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Abstract Asymptotic decay rates are considered for the stationary joint distributions of customer pop-
ulations in a generalized Jackson network and a batch movement network. We first define an asymptotic
decay rate for a multi-dimensional distribution concerning a tail set and a direction to decrease. Then, for
the stationary joint distributions of customer populations, the decay rates are conjectured to be obtained
through max-min linear optimizations with convex constrains. Their validity is checked for some known
results. Furthermore, the conjectured decay rates are shown to be useful to see how the decay rates are
changed according to modeling parameters and the direction to decrease in a two node tandem queue.
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1. Introduction

Our primary interest is to get asymptotic decay rates of tails in the stationary joint distri-
butions of population vectors in queueing networks under a light tail assumption on service
time distributions, where the population vector is the random vector whose i-th entry is
the number of customers at node i. Complete answers are obtained for the product form
networks, where the product form is meant that the stationary distribution of the whole
network state is of the product of its marginal distributions with respect to nodes in the
network. A typical example is a Jackson network. However, even for the Jackson network,
the product form solution is easily destroyed by small changes of modeling assumptions. For
instance, if service times of one server are changed to have a non-exponential distribution
and if customers who are served by this server join another node with a positive probabil-
ity, then we can not have the product form solution any more (e.g., see Corollary 11.11 of
[5]). Here, FIFO (First-In First-Out) service discipline is assumed for the Jackson network.
Unfortunately, for this class of networks, it is hard to get the stationary distributions of the
population vectors. So it is interesting to see their tail behaviors.

We are concerned with two network models. The first model is a generalized Jackson
network of single servers and a single class of customers, and we consider the asymptotic
decay rates of the stationary tail probabilities of its population vector. The generalized
Jackson network is a modification of the standard Jackson network in such a way that
arrival processes at nodes are replaced by renewal processes and service time distributions
at nodes are replaced by general distributions, while keeping all independence assumptions.
Another model of our interest is a batch movement network such that its population vector
is described by a continuous-time Markov chain. This model has been recently restudied,
and the product form distribution is obtained under various situations (see, e.g., [5, 28]).
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However, similar to the Jackson network, those product form solutions are easy to fail by
small changes.

In this paper, we are only concerned with the asymptotic decay rate, so we frequently
omit ”asymptotic”. The decay rates have been well studied for one dimensional distributions
in queueing models and their networks with acyclic routing. Specially, for single server
queues, they are obtained in terms of the moment generating functions of the accumulated
input processes for the queue length and waiting time distributions (see, e.g., [6, 11]). The
large deviation technique has been widely used for them as well as for networks with acyclic
routing (e.g., [3, 4]). However, it seems to be hard to apply the large deviation approach to
joint distributions in queueing networks. To the contrary, there have been appeared some
results on the decay rates for joint distributions in the recent years. Those consider product
form upper bounds for the tail probabilities (e.g., see [5, 9, 12–15, 21]). Particularly, linear
combination bounds in [14] is notable. Also certain necessary and sufficient conditions for
the product form bounds in [15] are suggestive. Those results help us to conjecture the
asymptotic decay rates.

Since there seems to be no standard definition for the decay rate of a multi-dimensional
distribution, we start with its definition, introducing a tail set and a direction vector along
which the tail set decreases. We then consider the decay rates in the generalized Jackson net-
work. For the case of tandem queues, Fujimoto and Takahashi [8] conjectured similar decay
rates based on numerical experience. We use some heuristics but more rely on theoretical
considerations, which enable to refine their conjectures and to consider more complicated
situations. A key idea is to represent the decay rate in a parametric form using the direction
vector. Based on this parametric form, we conjecture product form bounds and the decay
rates, which can be determined through max-min linear optimizations with certain convex
constraints. The conjectures are verified for the Jackson network, and are consistent with
known results for a two node tandem queue with exponential servers. We also consider this
tandem queue to see how the decay rates are changed according to modeling parameters
and the direction to move.

We next consider the batch movement network. This model is originally of a continuous-
time, but it is also described by a discrete-time Markov chain embedded at departure-arrival
instants. In this network, customers at different nodes may simultaneously depart and arrive
at different nodes, where batches of departures are first requested. A basic assumption is
that the requested departure sizes and the arrival sizes are independent of the network state,
but are subject to a generic joint distribution. Here, all the requested departures may not be
realized if there are less customers. Similar to the case of the generalized Jackson network,
we conjecture the decay rates as well as their product form bounds.

Through these two network models, an interesting observation is that the decay rates
belong to the boundaries of bounded convex sets under certain regularity conditions, if they
exist, while those convex sets are not hard to be identified. We work on how to choose
appropriate decay rates among them.

This paper is made up by seven sections. In Section 2, we give definitions of an asymp-
totic exponential form and its decay rates. Section 3 illustrates a derivation of the asymptotic
exponential form for a queue with a single waiting line. In Section 4, the generalized Jack-
son network is considered, and four conjectures on the decay rates are presented. Those
conjectures are examined for three examples in Section 5. Section 6 discusses the batch
movement network. We finally give some concluding remarks in Section 7.
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2. Decay Rates in Queueing Models

Let X be a nonnegative random variable. If there are positive constants ω, b such that

lim
x→∞P (X ≥ x)eωx = b, (2.1)

then, the distribution of X is said to have an asymptotically exponential tail with decay rate
ω and coefficient b. We also write (2.1) as

P (X ≥ x) ∼ be−ωx, x →∞.

Thus, ”∼” in this paper is slightly stronger than the same order in the conventional usage.
A weaker but still useful information is the rate ω itself. This is identified as

lim
x→∞

1

x
log P (X ≥ x) = −ω. (2.2)

We refer to this ω as an asymptotic decay rate or simply decay rate.
In many queueing applications, X is a stationary characteristic such as the waiting time

or queue length in the steady state. Suppose that the distribution of the X is obtained
through a function of an additive process Y (t) that represents a net input process of the
queue. Then, the ω may be obtained from the function ψ defined as

ψ(θ) = lim
t→∞

1

t
log E exp(θY (t)). (2.3)

For instance, if Y (t) is the total input minus the total potential output up to time t measured
from time 0 and if X is the stationary workload, then the decay rate ω is obtained as a root
of the equation ψ(θ) = 0 satisfying ψ′(θ) > 0, provided appropriate regularity conditions
(see [11]).

The function ψ is used to determine a rate function in Large deviation principle, LDP
in short. In this way, the decay rate is connected to LDP, and much work has been done
on this matter (see, e.g., [6, 11]). A significant feature of LDP is its applicability without
independence assumptions that typically appears in the classic queueing models such as
GI/GI/1 queue. It has been applied to one dimensional distributions in acyclic queueing
networks (see, e.g., [3, 4, 23, 24, 31]). However, LDP is more difficult to apply as dynamics
of a queue becomes more complicated, in particular, for queueing networks with feedback
routes. In this paper, we rather stick with the classical models, assuming various indepen-
dence assumptions, while allowing a general network structure.

We are concerned with a multi-dimensional distribution. So we first need to clarify what
is the decay rate of such a distribution. Let X be a k-dimensional nonnegative random
vector, and let 〈x,y〉 =

∑k
i=1 xiyi for vectors x,y ∈ IRk, where IRk is the k-dimensional

Euclidean space with metric |x| ≡ 〈x,x〉 1
2 . We may define a decay rate for X in the

following way.
Definition 2.1 A nonnegative vector c ∈ IRk is said to be a direction vector if |c| = 1. For
a convex set V and direction vector c, the distribution of X is said to have an asymptotic
exponential tail if there exist positive numbers ω and b such that

lim
x/|x|→c,|x|→∞

P (X ∈ x + V )eω|x| = b, (2.4)

where x + V = {x + y ∈ IRk; y ∈ V }. In this case, the set V and the scalar ω are said to
be a tail set and a decay rate with respect to c.
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Remark 2.1 In general, ω and b depend on direction c. When we need to specify this, we
write them as ω(c) and b(c), respectively.

Another definition of the decay rate is

lim
x→∞P (X ∈ xc + V )eωx = b. (2.5)

This is a slightly weaker than what we need for our discussions. For the convex set V , we
mainly take IRk

+ ≡ {y ∈ IRk; y > 0} and let x run over integer valued vectors. Namely,

lim
n/|n|→c,|n|→∞

P (X ≥ n)eω|n| = b.

Here, an inequality of vectors is of component-wise, i.e., x ≥ y if and only if xi ≥ yi for all
i. In a conjecture in Section 6, we also consider the decay rate defined as

lim
n→∞P (〈X, c〉 ≥ n)eωn = b.

This is equivalent to choosing V = {y ∈ IRk; 〈y, c〉 ≥ 0} in (2.5).

3. Queues with Single Waiting Lines

To illustrate our approach, we consider the GI/G/1 queue with FIFO service. For simplicity,
we first consider the waiting time, whose stationary distribution is well known to have the
asymptotic exponential tail under some regularity conditions. Let S and T be random
variables subject to the service time and inter-arrival time distributions, respectively. We
assume the stability condition, E(S) < E(T ), and there exists a θ0 < 0 such that E(e−θS) <
∞ for θ > θ0 and limθ↓θ0 E(e−θS) = ∞. The stability condition implies the existence
of the stationary waiting time distribution. Let W be a random variable subject to this
distribution. As is well known, if W is independent of S − T , then

P (W > x) = P (W + S − T > x), x ≥ 0. (3.1)

We tentatively assume that W has an asymptotic exponential tail with rate ω, i.e., for some
b > 0,

lim
x→∞P (W > x)eωx = b (3.2)

We rewrite (3.1) as

eωxP (W > x) =
∫ +∞

−∞
eω(x−u)P (W > x− u)eωudP (S − T ≤ u), x ≥ 0. (3.3)

Since eωxP (W > x) ≤ 1 for all x ≥ 0 by Kingman’s inequality (see [16]), the bounded
convergence theorem yields

lim
x→∞ eωxP (W > x) =

∫ +∞

−∞
beωudP (S − T ≤ u).

Hence, using the notation f̂(θ) = E(e−θT ) and ĝ(θ) = E(e−θS), the ω must satisfy

f̂(ω)ĝ(−ω) = 1. (3.4)
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By the convexity of the function ψ(θ) ≡ f̂(θ)ĝ(−θ) and the stability condition E(S) < E(T ),
we can indeed find a unique root ω > 0 of equation (3.4). Furthermore,

ψ′(ω) = E
(
(S − T )eω(S−T )

)
> 0. (3.5)

The following arguments due to Feller [7] verify (3.2). Let {Un; n ≥ 1} be a sequence
of independent random variables that have the same distribution as U ≡ S − T , and let
{Yn; n ≥ 0} be the random walk generated by {Un; n ≥ 1}, i.e., Yn = U1 + . . . + Un with
Y0 = 0. We modify this random walk in the following way. Firstly change U ≡ S− T to U∗

subject to the distribution:

dP (U∗ ≤ x) = eωxdP (U ≤ x), (3.6)

which is indeed a distribution because of (3.4). This distribution and the ω are said to be
twisted and a twisting factor, respectively. Secondly let {U∗

n} be a sequence of independent
random variables that have the same distribution as U∗, and define Y ∗

n = U∗
1 + . . .+U∗

n with
Y ∗

0 = 0. The random walk {Y ∗
n } has a positive mean drift given by (3.5). Let Hn and H∗

n be
the n-th ascending ladder height distributions of {Yn; n ≥ 0} and {Y ∗

n ; n ≥ 0}, respectively.
Then,

eω(x1+...+xn)dx1 . . . dxnP (Y1 ≤ x1, . . . , Yn ≤ xn) = dx1 . . . dxnP (Y ∗
1 ≤ x1, . . . , Y

∗
n ≤ xn).

implies

eωxdH1(x) = dH∗
1 (x).

As is well known, W has the same distribution as maxn≥0 Yn. Then, the distribution of W
can be represented as

P (W ≤ x) =
∞∑

n=0

Hn(x)(1−H1(+∞)),

since the random walk never goes above the present level with probability (1 −H1(+∞)).
Since Hn and H∗

n are n times convolutions of H1 and H∗
1 , respectively, this yields

dP (W ≤ y) = (1−H1(+∞))
∞∑

n=0

e−ωydH∗
n(y).

Hence, integrating over [x,∞) and multiplying eωx, we have

eωxP (W > x) = (1−H1(+∞))
∫ ∞

0

∞∑

n=0

e−ωydH∗
n(y + x).

Since Y ∗
n has the positive drift by (3.5), the key renewal theorem concludes

lim
x→∞ eωxP (W > x) =

(1−H1(+∞))

E(U∗)

∫ ∞

0
e−ωydy =

(1−H1(+∞))

ωE(U∗)
.

This proves (3.2) as claimed. Similar results are obtained for batch arrival queues in [25].
The above arguments are known to be hard to apply for other systems such as many

server queues. However, using the matrix geometric approach, similar results have been
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obtained for GI/PH/s queues, i.e., the s server queue with renewal arrival process and
phase type service time distributions. We here simply refer to the results due to Takahashi
[30]. We use the same notation for random variables T and S and the Laplace-Stieltjes
Transform (LST) f̂ and ĝ for the interarrival and service times. Let L, R0 and R1, . . . , Rs

be random variables subject to the stationary joint distribution of the queue length, the
remaining interarrival time and the remaining service times at servers 1 to s, respectively,
where we assume the stability condition ES < sET . It is easy to see that there exists a
unique positive root ω of the equation:

f̂(sω)ĝ(−ω) = 1. (3.7)

Let η = f̂(sω). Then, it is obtained in [30] that, for some b > 0,

lim
n→∞ ηnP (L = n,Ri ≤ xi, i = 0, . . . , s) = bF ∗

e (x0)G
∗
e(x1) . . . G∗

e(xs), (3.8)

where F ∗
e and G∗

e are nondecreasing functions such that

dF ∗
e (x)

dx
=

ωs

1− f̂(sω)
e−ωs xP (T > x),

dG∗
e(x)

dx
=

ω

ĝ(−ω)− 1
eωxP (S > x).

Note that these distributions correspond with the twisted distribution (3.6) with respect to
Fe and Ge, respectively, where they are defined as

Fe(x) =
1

ET

∫ x

0
P (T > y)dy, Ge(x) =

1

ES

∫ x

0
P (S > y)dy.

Similar exponential forms are also obtained for heterogenous servers (see [2, 22, 26, 27]).
From the queues with single waiting lines, we can observe the following facts. First,

the exponential decay rates is expected to exist under mild regularity conditions. Secondly,
once the existence of the exponential decay rates is assured, they are identified by solving
the stationary equations at off boundaries. Thirdly, the remaining arrival and service times
are asymptotically independent of the queue length. The second observation may not be
true for queueing networks, since the stationary distributions are multi-dimensional. Thus,
we may need to choose appropriate rates among those satisfying off-boundary stationary
equations. In what follows we consider this scenario.

4. Generalized Jackson Networks

In this section, we present conjectures on the asymptotic decay rates for the generalized
Jackson network. We first describe this network. The network has k nodes of single servers,
numbered 1, 2, . . . , k. The outside is denoted by node 0. At each node i 6= 0, exogenous
customers arrive according to a renewal process with interarrival time distribution Fi, which
is either a proper distribution or a defective distribution such that Fi(+∞) = 0. The latter
represents the case that no exogenous customers arrive at node i. All nodes have infinite
waiting capacity, all arriving customers are served in the FIFO manner, and their service
times at node i are subject to common distribution Gi. A customer who completes service
at node i 6= 0 immediately goes to node j, including j = 0, with probability rij. Hence it is
assumed that

k∑

j=0

rij = 1, i = 1, . . . , k.
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We assume that stochastic matrix {rij; i, j = 0, 1, . . . , k} is irreducible, where r0i’s are chosen
in such a way that

∑k
j=0 r0j = 1 with r00 = 0 and r0i > 0 if there are exogenous arrivals at

node i. For example, we can choose them such that ri0 is proportional to the mean arrival
rate at node i. However, we only use them for the irreducible condition, and their actual
values are of no importance for us. If all the interarrival time and service time distributions
are exponential, then this model is the Jackson network with single servers and a single class
of customers. So, we refer to it as a generalized Jackson network. We shall use the following
notation. Let Ti and Si denote random variables subject to Fi and Gi, respectively. Their
LST’s are denoted by f̂i(θ) and ĝi(θ), i.e.,.

f̂i(θ) = E(e−θTi), ĝi(θ) = E(e−θSi), i = 1, . . . , k.

We assume that the network is stable, i.e., an appropriate stationary distribution exists.
To give conditions for this, we need to solve the traffic equations. Let λi = 1/E(Ti) if
Fi(∞) = 1, and λi = 0 otherwise. Then, the traffic equations are

αi = λi +
k∑

j=1

αjrji, i = 1, . . . , k. (4.1)

These equations have a unique nonnegative solution (α1, . . . , αk) because of the irreducible
assumption. It is known that the network is stable if the following conditions hold together
with a mild regularity condition, called spread out, on Fi or Gi (e.g., see [18, 29]).

ρi = αiE(Si) < 1, i = 1, . . . , k. (4.2)

We assume these stability conditions throughout the paper. Similar to the case of the
GI/G/1 queue, we also assume the light tail assumption that, for each i and some θ0

i < 0,
which may be −∞,

ĝi(θ) < ∞, for θ > θ0
i and lim

θ↓θ0
i

ĝi(θ) = ∞. (4.3)

This condition is meant that the tail probabilities of service times decay exponentially fast.
More specifically, it allows the decay such as xβe−αx with α > 0 for β ≥ −1 but may not
for β < −1. It includes a large class of the conventional distributions such as a phase type
with finite a phase space, uniform distributions and their convolutions and mixtures.

We describe the network state at time t by the following notation. Let Xi(t) be the
number of customers in node i, and define the k-dimensional random vector:

X(t) = (X1(t), . . . , Xk(t)).

Let Ra
i (t) and Rs

i(t) be the remaining arrival and service times, respectively, and define

Ra(t) = (Ra
1(t), . . . , R

a
k(t)), Rs(t) = (Rs

1(t), . . . , R
s
k(t)).

Then, the network state at time t is given by

Y (t) = (X(t),Ra(t), Rs(t)).

Clearly, {Y (t)} is a Markov process, and it has the stationary distribution under the stability
condition (4.2). So we can assume without loss of generality that {Y (t)} is a stationary
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process. In what follows we omit arguments ”t” for stationary random vectors such as X
for X(t).

We next derive the balance equations in the steady state. To this end, we use the
following notation.

ϕ(n,θ,η) = E
(
e−〈θ,Ra〉−〈η,Rs〉; X ≥ n

)
,

ϕa
i (n,θ,η) = Ea

i

(
e−〈θ,Ra−〉−〈η,Rs−〉; X− ≥ n

)
,

ϕd
i (n,θ, η) = Ed

i

(
e−〈θ,Ra−〉−〈η,Rs−〉; X− ≥ n

)
,

where Ea
i and Ed

i stand for the expectations concerning Palm distributions with respect to
the arrival and departure point processes at node i, respectively, and Ra−, Rs− and X− are
Ra, Rs and X, respectively, just before the arrival or departure instants. Then, applying
the rate conservation law (c.f. [19]), we have

(
k∑

i=1

(θi1(λi 6= 0) + ηi)

)
ϕ(n,θ, η) =

k∑

i=1

λi

(
ϕa

i (n, θ, η)− ϕa
i (n− ei, θ, η)f̂i(θi)

)

+
k∑

i=1

k∑

j=0

1(i 6= j)αi (ϕ
d
i (n,θ, η)− ϕd

i (n + ei − ej, θ, η)ĝi(ηi)) rij

+
k∑

i=1

αi (ϕ
d
i (n,θ,η)− ϕd

i (n,θ,η)ĝi(ηi)) rii, n > 0, (4.4)

where ei is the unit vector whose i-th entry is 1. This equation can be considered as the
balance equation that the rate of continuous state changes are equated with those of jump
transitions due to arrivals and departures.

We tentatively assume that there exists τ > 0 such that, for large n,

ϕ(n,θ,η) ∼ ϕ̃(θ, η)e−〈τ ,n〉, i = 1, 2, . . . , k, (4.5)

where ϕ̃ is a joint LST of a 2k-dimensional distribution. This is similar to (3.8). However,
we do not assume the asymptotic independence of Ra

i and Rd
i , but the key issue is the

asymptotic independence of the queue length and these characteristics. Since τ may depend
on the direction of increasing n, we make (4.5) precise in the following way. For each
direction vector c, there exist positive vector τ , b(c) and LST ϕ̃(θ,η) of a 2k-dimensional
distribution such that

lim
n/|n|→c,|n|→∞

ϕ(n, θ, η)e〈τ ,n〉 = b(c)ϕ̃(θ,η), (4.6)

where τ may depend on c. Let ω = 〈τ , c〉, then 〈τ , n〉 ∼ ω|n| for large |n| such that n ∼
c|n|. Hence, (4.6) implies that X has the decay rate ω for direction c (see Definition 2.1).
In our arguments, τ will have an important role, and it will be clear the reason why we use
vector τ rather than scalar ω.

For our arguments, we also need similar asymptotics for ϕa
i and ϕd

i , i.e., the embedded
distributions at arrivals and departures. We note the following fact, which is proved in
Appendix A.
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Lemma 4.1 The decay rates at departure and exogenous arrival instants at node i are
identical with the decay rate at an arbitrary point in time if the distributions of Ti and Si

have failure rates that are bounded above and away from 0 in the extended sense, which is
meant for Si that, for each bounded continuous and positive function v, there exist positive
constants a, b such that, for any y ≥ 0,

a
∫ ∞

y
v(x)(1−Gi(x))dx ≤

∫ ∞

y
v(x)dGi(x) ≤ b

∫ ∞

y
v(x)(1−Gi(x))dx. (4.7)

For example, phase type distributions with finite phase spaces and uniform distributions
satisfy condition (4.7). This lemma suggests that the common decay rate can be expected
for ϕa

i and ϕd
i . So, we conjecture

Assumption 4.1 For each direction vector c > 0, there are nonnegative vector τ , constants
bu
i (c), u = a,d, and a function ϕ̃u

i (θ, η) such that

lim
n/|n|→c,|n|→∞

ϕu
i (n,θ,η)e〈τ ,n〉 = bu

i (c)ϕ̃u
i (θ,η), u = a,d, i = 1, 2, . . . , k. (4.8)

Remark 4.1 (i) Similar to (4.6), (4.8) implies that the decay rate of X is 〈τ , c〉 for direction
c. Note that we here restrict c to be positive.
(ii) The τ in (4.8) is independent of i but may depend on c, so it may be better to write it
as τ (c). However, the latter notation is rather inconvenient for our arguments, so we keep
τ as it is.
(iii) Obviously, τ can be represented by t whose i-th entry is ti = e−τi . Sometimes the latter
is convenient for tail decay rates, but we work on τ to prevent possible confusions.

Note that Assumption 4.1 implies (4.6). This is verified using (4.4). Multiply both sides
of it with e〈τ ,n〉 and let |n| go to infinity in such a way that n/|n| goes to c, then the limit
in (4.6) is uniquely determined by Assumption 4.1. It is not hard to see that this limit can
not be identically zero, by choosing sufficiently large ηi’s. We shall use Assumption 4.1 as
a starting assumption. This is the reason that we do not term it as a conjecture but as an
assumption, although it is nothing but a conjecture.

Let us consider implications of Assumption 4.1. We first let

k∑

j=1

(θj1(λj 6= 0) + ηj) = 0. (4.9)

Then, multiplying both sides of (4.4) with e〈τ ,n〉 and applying (4.8), we have

k∑

i=1

λib
a
i (c)ϕa

i (θ,η)
(
1− eτi f̂i(θi)

)

+
k∑

i=1

αib
d
i (c)ϕd

i (θ, η)


1− ĝi(ηi)e

−τi

k∑

j=0

rije
τj


 = 0, (4.10)

where τ0 = 0. We choose θi such that

1 = eτi f̂i(θi), λi > 0, i = 1, . . . , k, (4.11)

then the first summation of (4.10) is dropped. Because of the restriction (4.9), we next
choose ηi except one i, say i0, such that

eτi = ĝi(ηi)

(
ri0 +

k∑

j=1

rije
τj

)
, i = 1, . . . , k, (4.12)
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but (4.10) implies that (4.12) has to hold also for i = i0. Thus, the conditions (4.9), (4.11)
and (4.12) are necessary if the asymptotic property (4.8) holds true. We define

L0 = {τ = (τ1, . . . , τk) ≥ 0; (4.9), (4.11) and (4.12) hold}.
Remark 4.2 If k = 1, then L0 is a singleton, so τ1 is uniquely determined. This τ1 agrees
with the well known decay rate for the GI/G/1 queue.

Lemma 4.2 Let L0 be the set of all τ ≥ 0 which satisfy, for some η1, . . . , ηk ∈ IR,

k∑

j=1

(f̂−1
j (e−τj)1(λj 6= 0) + ηj) ≤ 0, (4.13)

ĝi(ηi)e
−τi

(
ri0 +

k∑

j=1

rije
τj

)
≤ 1, i ∈ J ≡ {1, 2, . . . , k}, (4.14)

where f̂−1
i (t) = inf{θ; f̂i(θ) > t}, i.e., the inverse function of f̂i, for i such that λi > 0. Then,

L0 is convex, and includes L0 on its boundary. Furthermore, if all η0
i = inf{η ∈ IR; ĝi(η) <

∞} are finite, then L0 is bounded.
Proof. Since f̂i(θ) is a decreasing convex function on the region that f̂i(θ) < ∞, f̂−1

i (t)
is also a decreasing and convex for t > 0, and (4.11) is equivalent to

θi = f̂−1
i (e−τi), λi > 0, i = 1, . . . , k,

Hence, (4.13) and (4.14) with equalities are equivalent to (4.9), (4.11) and (4.12) concerning
η and τ , where η = (η1, . . . , ηk). This also implies that L0 is on the boundary of L0. Since
the left-hand sides of (4.13) and (4.14) are convex functions of η and τ , (4.13) and (4.14)
constitute convex sets in IR2k, so L0 is a convex set in IRk. The remaining part is proved
in the following way. Since all ηi is bounded below and f̂−1

j (e−τj) is increasing in τj, (4.13)
imply that τi’s are bounded if λi > 0. Furthermore, (4.13) simultaneously implies that ηi

are all bounded above, so ĝi(ηi) are all bounded below. Let J0 = {i ∈ J ; λi > 0}, and
Jn = {j ∈ J \ Jn−1; rij > 0,∃i ∈ Jn−1} for n = 1, 2, . . .. If j ∈ J1, then (4.14) with i ∈ J0

satisfying rij > 0 implies that τj is bounded because ĝi(ηi) is bounded below. Similarly, we
can inductively show that τi is bounded for i ∈ Jn with n ≥ 2. Since ∪k−1

n=0Jn = J by the
irreducibility of {rij}, we see that L0 is bounded.

Note that L0 is the set of the τ ’s which may be the decay rates for appropriate directions.
However, all the τ ’s may not be so. Hence, we need to exclude infeasible τ ’s. To this end,
we consider the decay rates for the marginal distributions.

Let us consider the case that one entry of n, say ni, is increased. In this case, the
decay rate would be compensated by the twisted service time distribution of node i with
the twisting factor −ηi > 0, while the other nodes behave normally, i.e., ηj > 0 for j 6= i.
Thus, we define

τ 0
i = sup{τi ≥ 0; τ ∈ L0 and ηj ≥ 0 for all j 6= i}, (4.15)

where the equality for ηj is included so as to always attain the supremum. One may wonder
whether this τ 0

i gives the decay rate for the marginal distribution at node i. Unfortunately,
this is not true in general, since other τ 0

j may further restrict L0 as we shall see in Example 5.2
(see case (b)). Thus, our first conjecture is
Conjecture 4.1 The decay rate for the marginal queue length distribution at node i is
bounded by τ 0

i .
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Remark 4.3 Consider the case that k = 2, λ2 = 0 and r12 = r20 = 1, i.e., the two node
tandem queue. Suppose that S1 ≡ 0, so arriving customers at node 1 immediately go to node
2. This model reduces to the single node queue, and the decay rate is known as mentioned
in Section 3. We here consider whether conditions (4.9), (4.11) and (4.12) are compatible
with this known result. It is easy to see that they are equivalent to τ1 = τ2 = log(ĝ2(η2))
and

f̂1(−η1 − η2)ĝ2(η2) = 1. (4.16)

Hence, τ2 = log(ĝ2(η2)) can be arbitrarily large by choosing sufficiently small η1, so the
result is not compatible with the single node case. On the other hand, if η1 is restricted
to η1 ≥ 0, then τ2 is maximized under (4.16) when η1 = 0. This is indeed compatible
with the single node case. Thus, the restriction by τ 0

i in Conjecture 4.1 is really important.
This example also shows why the finiteness of η0

i is assumed for the boundedness of L0 in
Lemma 4.2 since η0

1 = −∞ and L0 is unbounded in this case.

We next consider a uniform bound for the tail probability in such a way that, for some
positive C and some τ ∈ L0,

P (X ≥ n) ≤ Ce−〈τ ,n〉, n ≥ 0. (4.17)

In general, such a τ may not serve a tight bound. However, if we can find the τ satisfying
(4.17) such that 〈τ , c〉 is maximized on the convex set L0, then the τ must be the decay
rate for the direction c. As we shall see later, this is not a rare case.

Let us consider a possible class of τ for (4.17). Since the τi can not be greater than the
decay rate of the marginal distribution of node i, we restrict L0 to

L{i} = {τ ∈ L0; τi ≤ τ 0
i },

and to ∩k
i=1L{i}. We make further restrictions by higher dimensional marginals. For each

subset B ⊂ J , let τ (B) be the |B|-dimensional vector whose i-th entry is τi for i ∈ B. Then,
let

T (B) = {τ (B) ≥ 0(B); (4.9), (4.11) and (4.12) hold for ηj ≥ 0,∀j ∈ J \B},

where 0(B) is the |B|-dimensional zero vector. Note that T (J) = L0. We define

LB = {τ ∈ L0; τ (B) ≤ τ ′(B),∃τ ′(B) ∈ T (B)}.

Clearly this definition is compatible with L{i} for B = {i}. Then, we let

L∗J = ∩B⊂JLB.

Intuitively, this restriction for τ is necessary to get the product form bound (4.17), since
the τ should bound all marginal distributions. As we shall see in Section 6, this type of
restrictions also appears in the batch movement network, and is known to be necessary and
sufficient (see (i) of Remark 6.1). This suggests us to conjecture

Conjecture 4.2 For each τ ∈ L∗J , there exists positive constant C for (4.17). In particular,
τ 1
i ≡ sup{τi; τ ∈ L∗J} is the decay rate of the marginal distribution.
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Remark 4.4 Makimoto [17] also suggested a similar one to Conjecture 4.2. For k = 2,
Katou and Makimoto [12] (see also [13]) consider a slightly different version of Conjecture 4.2
for a phase type model, in which interarrival and service times have phase type distributions.
In our notation, they introduce

F1 = {τ ∈ L0; η2 > 0, τ2 ≤ τ 0
2 }, F2 = {τ ∈ L0; η1 > 0, τ1 ≤ τ 0

1 },
and show that τ ∈ F1 ∪ F2 implies (4.17). In the recent paper [14], it is conjectured that
τ i ≡ sup{τi; τ ∈ Fi} is the decay rate of the marginal distribution at node i. It is not
difficult to see from (4.14) that F1 ∪ F2 is identical with L∗J for k = 2. Hence, τ i = τ 1

i , and
Conjecture 4.2 is compatible with the conjecture of [14].

As we mentioned, Conjecture 4.2 only gives product form upper bounds, and it may not
include the best τ that gives exact decay rates. Recently Katou and Takahashi [14] found
a very interesting bound for the tail probability for a 2-node generalized Jackson network
with phase-type distributions, i.e., for k = 2. They show that, if τ 1 ∈ L{1} and τ 2 ∈ L{2},
there exist positive constants C1 and C2 such that

P (X ≥ n) ≤ C1e
−〈τ 1,n〉 + C2e

−〈τ 2,n〉, n ≥ 0. (4.18)

This would suggest the next conjecture.
Conjecture 4.3 Let L∗B = ∩B′⊂BLB′ for B ⊂ J . Then, for each partition A of J and each
τB ∈ L∗B for B ∈ A, there exist positive constant CB’s such that

P (X ≥ n) ≤ ∑

B∈A
CBe−〈τ B ,n〉, n ≥ 0, (4.19)

Remark 4.5 For A = {J}, this conjecture reduces to Conjecture 4.2, while, for k = 2 and
A = {{1}, {2}}, it reduces to (4.18).

Suppose that we have listed up all possible bounds and the corresponding sets of τ .
Since the exact decay rate should be the minimum among all upper bounds, we arrive at

Conjecture 4.4 For each direction c, the decay rate, denoted by ω(c), is obtained as

ω(c) = max
A∈P(J)

min
B∈A

sup{〈τ , c〉; τ ∈ L∗B}, (4.20)

where P(J) is the set of all partitions of J .

To find the decay rate ω(c) in Conjecture 4.4, a key step is to find ωB(c) such that

ωB(c) = sup{〈τ , c〉|τ ∈ L∗B}. (4.21)

Let us introduce some convenient notation to find this ωB(c). A subset V of IRk is said to
be a positive lower set if

x ∈ V,0 ≤ y ≤ x implies y ∈ V.

Let M(L) be the minimum lower set that includes a set L, which always exists since a
common set of positive lower sets are also a positive lower set. Let

D(L) = ∂(M(L)) ∩ L,

where ∂(M(L)) is the boundary of M(L). Then, we clearly have

ωB(c) = sup{〈τ , c〉|τ ∈ D(L∗B)}. (4.22)

Since D(L∗B) is included in the boundary of the convex set L0 and z = 〈τ , c〉 is a line with
respect to variable τ for each fixed z, the z can be maximized when the line, z = 〈τ , c〉,
contacts the curve D(L∗B), i.e., becomes a tangent. Thus, there is a unique τ that attains
ωB(c) in (4.22) (hence in (4.21)). Figure 1 illustrates this computation.
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Figure 1: Geometric interpretation of ωB(c)

5. Examples

An interesting feature of Conjectures 4.2 and 4.4 are their computability. We consider three
examples, the Jackson network, a two node tandem queue and a two node network with
feedback routes. Some numerical computations are made for the second model.

Example 5.1 (Jackson network) Consider the Jackson network, i.e., the case that all
interarrival and service time distributions are exponential. For simplicity, it is assumed that
rii = 0 for all i. Let µi be the service rate at node i. Then,

f̂i(θi) =
λi

λi + θi

for λi > 0, ĝi(ηi) =
µi

µi + ηi

.

Substituting these into (4.11) and (4.12), we have

θ` = λ`(e
τ` − 1), (5.1)

η` = µ`

(
e−τ`r`0 + e−τ`

k∑

j=1

r`je
τj − 1

)
, (5.2)

where we let θ` = 0 if λ` = 0. This convention keeps condition (4.11) unchanged. Substi-
tuting these θ` and η` into (4.9), we get

k∑

`=1

(
λ`e

τ` + µ`e
−τ`r`0 + µ`e

−τ`

k∑

j=1

r`je
τj

)
=

k∑

`=1

(λ` + µ`). (5.3)

Fix an arbitrary i ∈ J . We first consider how a point on L0 satisfying η` = 0 for ` 6= i is
located. Such a point may serve the supremum of (4.15). Substitute (5.1) and (5.2) into
(4.9) with ηj = 0 for j 6= i, then we have

eτ` = r`0 +
k∑

j=1

r`je
τj , ` 6= i,

eτi = ri0 +
k∑

j=1

rije
τj +

k∑

j=1

λj

µi

(eτj − 1)eτi .

Denote non zero solution τ of these equations by τ (i). Substituting r`0 = 1−∑
j 6=i r`j, these

equations are changed to

eτ
(i)
` − 1 =

k∑

j=1

r`j(e
τ
(i)
j − 1), ` 6= i, (5.4)
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eτ
(i)
i − 1 =

k∑

j=1

rij(e
τ
(i)
j − 1) +

k∑

j=1

λj

µi

(eτ
(i)
j − 1)eτ

(i)
i . (5.5)

Let u be the column vector whose j-th entry is eτ
(i)
j − 1, λ be the row vector whose j-th

entry is λj and ej be the unit vector whose j-th entry is unit and the other entries are zero.
Let R be the k × k matrix whose ij entry is rij. Then, equations (5.4) and (5.5) can be
written as

(I −R)u =
eτ

(i)
i

µi

〈λ, u〉ei.

Since R is substochastic, I −R is invertible,

u =
eτ

(i)
i

µi

〈λ,u〉(I −R)−1ei. (5.6)

Let α be the row vector whose j-th entry is the mean arrival rate αj for j = 1, 2, . . . , k.
Since α = λ(I − R)−1 and 〈λ, u〉 6= 0, multiplying both sides of (5.6) with λ from the left
yields

e−τ
(i)
i =

αi

µi

. (5.7)

Comparing the i-th components of (5.6), we also have

〈λ,u〉 =
(µi − αi)

nii

, (5.8)

where nij is the ij-entry of (I −R)−1, which is the mean visiting number at node j when a
customer departs at node i. If i = j, then it counts the departing node j = i as well. From
(5.4) and (5.7), u and hence τ (i) is uniquely determined. In particular, all the components
of τ (i) are positive.

For each i ∈ J , let

Mi = {τ ∈ L0; η` ≥ 0, for all ` 6= i}.

We next show that τ
(i)
` = m

(i)
` ≡ sup{τ`; τ ∈ Mi}, for ` 6= i, which we call that τ (i) is the

right-end point of Mi. On the contrary, τ (i) is the left-end point of Mi if τ
(i)
` = m

(i)
` ≡

inf{τ`; τ ∈Mi}, for ` 6= i. Let Ti be the set of all τ ≥ 0 such that

eτ` ≤ r`0 +
k∑

j=1

r`je
τj , ` 6= i. (5.9)

In the view of (5.2), the inequalities (5.9) are equivalent to η` ≥ 0, for all ` 6= i. Let R(i)

be the submatrix of R that the i-th row and column are deleted. Since (I(i) − R(i))−1

is a nonnegative matrix, where I(i) is the k − 1-dimensional identity matrix, (5.9) can be
rewritten as

eτ` ≤ ∑

j 6=i

n
(i)
`j rj0 + eτi

∑

j 6=i

n
(i)
`j rji, ` 6= i,
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where n
(i)
`j is the `j entry of (I(i) − R(i))−1. Hence, sup{τ`; τ ∈ Mi} is attained on the

boundary of Ti. Thus, τ (i) is either the right-end or the left-end point. We now let τ (i) be
the τ vector such that its i-th entry is − log(λi/µi) and the other entries are all zero. Then,
it is easy to see that τ (i) ∈ L0. Furthermore, from (5.2) with τ = τ (i),

η` = µ`r`i

(
µi

λi

− 1
)

> 0, ` 6= i.

Hence, τ (i) is in Mi. Obviously, it must be the left-end point, since all its entries except
the i-th entry are zero (see Figure 2). Hence, τ (i) must be the right-end point. Define τ ∗ as

τ ∗ ≡ (τ
(1)
1 , τ

(2)
2 , . . . , τ

(k)
k ).

It is easy to check that this τ ∗ satisfies (5.3), so it is on the boundary L0. We shall show
that

D(L∗J) = {τ ∗}. (5.10)

First consider the case that τ
(i)
i = m

(i)
i ≡ sup{τi; τ ∈ Mi} for all i ∈ J . In this case, τ ∗

clearly bounds all τ ∈ L∗J . This typically happens (see Figure 2 for the case that k = 2).

We next consider the case that there is an i ∈ J such that τ
(i)
i 6= m

(i)
i . In this case, we have

η  > 0
1

η  > 0
2

(τ  ,     )1 τ2
(1) (2)

0

η  = 0
1

η  = 0
2

τ 2

τ 1

−log(λ /µ )1 1

−log(λ /µ )2 2

0.2 0.4 0.6

0.2

0.4

0.6

2

(τ  ,     )1 τ2
(2) (2)

(τ  ,     )1 τ2
(1) (1)

1

(τ  ,     )j τi
(j) (i) (τ  ,     )j τi

(i) (i)

(τ  ,     )j τi
(j) (j)

τ i

τ j

(i)τi

(i)τj
(j)τj

j

i

(j)τi

i

j

(0,    )τi
(i)−

Figure 2: τ for Jackson network (k = 2) Figure 3: The case of τ
(j)
j < τ

(i)
j on τj-τi plane

τ ∗ ≤ τ (i) and τ ∗ 6= τ (i) since τ (i) is the right-end point of Mi and both of τ (i) and τ ∗ are
on the boundary L0 of the convex set L0 (see Figure 3). Hence, τ

(j)
j = − log(αj/µj) < τ

(i)
j

for j 6= i. Then, on the τj-τi plane, we can see that three points (0, τ
(i)
i ), (τ

(j)
j , τ

(i)
i ) and

(τ
(i)
j , τ

(i)
i ) are in the projection of Mi, and that

(0, τ
(i)
i ) < (τ

(j)
j , τ

(i)
i ) ≤ (τ

(i)
j , τ

(i)
i ).

See Figure 3 for these points. This obviously implies that

τ
(i)
i = sup{τi; τ ∈Mi, τj ≤ τ

(j)
j }.

Combing those two cases yields that ∩i∈JL{i} = {τ ∗}. Since τ ∗ ∈ LB for any B ⊂ J , we
have (5.10).



Decay Rates of Tail Probabilities 89

From (5.10), Conjecture 4.2 implies the product form bound with τ ∗, which is fully
compatible with the product form solution of the Jackson network. Furthermore, for any
partition A of J , it can be shown that minB∈A sup{〈τ , c〉; τ ∈ L∗B} is attained by τ ∗. Hence,
ω(c) of (4.20) is given by

ω(c) = 〈τ ∗, c〉.

This is also compatible with the product form solution of the Jackson network.

Example 5.2 (2-node tandem queue) We next consider a two-node tandem queue. For
a general two node network, which we also discuss in the next example, Katou and Takahashi
[14] gave an interesting classification. They introduced

τ̂1 = sup{τ1; τ ∈ L0; τ2 = τ 2}, τ̂2 = sup{τ2; τ ∈ L0; τ1 = τ 1},

and classified the set of τ that gives the decay rate ω of (4.20) into three types according to
three possible cases: (1) τ̂1 = τ 1 or τ̂2 = τ 2, (2) τ̂1 < τ 1 and (3) τ̂1 > τ 1. We here consider
another type of classifications, which are directly related to modeling parameters.

We describe a two node tandem queue in the following way. Node 1 has exogenous
arrivals subject to the renewal process with a generic inter-arrival time distribution F1 with
LST f̂1 and mean 1/λ1, and the service time distributions G1 and G2 with LST ĝ1 and ĝ2 and
means 1/µ1 and 1/µ2, respectively. Obviously, the stability condition is λ1 < min(µ1, µ2),
which is assumed here.

We first consider the simpler case that both servers have exponentially distributed service
times. This case has been studied in [10] for the decay rates of the marginal distributions, so
it is convenient to see how our conjectures, in particular, Conjecture 4.1, work. Furthermore,
it turns out that this simpler model is essential to study the case of generally distributed
service times. Similar to Example 5.1, condition (4.12) becomes

η1 = µ1(e
−τ1+τ2 − 1), η2 = µ2(e

−τ2 − 1),

while (4.9) and (4.11) yield

f̂1(µ1(1− e−τ1+τ2) + µ2(1− e−τ2)) = e−τ1 . (5.11)

Let γ1 (γ2) be the positive solution τ1 (τ2) of these equations when η2 = 0 (η1 = 0, respec-
tively). By the stability condition, these γ1 and γ2 are uniquely determined as the solution
of the equations

f̂1(µ1(1− e−γ1)) = e−γ1 , f̂1(µ2(1− e−γ2)) = e−γ2 .

Since f̂1 is a decreasing function, it is easy to see that γ1 ≤ γ2 if and only if µ1 ≤ µ2. We
next let (u1, u2) be the contact point of (5.11) with the horizontal line τ2 = u2 > 0. This
point can be obtained as the solution (τ1, τ2) of (5.11) and the contact condition:

−µ1f̂
′
1(µ1(1− e−τ1+τ2) + µ2(1− e−τ2)) = e−τ2 . (5.12)

Similarly, let (v1, v2) be the contact point of (5.11) with the vertical line τ1 = v1 > 0. Let
σ1 be a solution τ1 of (5.11) with τ2 = γ2 such that τ1 6= γ2, and let σ2 be a positive solution
of τ2 of (5.11) with τ1 = γ1 such that τ2 6= γ1. These solutions uniquely exist. Then, there
arise five different cases, where J = {1, 2}.
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Figure 4: Tandem case (a) Figure 5: Tandem case (b)

(a) γ1 ≤ γ2 and u1 ≤ γ1: τ 1
2 = u2, D(L∗J) = {τ ∈ L0; τ1 ∈ [u1, γ1]},

D(L∗{1}) = {τ ∈ L0; τ1 ∈ [u1, γ1]} and D(L∗{2}) = {τ ∈ L0; τ1 ∈ [u1, v1]}.
(b) γ1 ≤ γ2 and u1 > γ1: τ 1

2 = σ2, D(L∗J) = {(γ1, σ2)},
D(L∗{1}) = {(γ1, σ2)} and D(L∗{2}) = {τ ∈ L0; τ1 ∈ [u1, v1]}.

(c) γ1 > γ2 and u1 ≤ γ2: τ 1
2 = u2, D(L∗J) = {τ ∈ L0; τ1 ∈ [u1, γ1]},

D(L∗{1}) = {τ ∈ L0; τ1 ∈ [u1, γ1]} and D(L∗{2}) = {τ ∈ L0; τ1 ∈ [u1, v1]}.
(d) γ1 > γ2, u1 > γ2 and σ1 ≤ γ1: τ 1

2 = γ2, D(L∗J) = {τ ∈ L0; τ1 ∈ [σ1, γ1]},
D(L∗{1}) = {τ ∈ L0; τ1 ∈ [σ1, γ1]} and D(L∗{2}) = {τ ∈ L0; τ1 ∈ [σ1, v1]}.

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

(γ  , σ )1 2

(u  , u )1 2

γ1

γ2

η  < 0
1

η  > 0
1

η  = 0
1

τ 1

τ 2

(v  , v )1 2

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

γ1

γ2

η  < 0
1

(σ , γ )1 2

(γ  , σ )1 2

η  > 0
1

τ 2

τ 1

(v  , v )1 2

Figure 6: Tandem case (c) Figure 7: Tandem case (d)

(e) γ1 > γ2, u1 > γ2 and σ1 > γ1: τ 1
2 = γ2, D(L∗J) = {(γ2, γ2), (0, γ1)},

D(L∗{1}) = {τ ∈ L0; τ1 ∈ [u1, γ1]} and D(L∗{2}) = {τ ∈ L0; τ1 ∈ [σ1, v1]}.
Note that the decay rate can be found in D(L∗J) except case (e). Figures 4-8 illustrate these
five cases, for which mixtures of Erlang distributions are used for the interarrival times.
Since σ2 = γ1 + log(µ2/µ1), or equivalently,

e−σ2 =
µ1

µ2

e−γ1 ,
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Figure 8: Tandem case (e)

which is obtained from (5.11) in the following form:

f̂1(µ1(1− e−τ1) + (1− e−τ2)(µ2 − µ1e
−τ1+τ2)) = e−τ1 ,

the decay rates τ 1
2 of the marginal distribution at node 2 are fully compatible with those

obtained by Ganesh and Anantharam [10], in which three different cases, (a)+(c), (b) and
(d)+(e), appear. For instance, from those classifications, we can observe that the decay rate
is (c1 + c2)γ1 + c2 log(µ2/µ2) for direction c in the case (b), while, in the case (e), the decay
rates are classified in the following two cases. Let τ (c) be the τ that gives the exact decay
rate. Then,
(i) c1 < σ2−γ2

σ1−γ1
c2: τ (c) = (σ1, γ2).

(ii) c1 ≥ σ2−γ2

σ1−γ1
c2: τ (c) = (γ1, σ2).

Types 1, 2 and 3 of [14] correspond with cases (b), (e) and (a)+(c)+(d), respectively.
From these figures, we can answer to the question when the feasible set of the decay rates

is a singleton, i.e., the two queues are asymptotically independent. To this end, we change µ1,
while fixing µ2 and F1. We first observe that case (b) occurs, i.e., γ1 < min(u1, γ2), if µ1 ≤ β
for some β ≤ µ2, since γ1 goes down to 0 as µ1 goes down to λ1. Similarly, case (d) with

(γ1, γ2) ∈ L0 occurs if µ1 ≥ β for some β ≥ µ2, since γ1 goes to infinity as µ1 goes to infinity.
These observations are compatible with the intuition that the asymptotic independence is
expected if the first server is sufficiently slow or sufficiently fast. In the former case, the
interdeparture times are distributed as the service times with a high probability, while,
in the latter, they are distributed almost the same as the interarrival times of exogenous
customers.

We now consider the generic service time case. The above arguments can be extended
for this case. Since 1/ĝi(η)’s are increasing in η, their inverse functions exist. Denote these
functions by hi’s. Then, conditions (4.9), (4.11) and (4.12) reduce to

f̂1

(
h1(e

−τ1+τ2) + h2(e
−τ2)

)
= e−τ1 , (5.13)

which corresponds with (5.11). Furthermore, η1 ≥ 0 if and only if τ2 ≥ τ1, and η2 ≥ 0 if
and only if τ2 ≤ 0. Thus, let γi be the solution of the equation:

f̂1

(
hi(e

−τi)
)

= e−τi ,
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and let (u1, u2) and (v1, v2) be the contact points of (5.13) with the horizontal and vertical
lines, respectively, then we have the same classifications for the decay rates as in the case
of Example 5.2.

Example 5.3 (2-node network with feedback routes) Our third example is also a two
node network, but allows feedback routs, i.e., r12, r21 > 0. We denote r12 by p1 and r21 by
p2. For simplicity, we assume that r11 = r22 = 0, but this is not essential. We use the same
notation as in the previous example. In addition to it, we need the interarrival distribution
F2 for node 2. We denote its LST and mean by f̂2 and 1/λ2, respectively. The solution of
traffic equations (4.1) is

α1 =
λ1 + λ2p2

1− p1p2

, α2 =
λ2 + λ1p1

1− p1p2

,

so the stability conditions of this model that we assume are

λ1 + λ2p2

1− p1p2

< µ1,
λ2 + λ1p1

1− p1p2

< µ2.

Katou and Makimoto [13] studied product form bounds for this model, assuming phase type
distributions for interarrival times and service times (see Conjecture 4.2). We here consider
classifications of the decay rates similar to the previous example. The exponential server
case is also instructive for this model.

Assume that both servers have exponentially distributed service times. Similar to the
previous example, (4.11) and (4.12) become

η1 = µ1

(
(1− p1)e

−τ1 + p1e
−τ1+τ2 − 1

)
,

η2 = µ2

(
(1− p2)e

−τ2 + p2e
−τ2+τ1 − 1

)
,

while (4.9) and (4.11) yield

2∑

i=1

(
f̂−1

i (e−τi) + (1− pi)µie
−τi

)
+ (µ1p1 + µ2p2)e

−τ1+τ2 = µ1 + µ2. (5.14)

This equation describes the boundary of a convex set. Let γ1 (γ2) be the largest positive
solution τ of these equations when η2 = 0 (η1 = 0, respectively). By the stability condition,
these γ1 and γ2 exist. For instance, γ1 is a solution τ of the equations:

f̂−1
1 (e−τ1) + f̂−1

2 (e−τ2) + µ1e
−τ1((1− p1) + p1e

−τ2) = µ1, (5.15)

(1− p2) + p2e
τ1 = eτ2 . (5.16)

Note that (5.15) is the boundary of a bounded and convex set, and τ2 of (5.16) is an
increasing and concave function of τ1. Since 0 = (0, 0) is a trivial solution, there exist at least
one and at most three positive solutions (τ1, τ2) of (5.15) and (5.16). Let u ≡ (u1, u2) > 0
and v ≡ (v1, v2) > 0 be the contact points of the horizontal and vertical lines with (5.15),
respectively. We also let σ1(y) be a solution τ1 of (5.14) with τ2 = y such that τ1 > y,
and let σ2(x) be a positive solution of τ2 of (5.14) with τ1 = x. Then, the decay rate τ is
obtained according to how points γ1, γ2, u, v, (σ1(γ22), σ2(γ11)) are located. For instance, if
v1 ≤ γ11 and u2 ≤ γ22, then D(L∗J) = L0 ∩ {τ > 0; τ1 ∈ [u1, v1]}.

For the case of generally distributed service times, (5.14) will be more complicated, but
the decay rates τ can be classified in the same way.
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6. Queueing Networks with Batch Movements

We now consider the batch movement network. This network is described by a discrete-
time Markov chain. Similar to the standard Jackson network, the network is composed of k
nodes, numbered as 1, 2, . . . , k. So the state of the Markov chain is a k-dimensional vector
of nonnegative integers. Let Y n be the state just after the n-th departure-arrival transition,
let Dn be the requested departures at this transition instant and let An be the arrivals at
the same instant subsequent to the departures. Then,

Y n+1 = max(0,Y n −Dn) + An, n = 0, 1, . . . . (6.1)

Hence, if Y n has a stationary distribution, we have

Y
d' max(0,Y −D) + A, n = 0, 1, . . . , (6.2)

where
d' stands for the equality in distribution, Y is a random vector subject to the station-

ary distribution, and D and A are random vectors subject to a generic joint distribution of
the requested departure and arrival sizes. Here, we tacitly assume that the arrival sizes do
not depend on the actual departure sizes which may be different from the requested depar-
ture sizes. In general, there are various policies to specify how the arrival sizes are changed
when the requested departures are not satisfied. Those may affect stochastic bounds for the
stationary distribution, but the decay rates may be independent of them. So we here adopt
the simple policy.

Clearly, if E(Di) > E(Ai) for all i, then the stationary distribution for Y exists. We
assume this stability condition from now on. Suppose that the stationary distribution has
the exponential decay with respect to direction c. Namely, as n ∼ |n|c (|n| → ∞), there
exist τ and constant C0 > 0 such that

P (Y ≥ n) ∼= C0 e−〈τ ,n〉. (6.3)

Then, from (6.2), we have, for large n,

P (Y ≥ n) ∼= E (P (Y + A−D ≥ n|A,D))

∼= C0E
(
e−〈τ ,n−A+D〉)

= C0e
−〈τ ,n〉E

(
e−〈τ ,D − A〉) .

Hence, we get

E
(
e−〈τ ,D − A〉) = 1. (6.4)

Denote the joint distribution of D and A by H and its LST by ĥ. (6.4) can be written as

ĥ(τ ,−τ ) = 1. (6.5)

Similar to the case of the generalized Jackson network, we let K0 = {τ ≥ 0; ĥ(τ ,−τ ) = 1}
and K0 = {τ ≥ 0; ĥ(τ ,−τ ) ≤ 1}. We also assume that there exist a θ

(i)
0 < ∞ and a finite

vector d(i) ≥ 0 for each i such that

lim
θ↑θ(i)

0

E
(
eθAi ; D ≤ d(i)

)
= ∞, i = 1, 2, . . . , k. (6.6)
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Lemma 6.1 K0 is convex and bounded.
Proof. Since ĥ(τ ,−τ ) is a convex function of τ , K0 is convex. For each direction c,
define a function ϕ by

ϕ(t) = E
(
e−t〈c,D − A〉) , t ≥ 0.

Since E(Di) > E(Ai), ϕ(t) has the right-hand derivative at t = 0 that is negative. On the
other hand, since

ϕ(t) ≥ min
i

e−t
∑k

j=1
cjd

(i)
j E

(
etciAi ; D ≤ d(i)

)
, t ≥ 0,

(6.6) implies that ϕ(t) → ∞ as t ↑ maxi ciθ
(i)
0 . This implies that ϕ(t) = 1 has a unique

positive solution since ϕ is convex. Hence, ĥ(τ ,−τ ) = 1 constitutes a closed surface in the
positive quadrant τ ≥ 0, so K0 is bounded.

We next consider to choose feasible τ from K0 for the decay rate. Although the situation
is much simpler, we use the same idea as in the case of the generalized Jackson network.
That is, feasible τ should not be greater than the corresponding marginals if it gives a
product form upper bound. Let τ (B) be τ ≥ 0 such that τi = 0 for i 6∈ B. Then, for each
subset B ⊂ {1, 2, . . . , k}, we define

KB = {τ ∈ K0; ĥ(τ (B),−τ (B)) ≤ 1}.

This set is the first step to restrict τ so as to bound the marginal distribution with respect
to B. We need more steps, and, for a full restriction, we define

K∗B = ∩B′⊂BKB′ .

Note that KB and K∗B corresponds with LB and L∗B, respectively, in Section 4. Then, we
may expect the following two conjectures.

Conjecture 6.1 Let A be a partition of J . Then, for each τB ∈ K∗B for B ∈ A, there exist
positive constants CB’s such that

P (Y ≥ n) ≤ ∑

B∈A
CB exp (−〈τB,n〉) , n ≥ 0. (6.7)

Conjecture 6.2 For each direction vector c and each B ∈ J , the exact rate is obtained as

ω(c) = max
A∈P(J)

min
B∈A

sup{〈τ , c〉; τ ∈ K∗B}, (6.8)

where P(J) is the set of all partitions of J .

Remark 6.1 (i) Kella and Miyazawa [15] verifies Conjecture 6.1 for A = {J} with CJ = 1
for a fluid network corresponding with the batch movement network when the arrivals
occur independent of the requested departures and their amounts are functions of a random
variable subject to an exponential distribution (see Theorem 3.1 of [15]).
(ii) If the arrivals and departures can not simultaneously occur at more than one node in
the batch movement network, then Miyazawa and Taylor [21] showed that (6.7) is obtained
for A = {J} with CJ = 1 when all unsatisfied departure requests no arrivals (see also [5]
for complex cases).
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Because of the simpler structure, we can say more about the decay rate in the batch
movement network. We first observe that, for each direction vector c, (6.1) implies

〈Y n+1, c〉 ≥ max(0, 〈Y n, c〉 − 〈Dn, c〉) + 〈An, c〉.

Hence, if we define Y n inductively by

Y n+1 = max(0, Y n, 〈An, c〉 − 〈Dn, c〉).

Then, Y n is stochastically lower than 〈Y n, c〉. Clearly, the stationary distribution of Y n has
the same exponential decay rate as the waiting time of the G/G/1 queue with inter-arrival
times {〈Dn, c〉} and service times {〈An, c〉}. Here, 〈Dn, c〉 and 〈An, c〉 may depend on
each other, but it is not essential. Hence, the decay rate, denoted by ω(c), is given by a
unique solution t > 0 of the equation:

ĥ(tc,−tc) = 1. (6.9)

Thus, the decay rate of 〈Y , c〉 is bounded below by ω(c). On the other hand, if ω(c)c ∈ K∗J ,
then, using the same arguments as in Theorem 4.1 of [15], it can be seen that the decay
rate of 〈Y , c〉 is not less than ω(c). Hence, Conjecture 6.1 implies that

Conjecture 6.3 If ω(c)c ∈ K∗J , then Y has the decay rate ω(c) for direction c concerning
tail set V = {y ≥ 0; 〈y, c〉 ≥ 0}.

7. Concluding Remarks

The conjectures in Sections 4 and 6 may be extended for more complex models. For the
generalized Jackson network, suppose that single servers at nodes are changed to many
servers. Then it would be easy to extend the conjectures. For example, if node i has si

heterogenous servers with LST ĝi,`(ηi,`), ` = 1, . . . , si, for the service time distributions, then
(4.9) and (4.12) are changed to

k∑

j=1

(
θj1(λj 6= 0) +

sj∑

`=1

ηj,`

)
= 0. (7.1)

eτi = ĝi(ηi,`)

(
ri0 +

k∑

j=1

rije
τj

)
, i = 1, . . . , k, ` = 1, . . . , si. (7.2)

while (4.11) is unchanged. Similar to the case of single servers, for k = 1, the decay rate
agrees with the existence result (see, e.g., [2, 22]). Another variation is to extend the renewal
arrivals to their superposition. This can be implemented by using fictitious nodes in the
current model. For example, let node 1 be such a node with S0 = 0. Then, node j 6= i has
arrivals subject to the superposition of two renewal processes if rij > 0.

For the batch movement network, we can consider its fluid version, and the fluid versions
of Conjectures 6.1 and 6.2 may be also conjectured.

As we remarked, some of the conjectures are partially verified for some special cases.
However, any major part of the conjectures has not yet been verified. To attack this prob-
lem, we are recently developing an approach using Markov additive processes with general
background states. Since this is still under a way, we here roughly explain its basic idea.
A key observation is that we can describe the network process in terms of a Markov ad-
ditive process along the direction vector if we incorporate sufficient information into the
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background states. Then, the decay rate of the tail probabilities can be obtained through
the Markov renewal theorem for this additive process (see [20] for more details). In other
words, the renewal arguments in Section 3 may be extended for the network models.

Acknowledgements This paper originally came out of my talk at a special session
of the autumn meeting of Operations Research Society of Japan, 2000. The author is
grateful to the organizer, Hirotaka Sakasegawa of Waseda University. He is also indebted to
Naoki Makimoto of Tsukuba University for stimulative discussions and to Ken’ichi Katou of
Yamagata University for his comments and providing his paper [14] coauthored with Yukio
Takahashi of Tokyo Institute of Technology. In fact, the author originally did not have
Conjecture 4.4 in the present form, which owes to their result (4.18). The author is also
grateful to the anonymous referee and associate editor for their helpful comments. This
research is supported in part by the Japan Society for the Promotion of Science under grant
No. 13680532.

References

[1] J. Abate, G. L. Choudhury and W. Whitt: Asymptotics for steady-state tail probabil-
ities in structured Markov queueing models. Stochastic Models, 10 (1994) 99-143.

[2] S. Asmussen and C. A. O’Cinneide: Representations for matrix-geometric and matrix-
exponential steady-state distributions to many-server queues. Stochastic Models, 14
(1998) 369-387.

[3] D. Bertsimas, I. C. Paschalidis and J. N. Tsitsiklis: On the large deviations behavior of
acyclic networks of G/G/1 queues. Annals of Applied Probability, 8 (1998) 1027-1069.

[4] C. S. Chang: Sample path large deviations and intree networks. Queueing Systems, 20
(1995) 7-36.

[5] X. Chao, M. Miyazawa and M. Pinedo: Queueing Networks; customers, signals and
product form solutions (Wiley, Chichester, 1999).

[6] G. de Vaciana and J. Walrand: Effective bandwidths: Call admission, traffic policing
and filtering for ATM networks. Queueing Systems, 20 (1995) 37-59.

[7] W. Feller: An Introduction to Probability Theory and Its Application, Vol. II (Wiley,
New York, 1971).

[8] K. Fujimoto and Y. Takahashi: Tail behavior of the steady-state distribution in two-
stage tandem queues: numerical experiment and conjecture. J. Opns. Res. Soc. Japan,
39 (1996) 525-540.

[9] K. Fujimoto, Y. Takahashi and N. Makimoto: Asymptotic properties of stationary
distributions in two stage tandem queueing systems. J. Opns. Res. Soc. Japan, 41
(1998) 118-141.

[10] A. Ganesh and V. Anantharam: Stationary tail probabilities in exponential server
tandems with renewal arrivals Queueing Systems, 22 (1996) 203-247.

[11] P. Glynn and W. Whitt: Logarithmic asymptotics for steady state tail probabilities in
a single-server queue. J. Appl. Prob., 31A (1994) 131-156.

[12] K. Katou and N. Makimoto: On the decay rate for a two node queueing network with
MAP arrivals. The Proceedings of Performance Models for Information Communication
Networks (1999) 189-198, Hamanako, Japan (in Japanese).

[13] K. Katou and N. Makimoto: Upper bounds for the decay rates of the joint distribution
in tow-node Markovian queues. The Proceedings of Performance Models for Information
Communication Networks (2000) 1-10, Sendai, Japan.



Decay Rates of Tail Probabilities 97

[14] K. Katou and Y. Takahashi: Exponential decay of the stationary joint queue length
distribution in two-node Markovian queueing system. Preprint (2001).

[15] O. Kella and M. Miyazawa: Parallel fluid queues with constant inflows and simultaneous
random reductions. J. Appl Prob., 38 (2001) 609-620.

[16] J.F.C. Kingman: Inequalities in the theory of queues. J. Roy. Stat. Soc. B, 32 (1970)
883-909.

[17] N. Makimoto: Private communications (2000).

[18] S. P. Meyn and D. Down: Stability of generalized Jackson networks. Annals of Applied
Probability, 4 (1994) 124-148.

[19] M. Miyazawa: Rate conservation laws: a survey. Queueing Systems, 15 (1994) 1-58.

[20] M. Miyazawa: A paradigm of Markov additive processes for queues and their networks.
The Proceedings of the Fourth International Conference on Matrix-Analytic Methods in
Stochastic Models: Matrix-Analytic Methods, Theory and Applications (2002) 265-289
(World Scientific, Singapore).

[21] M. Miyazawa and P. G. Taylor: A geometric product-form distribution for a queueing
network with nonstandard batch arrivals and batch transfers. Adv. Appl. Prob., 29
(1997) 523-544.

[22] M. F. Neuts and Y. Takahashi: Asymptotic behavior of the stationary distributions in
the GI/PH/c queue with heterogeneous servers. Zeitschrift Wahrscheinlichkeitstheorie,
57 (1997) 441-452.

[23] N. O’Connell: Large deviations for departures from a shared buffer. J. Appl. Prob., 34
(1997) 753-766.

[24] N. O’Connell: Large deviations for queue lengths at a multi-buffered resource. J. Appl.
Prob., 35 (1998) 240-245.

[25] J. C. W. Ommeren: Exponential expansion for the tail of the waiting-time probability
in the single-server queue with batch arrivals. Adv. Appl. Prob., 20 (1988) 880-895.

[26] J. S. Sadowsky and W. S. Szpankowski: The probability of large queue lengths and
waiting times in a heterogeneous multiserver queue I: Tight limits. Adv. Appl. Prob.,
27 (1995) 532-566.

[27] J. S. Sadowsky: The probability of large queue lengths and waiting times in a het-
erogeneous multiserver queue I: Positive recurrence and logarithmic limits. Adv. Appl.
Prob., 27 (1995) 567-583.

[28] R. F. Serfozo: Introduction to Stochastic Networks (Springer-Verlag, New York, 1999).

[29] K. Sigman: The stability of open queueing networks. Stochastic Process. Appl., 35
(1990) 11-25.

[30] Y. Takahashi: Asymptotic exponentiality of the tail of the waiting-time distribution in
a PH/PH/c queue. Adv. Appl. Prob., 13 (1981) 619-630.

[31] D. Wischik: The output of a switch, or, effective bandwidths for networks. Queueing
Systems, 32 (1999) 383-396.

A. Proof of Lemma 4.1

We prove Lemma 4.1 for the departure instants at node i. We use (4.4) with θj = 0 for
j 6= i and ηj = 0 for all j. We first evaluate its left-hand side. For this, let A be the attained
service time of a customer being served at node i at time 0 when X ≥ n > 0 in the steady
state. Then, the left-hand side with θ = θi can be written as

θE(e−θR; X ≥ n) = E(θE(e−θ(Si−A)|Si > A)|X ≥ n)P (X ≥ n).
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From (4.7), applying a partial integration, we have, for any y > 0,

θE(e−θ(Si−y)|Si > y) =
1

1−Gi(y)

∫ ∞

y
θe−θ(x−y)dGi(x)

≤ b

1−Gi(y)

∫ ∞

y
θe−θ(x−y)(1−Gi(x))dx

=
b

1−Gi(y)

([
−e−θ(x−y)(1−Gi(x))

]∞
y
−

∫ ∞

y
e−θ(x−y)dGi(x)

)

= b

(
1−

∫ ∞

y
e−θ(x−y) dGi(x)

1−Gi(y)

)
< b.

Similarly, we have

θE(e−θ(Si−y)|Si > y) ≥ a

(
1−

∫ ∞

y
e−θ(x−y) dGi(x)

1−Gi(y)

)
.

Hence,

a ≤ lim inf
θ→∞

θE(e−θ(Si−y)|Si > y) ≤ lim sup
θ→∞

θE(e−θ(Si−y)|Si > y) ≤ b.

This implies, by the bounded convergence theorem,

a ≤ lim inf
θ→∞

θE(e−θR|X ≥ n) ≤ lim sup
θ→∞

θE(e−θR|X ≥ n) ≤ b.

We next let θi go to infinity in the right-hand side of (4.4), then it becomes αiϕi(n,0,0).
Hence, we get

aP (X ≥ n) ≤ αiP
d
i (X− ≥ n) ≤ bP (X ≥ n), n > 0.

A similar proof can be done for the arrival instants. These complete the proof.
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