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ABSTRACT

A primary interest of this paper is to find tail asymptotics
of the stationary distribution of a generalized Jackson net-
work with two nodes under phase-type setting, provided its
stability holds. Here, the phase type setting is meant that
the arrival processes are the so called Markov arrival pro-
cesses, and the service time distributions are of phase type.
We consider two types of the tail asymptotics, the tail decay
rate of the marginal stationary distribution in an arbitrary
direction and those for the joint stationary probabilities in
the coordinate directions.

There are two major reasons why those tail asymptotics

are interesting particularly for the two-node generalized Jack-

son network. Before discussing them, we recall what is the
generalized Jackson network and how it has been studied.

A queueing network in which at each node customers fin-
ishing service are independently routed according to given
probabilities and their service times are i.i.d is called a gen-
eralized Jackson network when exogenous arrivals and ser-
vice times at each node are independent but their distribu-
tions are general. Here, service discipline at each node is
assumed to be first-come and first-served. If the exogenous
arrival processes are time-homogeneous Poisson and the ser-
vice times are exponentially distributed, then this network
becomes the well known Jackson network. Thus, the gen-
eralized Jackson network is a natural generalization of the
Jackson network. In this paper, we assume that each node
has a single server.

The Jackson network has been widely used in applications
because it has a product form stationary distribution, which
is analytically tractable. However, this is not the case for the
generalized Jackson network. This fact motivated Harrison
and Williams [12] to study diffusion approximation for such
networks in heavy traffic. They derived the prototype of a
semimartingale reflecting Brownian motion on a nonnega-
tive orthant, SRBM for short. Since then SRBM has been
extensively studied, which became a big research area (see
[5]). Furthermore, its relation to the generalized Jackson
network is still a hot topic (e.g., see [3, 10]).

We now return to the reasons for our study. When a
stationary distribution is difficult to analyze, it is natural
to study its characteristics which are tractable in analysis
but still important in application. Tail asymptotic is one
of such characteristics, and has been actively studied for
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many years (see, e.g., [16] and references therein). However,
we still do not have a satisfactory answer even for the two-
node generalized Jackson network with single servers. This
motivates us to study its tail asymptotic problem.

Another reason is related to the two-dimensional SRBM
which is obtained as a diffusion limit of a sequence of the
two-node generalized Jackson networks (see [10] for its ver-
ification concerning stationary distribution). We now have
good view on the tail asymptotics of the stationary distribu-
tion of a two-dimensional SRBM (e.g., see [1, 6, 7]). Hence,
if we can get those for the two-node generalized Jackson net-
work, then we can argue the quality of the diffusion approxi-
mation by them. In this consideration as well as applications
of the generalized Jackson network itself, it is desirable to
get the tail asymptotics in analytically tractable form.

To facilitate our analysis, we assume the phase-type set-
ting. This certainly limits the class of queueing network
models, but we believe it is sufficiently large since phase-
type distributions are dense in the set of distributions on
the nonnegative real line, and Markovian arrival processes
are versatile. For example, the exogenous arrival processes
are not necessarily to be renewal processes, which are often
assumed for the generalized Jackson network (e.g., see [10]).

We consider the two-node generalized Jackson network
under phase-type setting as a special case of a Markov mod-
ulated two-dimensional reflecting random walk, and study
the tail asymptotic problem for this reflecting process. Thus,
we answer the problem for a more general model.

Recently, Ozawa [18] introduced a two-dimensional quasi-
birth-and-death process, 2d-QBD process for short, for queue-
ing networks, and studied the tail asymptotics of its station-
ary distribution. We will take this 2d-QBD process for con-
sidering the tail asymptotic problem. However, we can not
use Ozawa’s [18] results because they require to numerically
solve certain parametrized matrix equations over some range
of parameters. Thus, the tail asymptotics obtained in [18]
are analytically intractable. Furthermore, the asymptotics
are only considered for the coordinate directions.

Thus, we need to answer the problem in a different way
from Ozawa’s [18]. To this end, we can see that a crucial
step is to find the convergence parameter of a nonnegative
infinite dimensional matrix with QBD like block matrices.
This problem can be reduced to the existence of a nonneg-
ative right invariant vector of such a matrix, and we refer
to this vector as a super-harmonic vector. Thus, the prob-
lem is to find a necessary and sufficient condition in terms
of block matrices for the existence of the super-harmonic
vector. However, those obtained in [18] are not analytically



tractable as already mentioned. So, we make an assumption
to have a tractable necessary and sufficient condition, which
must be easily checkable. We make similar assumptions for
the 2d-QBD process, and verify that they are satisfied by
the two-node generalized Jackson network. Details for those
arguments can be found in [17].

Once this convergence parameter problem is resolved, we
can extend all the techniques recently used to study a two-
dimensional reflecting random walk with unbounded jumps
in [15] for that under Markov modulation. In this way, we
obtain the tail asymptotics of the stationary distribution
of the two-node generalized Jackson network. Namely, let
Z = (L1, L2, J) be arandom vector subject to the stationary
distribution of the numbers of customers L; and Lo at two
nodes and the background state J describing the phases of
arrival streams and progress of service. Then, for any two
dimensional non-zero vector ¢ > 0, the following limit exists
and is obtained in terms of the modeling parameters.

%logl?’((q L)>zx) (x — 00), (1)
where (a, b) is the standard inner product of vectors a,b €
R?. We refers to this decay rate as that of the marginal
stationary distribution in diction c¢. Similarly, we obtain
the following limit for each fixed ¢ and k£ and i = 1, 2.

%log P(Li=nLss=0J =k (n—oo).  (2)
Those results are given in Theorem 2 below.

The tail asymptotic problem for the two-node generalized
Jackson network under phase-type setting has been studied
by Yukio Takahashi and his colleagues [13, 14], but they only
derive upper bounds for the tail decay rates of the station-
ary probabilities. There are many studies for the tandem
queue case (e.g., see [2, 4, 11, 9, 19]). However, those stud-
ies are also incomplete because either extra conditions are
required or the tail asymptotics are only obtained for the
marginal stationary distribution for one node. By contrast,
we derive the tail decay rate for the marginal distribution
in an arbitrary direction (see (1)), and do not require any
extra condition except for the phase-type setting.

In what follows, we summarize our main results. We
first formally introduce the two-node Jackson network un-
der phase-type setting. We number the two node as 1 and
2, and assume the following dynamics.

(a) A customer which completes service at node ¢ inde-
pendently goes to node j with probability r;; for i =
1,2,5 = 0,1, 2, where node 0 means the outside of the
network, ri2 + r21 > 0 and r12721 < 1. We assume
that r;; = 0 for simplicity.

(b) Exogenous customers arrive at node i subject to the
Markovian arrival process with generator T; + U; and
generating arrivals by rate matrix U;. Here, T; and U;
are finite square matrices of the same size for each i =
1,2. Let v; be the stationary distribution of T; + U,
then the mean exogenous arrival rate at node i is given
by A\i = (v4, U;1), where 1 is the column vector whose
entries are all units.

(c) Node ¢ has a single server, whose service times are
independently and identically distributed subject to a
phase type distribution with (3;, Si), where 3, is the
row vector representing the initial phase distribution

and S; is a transition rate matrix for internal state
transitions. Here, S; is a finite square matrix, and
3, has the same dimension as that of S; for each i =
1,2. The mean service rate at node i is given by u; =

(B, (=8i)~'1).

It is well known that the generalized Jackson network has

the stationary distribution if and only if

Ai + AE—i)T(3-1)i .

pi= LT ABEDTGRL g o g, (3)
wi(1 — ri2m21)

We assume this condition throughout the paper.
Fori=1,2 and 8 = (01,02)", let

t:(0) = e (rio + " ir3_4)),

where superscript * stands for transpose, and let 7““)(62)
and 70?9 (0) be the Perron-Frobenius eigenvalues of T; +
e%iU; and S; + t;(0)D;, respectively, where D; = (—5;1)8,;.
That is, there are positive column vectors h(® (6;), 9 (9)
such that

(Ts + " UDR (0:) = 7 (0:) R (0:),
(Si + t:(0)D)h"(0) = 4" ()" (0), i=1,2.

Let g; be the moment generating function of the service time
distribution at node 4, then it can be shown that

FD(0) = g ((t:(0)) ),

Those Perron-Frobenius eigenvalues also have the following
interpretations. Let Nj,(t) be the number of arrivals at node
¢ during the time period [0, ¢], then

i=1,2. (4)

4 (6,) = Tim % log E(e%Nia(®)y, 5)

t—oo

Similarly, let N;q(t) be the number of departures from node
¢ during the time period [0,¢] and let ®;;(n) is the number
of customers who are routed to node j among n departing
customers at node i, then

E(ti(e)Nid(i)) _ E(e_giNid(t)“'GSfiq)i(S—i)(Nid(t»)
and therefore

,y(id)(g) — lim %logE(efgiNid“)‘f’e(S—tq)i(S—i)(Nid(t))). (6)

t—oo

Thus, v (0;) and v? (@) are cumulant generating func-
tions in the theory of large deviations (e.g., see [8]).

We are now ready to present main results. For them, the
following notations are convenient.

ar = {8 € R*; v (0,) + 2 (62)
+91(8) +47(6) = 0},

Timax = {0 € R*;30" € 91,0 < 0'},

o'y = {6 € oT';¢:(0) > 1}, i=1,2.

REMARK 1. If we define I' as

T = {6 € R%41(01) + 7 (62)
+19(0) + 4% (9) < 0},

then it can be shown that T is a conver set. Hence, OI' can
be considered as a convexr curve.



Let ©(0) = E(e'®L’) be the moment generating function
of L subject to the marginal stationary distribution with
respect to the numbers of customers at nodes 1 and 2, and
define D as

D = the interior of {0 € R*; p(8) < oo},

which is referred to as a convergence domain of ¢. Denote
the two extreme points of I'; by

o0 = arggepez sup{; > 0;0 € OI';}, i=1,2.
Using these points, we define the vector T by

71 =sup{f1 € R;0 € 9I'1; 62 < 99”},
2 = sup{fa € R; 0 € 8T2;0; < 6"},

We have the following two theorems (see [17] for their
proofs).

THEOREM 1. For the two node generalized Jackson net-
work under phase type setting, if it is stable, then

THEOREM 2. Under the same assumptions of Theorem 1,

lim 1 logP({e, L) > z) = —sup{u > O;uc € D}, (8)

xr—00 T

and, for each fized nonnegative integer £ and j € Vr(rf;X(l 0

lim %logP(Li = n,Lg_i = Z, J = j)
= —sup{0; > 0;0 € D} (= —7:), (9)

where Véi) (Vl“) is the set of background states for L; > 1
and Ls—; =0 (L3—; > 1, respectively).

Note that these theorems show that the decay rates are
determined by (5) and (6). Hence, we can expect that The-
orems 1 and 2 hold beyond the phase-type setting and more
general routing mechanism.

It is also notable that these decay rates are obtained in the
exactly same way as those of the stationary distribution of
the two-dimensional SRBM (see Theorems 2.1, 2.2 and 2.3
of [6]). Furthermore, we can prove that the tail decay rates
for the two-node generalized Jackson network under diffu-
sion scaling converge to those of the corresponding SRBM.
Hence, the decay rates are continuous under the diffusion
approximation.
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