= 0. Hence, by the stability condition (2-ii) and the

convexity of C, we can always find a unique positive solution of the equation γ(θ, θ) = 0.
Denote this solution by β. Obviously, this β is the natural extension of the one in Sections
3 and 4.
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Similarly, the sign of the derivative is not positive at (θ1, θ2) = (α1, 0) if and only if

(c1 − κ′
1(α1))r2 ≥ 0 (5.3)

since κ′
2(0) = λ2, where κ′

1(α1) is defined as the left-hand derivative:

κ′
1(α1) = lim

ϵ↓0

1

ϵ
(κ1(α1) − κ1(α1 − ϵ)).

The condition (5.3) corresponds with cases (a-) and (b-) in Figures 1 and 2. Cases (a+),
(b+) and (c) of those figures occur if and only if (5.3) does not hold. We also define ηmin

i

and ξi(θ) for i = 1, 2 in the exactly same way as in Section 3. Then, for ηmin
2 ≤ θ2 ≤ θmax

2 ,
θ1 = ξ1(θ2) if and only if θ2 = ξ2(θ1). Furthermore, (3.10) is valid for 0 < θ2 < min(β, α1).

We now have all the materials to get the domain of ϕ, which is also denoted by D, in
the same way as in Section 3. Thus, we get

Proposition 5.1 For the Lévy driven tandem queue with an intermediate input, if con-
ditions (2-ii), (5-i) and (5-ii) are satisfied, then the interior of D is given by (3.9).

We now consider the exact asymptotics of the stationary distribution of L2. We can
again apply the previous arguments, and get similar results to Lemma 4.1 and Theorems
4.1 and 4.2. However, there is one different aspect. That is, we here cannot explicitly
compute β, θmax

2 and αi for i = 1, 2, but they are specified as solutions of the corresponding
equations. Thus, Theorem 4.1 is extended in the following form.

Theorem 5.1 For the Lévy driven tandem queue satisfying the conditions (2-ii), (5-i)
and (5-ii), let θmax

1 = ξ1(θ
max
2 ), and let β be the unique positive solution of γ(θ, θ) = 0.

Then P (L1 > x) has the following exact asymptotics h(x).

(5a) If β < θmax
1 hold, then h(x) = C1e

−βx.

(5b) If θmax
1 ≤ β with β = θmax

2 holds, then h(x) = C2x
− 1

2 e−θmax
2 x.

(5c) If θmax
1 ≤ β with β ̸= θmax

2 holds, then h(x) = C3x
− 3

2 e−θmax
2 x.

Here, Ci for i = 1, 2, 3 are given by

C1 =
βϕ2(β)

(ξ′1(β) − 1)(κ̃2(β) − r2β)
,

C2 =
θmax
2 ϕ2(θ

max
1 )

κ̃2(θmax
2 ) − r2θmax

2

√
−ξ′′2 (θmax

1 )

2π
,

C3 =
θmax
2 (ϕ2(θ

max
1 ) + (θmax

2 − θmax
1 )ϕ′

2(θ
max
1 ))

(κ̃2(θmax
2 ) − r2θmax

2 )(θmax
2 − θmax

1 )2
√
−2πξ′′2 (θmax

1 )
,

where

ξ′1(β) =
κ̃′

2(β) − r2

r1 − κ̃′
1(β)

, ξ′′2 (θmax
1 ) =

κ̃′′
1(θ

max
1 )

r2 − κ̃′
2(θ

max
2 )

.
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Remark 5.1 From (5.2), it is not hard to see that β < (>)θmax
1 holds if and only if

dθ2

dθ1

∣∣∣
θ1=β

> (<)0 on the curve C, which is equivalent to

(c1 − κ′
1(β))(c2 − c1 − κ′

2(β)) < (>)0.

Similarly, Theorem 4.2 can be extended for the Lévy input case, where the condition
α1 < β is replaced by (c1 − κ′

1(α1))r2 > 0. Since the results are parallel to Theorem 4.2,
we omit its details.

We finally note that Theorem 5.1 can be extended to the case that the two components
X1(t) and X2(t) of Lévy process are not independent but with positive jumps only. In
this case, the Lévy exponent κ(θ1, θ2) is defined by

E(eθ1X1(t)+θ2X2(t)) = etκ(θ1,θ2).

In this case we have to adapt the Itô’s integral formula (2.5), which requires the following
extra terms. ∫ t

0

(f ′′
12(L1(u), L2(u))ρ12du +

∑
0<u≤t

∆12f(L1(u), L2(u)),

where ρ12 is the covariance of the Brownian components, and

∆12f(L1(u), L2(u))) = f(L1(u), L2(u))) − f(L1(u−), L2(u−))).

Then, (2.11) still holds, but the γ is changed to

γ(θ1, θ2) = c1θ1 + (c2 − c1)θ2 − κ(θ1, θ2).

Although κ1(θ1) in (2.13) and κ̃2(θ2) in (5.1) must be changed to κ(θ1, 0) and κ(0, θ2) −
λ2θ2, respectively, all the arguments go through under the following conditions corre-
sponding to (5-i) and (5-ii).

(5-ii’) c1θ = κ(θ, 0) has a positive solution α1, and κ(α1 + ϵ, 0) < ∞ for some ϵ > 0.

(5-iii’) c1θ
max
1 + (c2 − c1)θ − κ(θmax

1 , θ) = 0 has a positive solution θmax
2 , where θmax

1 is
a positive solution of ∂

∂θ1
κ(θ1, θ)|θ1=θmax

1
= c1, and κ(θmax

1 , θmax
2 + ϵ) < ∞ for some

ϵ > 0.

6 Concluding remarks

In this section, we first examine the present results to be consistent with existing results.
We then discuss possible extensions to other performance characteristics or more general
models.
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6.1 Compatibility to existing results

Theorem 5.1 generalizes Theorem 4.3 of [13]. Since our notations are different, it is not
immediate to see. For the reader convenience we point out relationships between no-
tations; thus (µ, t, s, tb) of [13] ⇒ (λ1,−β,−θmax

1 ,−θmax
2 ). Note that Laplace transforms

are used in [13] instead of moment generating functions, so the sign of their variables must
be changed. This is the reason why the minus signs appears in the above correspondence.
In [13], tp ≡ t and θ(s) ≡ c1s + κ1(−s) are also used, but tp is always replaced by t. On
the other hand,

θ′′(s) = κ′′
1(−s) = κ′′

1(θ
max
1 ).

Since κ2(θ2) = κ̃2(θ2) = 0, we have, by Theorem 5.1,

ξ′′(θmax
2 ) = − θ′′(s)

c1 − c2

.

Hence, letting λ2 = 0 and ϕ2(θ2) = c2−λ1, we can see that Theorem 5.1 is indeed identical
with Theorem 4.3 of [13].

6.2 Rough and exact asymptotics of the joint tail probability

An interesting characteristic, not considered in this paper, is the joint tail distribution
P (L1 > d1x, L2 > d2x). Following Proposition 3.2 of [13], an upper bound in the Chernoff
inequality

lim sup
x→∞

1

x
log P (L1 > d1x, L2 > d2x) ≤ − sup{d1θ1 + d2θ2; (θ1, θ2) ∈ Do}. (6.1)

can give the right rough decay rate. Since the set Do is explicitly given, it is not hard
to find the supremum, which is the maximum over the closure Do. We conjecture that
(6.1) is tight, but this seems to be a hard problem. In [13] a sample path large deviation
technique was used. This is left for future research.

6.3 The case of more than two nodes

In this subsection, we discuss an extension of our Lévy-driven fluid queue network to n
nodes, instead from 2 as it was in previous sections. We are interested in the steady-
state behavior of such networks. We hope this will be useful to study the asymptotic tail
behavior of their stationary distributions.

Consider n (infinite-buffer) fluid queues, with exogenous input to buffer j in the time
interval [0, t] given by Xj(t), where Xi(t) = ait + Bi(t) + Ji(t) and

X(t) = (X1(t), . . . , Xn(t))t = at + B(t) + J (0)(t) + J (1)(t),

where xt denotes the transpose of column vector x. We assume that B(t) is a n-
dimensional Brownian motion with null drift, J (0)(t) and J (0)(t) have independent incre-
ments which are mutually independent and independent of B(t), J (0)(t) is a martingale
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which includes all jumps not greater than 1, and J (1)(t) is a pure jump process which is
composed of all jumps with sizes greater than 1. We denote the Lévy exponent of X(t)
by κ(θ).

For a convenience we denote

Z(t) = B(t) + J (0)(t) + J (1)(t).

The buffers are continuously drained at a constant rate as long as it is not empty. These
drain rates are given by a vector c; for buffer j, the rate is cj.

The interaction between the queues is modeled as follows. A fraction pij of the output
of station i is immediately transferred to station j, while a fraction 1 −

∑
j ̸=i pij leaves

the system. We set pii = 0 for all i, and suppose that
∑

j pij ≤ 1. The matrix P = {pij :
i, j = 1, . . . , n} is called the routing matrix. Assume that

(6-i) R ≡ I − P t is nonsingular.

We refer to R as reflection matrix.

For ({X(t)}, c, P ), the buffer content process L(t) is defined by

L(t) = L(0) + Z(t) + t(a − (I − P t)c) + (I − P t)Y (t),

where Y (t) is a regulator, that is, the minimal nonnegative and nondecreasing process
such that Yi(t) can be increased only when Li(t) = 0. Denote for a twice continuously
differentiable function f of n variables

∇f = (f ′
1, . . . , f

′
n)t, ∆f = (∆1f, . . . , ∆nf)t

and Lf = 1
2

∑n
i=1 σ2

i f
′′
i . Using Itô’s integral formula (see, e.g., Chapter 26 of [11]) we may

write

f(L(u)) − f(L(0)) =

∫ 1

0

(∇f(L(u))t d((a − (I − P t)c)u + B(u))

+

∫ 1

0

(∇f(L(u))t dY (t) +

∫ 1

0

Lf(L(u)) du

+
∑

0≤u≤t

(∆f(L(u))1(∆J (0)(u) ̸= 0) − ∆J (0)(u)∇f(L(u)))

+
∑

0≤u≤t

∆f(L(u))1(∆J (1)(u) ̸= 0). (6.2)

Suppose now, for θ = (θ1, . . . , θn)t and x = (x1, . . . , xn)t we take f(x) = exp(〈θ,x〉),
where 〈θ, x〉 is the inner product of vectors θ and x. Assume now

(6-ii) L(t) has a stationary distribution.

Denote this stationary distribution by π.

For taking the expectation of (6.2) under π, we need the finiteness of Eπ(Yi(1)) for all
i = 1, 2, . . . , n. To verify this, we define n-dimensional process U(t) as

U(t) = (I − P t)−1L(t).
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Then,

U(t) = U (0) + (I − P t)−1(ta + Z(t)) − tc + Y (t).

By the assumption (6-ii), U(t) has the stationary distribution. Hence, we must have

(I − P t)−1(a + E(Z(1))) < c. (6.3)

Intuitively, this condition is also sufficient for (6-ii), but we have not yet proved it. So,
we keep the assumption (6-ii).

We apply Itô’s integral formula to this process U(t), and take the expectation under
π. Obviously U(t) is also stationary under π. Then, similarly to our arguments in Section
2, we get the following lemma.

Lemma 6.1 Under conditions (6-i) and (6-ii), L(t) has the stationary distribution π and,

Eπ(Y (1)) = c − (I − P t)−1(a + E(Z(1)))

is a finite and positive vector.

Thus, Eπ(Yi(1)) must be finite. Let ϕ(θ) be the moment generating function of π. Simi-
larly, let

ϕi(θi[0]) = Eπ

∫ 1

0

e〈θi[0],L(u)〉 dYi(u),

where θi[0] be the n-dimensional vector obtained from θ by replacing θi by 0. Denote the
column vector whose i-th entry is ϕi(θi[0]), that is,

ϕ(θ) = (ϕ1(θ1[0]), . . . , ϕn(θn[0]))t

Similarly to the two dimensional case, let

γ(θ) = 〈(I − P t)c,θ〉 − κ(θ).

We are now ready to extend Proposition 2.1 for the general n node case as follows.

Proposition 6.1 Under conditions (6-i) and (6-ii), we have, for θ ∈ Rn,

γ(θ)ϕ(θ) = θt(I − P t)ϕ(θ), (6.4)

as long as ϕ(θ), γ(θ) and ϕ(θ) are finite, however at least for θ ≤ 0.

Proof. Similarly to Proposition 2.1, we first take the expectation of (6.2) for twice
differentiable and bounded function f , then we get (6.4) by approximating e〈θ,x〉 by a
suitably chosen set of f ’s.

Similarly to Example 2.1, the explicit solution for ϕ can be obtained from Proposi-
tion 6.1 for Lévy-driven tandem without intermediate inputs, that is when Xi(t) = 0 for
i = 2, . . . and pi,i+1 = 1 and otherwise 0. In what follows, we consider this special case.
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We first consider the stability condition (6.3). Since (P t)2 = 0, we have (I −P t)−1 =
I + P t. Thus we have

the ij-entry of (I − P t)−1 =

{
1, i = j or i = j + 1
0, otherwise.

Therefore the stability condition (6.3) is read:

j∑
i=1

λi < cj, j = 1, 2, . . . , n, (6.5)

where λi = ai + E(Zi(1)).

Without loss of generality we may assume that c1 > c2 > . . . > cn. For such the
network we have the following property that if Li(u) = 0, then Lj(u) = 0 for j = 1, . . . , i.
Let

ϕi(θi[0]) = ϕi(θ
i+1), i = 1, . . . , n, (6.6)

where θi is the n-dimensional vector which replaces the first i − 1 entries of θ by zero.

Let for i = 2, 3, . . . , n, [θ]i−1 be the i − 1-dimensional vector whose entries are all θ,
and ξi−1 be the minimal solution (provided it exists) of

γ(([ξi−1]
i−1, θi, θi+1, . . . , θn)) = 0,

Solution ξi−1 = ξi−1(θ
i) is a function of θi = (0, . . . , 0, θi, θi+1, . . . , θn). Notice that ξj is

the minimal solution of

cjξj − κ1(ξj) =
n∑

i=j+1

(ci−1 − ci)θi.

Let

ζi(θ
i) =

θi − ξi(θ
i+1)

θi − ξi−1(θ
i)

, i = 2, 3, . . . , n − 1.

We now state result, which is a special case of Theorem 6.1 from [6], with an alternative
proof.

Theorem 6.1 For the n-stage tandem queue without intermediate input satisfying the
stability condition (6.5), assume that ξi−1(θ

i) exists for i = 2, 3, . . . n. Then we have,
except for finitely many singular points,

ϕ(θ) =
(cn − λ1)θn

γ(θ)

(
n−1∑
i=1

θi − θi+1

θn − ξn−1(θ
n)

n−1∏
j=i+1

ζj(θ
j) + 1

)
, θ ≤ 0, (6.7)

where

γ(θ) = c1θ1 +
n∑

i=2

(ci − ci−1)θi − κ1(θ1).
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Proof. Using (6.6), we can write the stationary equation (6.4) of Proposition 6.1 as

γ(θ)ϕ(θ) =
n−1∑
i=1

(θi − θi+1)ϕi(θ
i+1) + θnϕn(0). (6.8)

By Lemma 6.1, we have ϕi(0) = ci − λi. Hence, (6.7) is obtained from (6.8) if

ϕi(θ
i+1) =

(cn − λ1)θn

θn − ξn−1(θ
n)

n−1∏
j=i+1

ζj(θ
j), i = 1, 2, . . . , n − 1, (6.9)

hold. We inductively derive (6.9) from (6.8). For this, for each i = 2, 3, . . . , n, substitute

θ = ([ξi−1(θ
i)]i−1, θi, θi+1, . . . , θn)

into (6.8), then we have, for i = 2, 3, . . . , n,

(ξi−1(θ
i) − θi)ϕi−1(θ

i) +
n−1∑
j=i

(θj − θj+1)ϕj(θ
j+1) + θnϕn(0) = 0.

Taking the difference of the above equations for i and i+1, we have, for i = 2, 3, . . . , n−1,

(ξi−1(θ
i) − θi)ϕi−1(θ

i) − (ξi(θ
i+1) − θi+1)ϕi(θ

i+1) + (θi − θi+1)ϕi(θ
i+1) = 0,

which implies

ϕi−1(θ
i) =

θi − ξi(θ
i+1)

θi − ξi−1(θ
i)

ϕi(θ
i+1) = ζi(θ

i)ϕi(θ
i+1), i = 2, 3, . . . , n − 1,

and

(ξn−1(θ
n) − θn)ϕn−1(θ

n) + θnϕn(0) = 0.

Hence, we have (6.9) since ϕn(0) = cn − λ1. This completes the proof. .

It may be interesting to study the asymptotic behavior of the marginal distribution
of Li using Theorem 6.1. As we already noted, this has been done for n = 2 in [13]. For
general n ≥ 3, (6.7) may be still useful. However, our approach to work directly on (6.8)
can be also fruitful here. We leave this for future research.
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A Computation of ξ′1(β)

From the definition of ξ1(θ), we have

ξ1(θ) =
1

σ2
1

(
r1 −

√
r2
1 − σ2

1(σ
2
2θ

2 − 2r2θ)

)
,

which implies

ξ′1(θ) =
σ2

2θ − r2√
r2
1 − σ2

1(σ
2
2θ

2 − 2r2θ)
,

as long as r2
1−σ2

1(σ
2
2θ

2−2r2θ) > 0. This is always the case if θ ≤ β < 1
2
. From γ(β, β) = 0,

we have 2r1 − σ2
1β = σ2

2β − 2r2. Hence,

r2
1 − σ2

1(σ
2
2β

2 − 2r2β) = r2
1 − σ2

1(2r1β − σ2
1β

2) = (r1 − σ2
1β)2.

This implies that

lim
θ→β

ξ′1(θ) =
σ2

2β − r2

r1 − σ2
1β

. (A.1)
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