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Abstract

We are concerned with a queue with a finite buffer and arrival and service pro-
cesses that are generated by a continuous time Markov chain with finitely many
states. This model includes a many server queue, and is described by a truncated
QBD, where QBD stands for a quasi-birth-and-death process. It is shown that the
loss probability of this queue geometrically decays with a constant prefactor as the
buffer size goes to infinity if the corresponding queue with an unlimited buffer is
stable. For this, we firstly consider asymptotic behaviors of the truncated QBD. We
then specialize this result for a many server queue with a finite buffer and Markovian
arrival and service processes.

1. Introduction

Loss probabilities are important for performance evaluations of queueing systems with
finite buffers, where buffers only accommodate waiting customers. In principle, the loss
probabilities can be computed numerically since the state spaces are essentially finite, but
closed form formulas are hard to get for them except for special cases such as M/M/c/K+c
and M/PH/1/K + 1 queues, where K’s are buffer sizes. So, heuristic approximations
have been proposed for them (e.g., see [5, 13, 17]). However, the loss probabilities become
very small for the case of large buffers, so it is interesting to see their exact asymptotic
behaviors. There are some studies in this direction. In particular, Baiocchi [4] showed
that the loss probability geometrically decays with a constant prefactor in the MArP/G/1
queue under a light-tail condition on the service time distribution, where MArP stands
for a Markovian arrival process, and will be explained below. More specific results are
obtained for the M/G/1/K + 1 and GI/M/1/K + 1 queues in [3] (see also [6]).

In this paper, we study this asymptotics of the loss probability from a different per-
spective. We assume that the queue has a single buffer of finite size, but do not assume a
single server. Service discipline is not essential as long as certain requirements are satis-
fied, but we suppose First-Come First-Served in mind. It is noticed that the single server
assumption plays crucial roles in the existence results cited above (see [3, 4, 6]). There
are two reasons for this. First, it allows to describe the models by embedded Markov
chains at arrival or departure instants, which simplifies the state spaces. Secondly, the
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loss probabilities are easily computed from the stationary probabilities that the systems
are empty. We can not use these properties for many server queues in general.

So far, we attack the asymptotic problem, using a different approach and assuming
slightly simpler assumptions on arrivals and services. Namely, we assume that arrival
times of customers and their service completion times are driven by a continuous time
Markov chain with finitely many background states. In the queueing literature, this class
of arrival processes are called Markovian arrival processes, and MAP has been used for
short in the literature. In this paper, we refer to it as MArP to distinguish from a
Markov additive process, which plays key roles in this paper. The corresponding process
for services is referred to as a Markovian service process, MSP for short. Under this
situation, we can describe the finite queue by a truncated quasi-birth-and-death process,
a truncated QBD for short. So, we first consider asymptotic behaviors of the stationary
probabilities at the truncated level in a truncated QBD as the truncated level goes to
infinity. This may have an independent interest.

Our major tools are occupation measures before hitting given sets of states for the
continuous time Markov additive process that generates the truncated QBD. These mea-
sures are relatively easy to handle for studying the asymptotic behaviors since they are
monotone as the hitting states going away. It is already known that the stationary dis-
tribution of the truncated QBD can be obtained in terms of the occupation measures.
Using this result, we show that the stationary probabilities at the truncated level geo-
metrically decay with constant prefactors, provided that the corresponding QBD, whose
level is unlimited, is stable, that is, it has the stationary distribution. Some remarks are
also given for the unstable case. We then apply this result to a c server queue with a
buffer of size K, Markovian arrival and Markovian service processes, which is denoted
by MArP/MSP/c/K + c. In this way, we generalize Theorem 1 of [4] for many server
queues.

The remainder of this paper is composed of four sections. In Section 2, we introduce
a Markov additive process with finitely many background states and the QBD generated
by this additive process. We also prepare some asymptotic results for them. In Section 3,
we truncate the QBD, and obtain its asymptotics as the truncation level goes to infinite.
In Section 4, we consider the loss probability for MArP/MSP/c/K + c, and obtain its
exact asymptotics as the buffer size becomes large. In Section 5, we give some remarks
on possible extensions of the present results.

2. Markov additive and QBD processes

We first give our vector and matrix notation since they are frequently used. For vector x,
its i-the entry is denoted by x(i). Similarly, A(i, j) denotes the ij-th entry of a matrix A.
All inequalities of vectors and matrices are component wise. For example, x ≥ 0 means
that x(i) ≥ 0 for every entry i. A row vector x is called a probability vector or distribution
if it is nonnegative and x1 ≤ 1, where 1 is the column vector of an appropriate size whose
entries are all units. A nonnegative matrix A is called a transition probability matrix if
A1 ≤ 1. If this inequality is strict for some entries, then A is called defective. A square
matrix A is called a transition rate matrix if A1 ≤ 0 and all off-diagonal entries of A are

2



nonnegative. If the inequality A1 ≤ 0 is strict in some entries, then A is called defective.

Let N be the set of all integers and let SB be a finite set. We define a continuous time
process {(X(t), B(t))}t≥0 with state space N × SB in the following way. Assume that
B(t) is a continuous time Markov chain. We decompose the transition rate matrix of this
Markov chain into three SB×SB matrices, Q−1, Q0 and Q1 in such a way that Q1 and Q−1

are nonnegative and Q0 is a defective transition rate matrix. Thus, B(t) has the transition
rate matrix Q−1 + Q0 + Q1. Throughout the paper, it is assumed that Q−1 + Q0 + Q1 is
non-defective and irreducible. The integer valued process X(t) increases by i when B(t)
changes according to Qi, respectively, for i = 0,±1. The process (X(t), B(t)) is said to
be a Markov additive process. A definition for a general Markov additive process can
be found in [7], but descriptions there are too abstract for our arguments. Note that
(X(t), B(t)) is also a Markov chain. In this paper, we refer to X(t) and B(t) as level and
background processes, respectively.

We next introduce matrices for occupation measures for the Markov additive process
(X(t), B(t)). For A ⊂ N , let τ c

A = inf{t > 0; X(t) 6∈ A}. Define matrix NA
k` as

NA
k`(i, j) = E(k,i)

[∫ τc
A

0

I(X(t) = `, B(t) = j)dt

]
, k, ` ∈ A,

for i, j ∈ SB, where E(k,i) stands for the conditional expectation given that X(0) =
k,B(0) = i, and I(·) is the indicator function of statement “·”. For given starting state
(k, i), {NA

k`(i, j); ` ≥ 1, j ∈ SB} is known as an occupation measure before hitting Ac ≡
N \ A (e.g., see [1]). Let

(0, +) = {n ∈ N ; n ≥ 1}, (−,m) = {n ∈ N ; n ≤ m − 1},
(0,m) = {n ∈ N ; 1 ≤ n ≤ m − 1}.

We will use these sets for the A. Let

R = Q1N
(0,+)
11 .

It is well known that the matrix R is obtained as the minimal nonnegative solution for
the matrix equation:

Q1 + RQ0 + R2Q−1 = O. (2.1)

Let X̂(t) = −X(t), then (X̂(t), B(t)) is again a Markov additive process. Note that
the level X̂(t) increases by i, (i = 0,±1) when B(t) changes according to Q̂i ≡ Q−i. This
Markov additive process is referred to as a direction reversed process. For this additive
process, we define matrices N̂

(0,+)
k` N̂

(−,m)
k` and N̂

(0,m)
k` , k, ` ∈ N and R̂ similar to those for

(X(t), B(t)). Obviously, we can see that

N
(0,+)
k` = N̂

(−,m)
(m−k)(m−`), N

(0,m)
k` = N̂

(0,m)
(m−k)(m−`).

Note that R̂ is obtained as the minimal nonnegative solution for the matrix equation:

R̂2Q1 + R̂Q0 + Q−1 = O. (2.2)
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Let ν be a stationary probability vector for Q−1 + Q0 + Q1. Note that ν is uniquely
exists since Q−1 + Q0 + Q1 is finite, irreducible and aperiodic. In this paper, we assume
that

β ≡ νQ11 − νQ−11 < 0, (2.3)

unless stated otherwise. This condition represents that the mean drift of X(t) under
the stationary distribution ν is negative, which implies that X(t) goes to −∞ w.p.1 as
t → ∞. We later put a reflecting boundary at the origin for the level process to be
nonnegative, then (2.3) is necessary and sufficient for the reflected process to have the
stationary distribution. In this case, (2.3) becomes a stability condition.

We now give some useful results for asymptotics of the occupation measures. As is
well known, we have

N
(0,+)
1m = N

(0,+)
1(m−1)Q1N

(0,+)
11

by conditioning the last time when X(t) leaves level m − 1, so

N
(0,+)
1m = N

(0,+)
11 Rm−1. (2.4)

For example, see Theorem 6.2.7 of [11], in which (2.4) is obtained for the discrete time
case. In what follows, we use the following assumption.

(i) The transition kernel {Q`; ` = 0,±1} is 1-arithmetic. That is, the greatest common
divisor of the increments of the level process when the background process returns
to the starting state is one. Precisely, n 6= 0 is such an increment for starting state
i ∈ SB if Pi(X(t) − X(0) = n,B(t) = i) > 0 for some t > 0. See [14] for a discrete
time version of this definition.

This condition is naturally satisfied in queueing applications. From (2.4), asymptotic

behaviors of N
(0,+)
1m can be seen from those of Rm. The following proposition is a special

case of Theorem 4.1 of [14], which answers to the latter behaviors.

Proposition 2.1 Assume that Markov additive process (X(t), B(t)) generated by Q−1, Q0

and Q1 is 1-arithmetic. If β < 0, then there exist positive vectors p, q and η ∈ (0, 1) such
that

p
(
Q1 + ηQ0 + η2Q−1

)
= 0, (2.5)(

Q1 + ηQ0 + η2Q−1

)
q = 0. (2.6)

Then, the η is a Perron-Frobenius eigenvalue of R, and p, r are the corresponding eigen-
vectors, where the vector r is given by

r = −(Q0 + (ηI + R)Q−1)q. (2.7)

Hence, if assumption (i) holds, we have

lim
m→∞

η−mRm =
1

pr
rp. (2.8)
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Remark 2.1 Note that (2.1) is equivalent to

zQ−1 + Q0 + z−1Q1 = (I − z−1R)(Q0 + (zI + R)Q−1), z 6= 0. (2.9)

From this and (2.6), we can see that r of (2.7) is the right eigenvector of R for eigenvalue
η. Since η is the Perron-Frobenius eigenvalue of R, r must be nonnegative. (2.9) can be
considered as a continuous time version of the Wiener-Hopf factorization for a discrete
time Markov additive process with integer-valued level and finitely many background
states (see, e.g., [1, 14]).

We next put a reflection boundary at the origin for (X(t), B(t)) in such a way that
X(t) ≥ 0 and the transitions of B(t) are changed only when X(t) jumps into 0, stays
at 0 or jumps out of 0. We denote this reflected process by (Y (t), J(t)), where level 0
has a background space S0, which may be different from SB. It is assumed that process
(Y (t), J(t)) is a continuous time Markov chain with state space S ≡ {0}×S0 ∪N+ ×SB,
where N+ ≡ {1, 2, . . .}, and its transition rate matrix is given by the block matrix:

Q ≡


Q

0
Q

1

Q−1
Q0 Q1

Q−1 Q0 Q1

. . . . . . . . .

 ,

where Q
0
, Q

1
and Q−1

are S0 × S0, S0 × SB and SB × S0 matrices, respectively. In the

literature, (Y (t), B(t)) is referred to as a quasi-birth-and-death process, QBD process for
short. In the QBD process, the state of Y (t) is called a level. Throughout the paper, we
assume that Q is irreducible. To exclude a trivial case, we also assume that Q

1
1 6= 0.

Note that, for k, ` ≥ 1,

E

[∫ τc
(0,+)

0

I(Y (t) = `, J(t) = j)dt
∣∣∣Y (0) = k, J(0) = i

]
= N

(0,+)
k,` (i, j), i, j ∈ SB,

since (X(t), B(t)) is identical with (Y (t), J(t)) under the condition that X(t), Y (t) ≥ 1.
We here read τ c

(0,+) = inf{t > 0; Y (t) ≤ 0} instead of τ c
(0,+) = inf{t > 0; X(t) ≤ 0}. This

is abuse of the notation, but it simplifies notation. So, we use this kind of notation as
long as there can be no confusion. It is well known that the stationary distribution of the
QBD is obtained using R and therefore the occupation measures. This result is called a
matrix geometric solution, and given by the following proposition (e.g., see Theorem 6.4.1
of [11]).

Proposition 2.2 If β < 0, then the QBD process (Y (t), J(t)) has a stationary distribu-
tion π ≡ (π`; ` ≥ 0), which is determined by

π0(Q0
+ Q

1
N

(0,+)
11 Q−1

) = 0, (2.10)

π1 = π0Q1
N

(0,+)
11 , (2.11)

π` = π1R
`−1, ` ≥ 2. (2.12)
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To compare the loss probability with the tail of stationary distribution, we note the
following result, which is immediate from (2.8) and (2.12) (see also Theorem 4.1 of [14]).

Corollary 2.1 Under assumption (i) in addition to the assumptions of Proposition 2.2,
we have

lim
n→∞

η−nπn =
π1r

ηpr
p. (2.13)

3. A truncated QBD process

We next truncate the QBD process (Y (t), J(t)) so that Y (t) ≤ m, where m is a positive
integer. We modify the transition rates of phase process J(t) when Y (t) changes from m to
m−1 or stays at m. Then, we have a new continuous time Markov chain (Y (m)(t), J (m)(t))
with finite state space Nm×SB, where Nm ≡ {0, 1, . . . ,m}. It is assumed that the process
(Y (m)(t), J (m)(t)) has following level partitioned transition rate matrix:

Q(m) ≡



Q
0

Q
1

Q−1
Q0 Q1

Q−1 Q0 Q1

. . . . . . . . .

Q−1 Q0 Q1

Q−1 Q0 Q1

Q−1 Q0


,

where Q−1 and Q0 are SB × SB matrices. The process (Y (m)(t), J (m)(t)) is referred to as
a truncated quasi-birth-and-death process, a truncated QBD process for short.

Remark 3.1 The set of the background states at level m is identical with those of the
other level except for level 0, and the transition matrix from level m − 1 to m are not
modified. These are different from the modification at level 0. These modifications do
not cause any problem in our queueing applications in Section 4, while it much simplifies
our arguments.

Using the last row block of Q(m), we can define a direction reversed QBD process
(Ŷ (t), Ĵ(t)) from the Markov additive process (X̂(t), B(t)) in a similar way to define
(Y (t), J(t)). Namely, this Markov chain (Ŷ (t), Ĵ(t)) is assumed to have the following
transition rate matrix:

Q̂ ≡


Q0 Q−1

Q1 Q0 Q−1

Q1 Q0 Q−1

. . . . . . . . .

 .

Similarly to Q, we assume that transition rate matrix Q̂ is irreducible throughout the
paper.
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Note that Q(m) has (m + 1) blocks in each row and column. We assume that Q(m) is

irreducible and aperiodic, then Q(m) has a stationary probability vector π(m) ≡ (π
(m)
` ; 0 ≤

` ≤ m), where π
(m)
` is subvector at level `. Similarly to the case of the QBD, we have,

for 1 ≤ k, ` ≤ m − 1 and i, j ∈ SB,

E

[∫ τc
(0,m)

0

I(Y (m)(t) = `, J (m)(t) = j)dt

∣∣∣∣Y (m)(0) = k, J (m)(0) = i

]
= E(k,i)

[∫ τc
(0,m)

0

I(X(t) = `, B(t) = j)dt

]
= N

(0,m)
k` (i, j),

since (Y (m)(t), J (m)(t)) is stochastically identical with (X(t), B(t)) when they take values
in the set (0,m) × SB. The following result is due to Hajek [8], which shows that the

stationary distribution π(m) is obtained through N
(0,m)
k` . For convenience of the reader,

its proof is given in Appendix A.

Proposition 3.1 The stationary distribution π(m) = (π
(m)
` ; 0 ≤ ` ≤ m) for the truncated

QBD process with transition rate matrix Q(m) is given by

π
(m)
` = π

(m)
0 Q

1
N

(0,m)
1` + π(m)

m Q−1N
(0,m)
(m−1)`, (1 ≤ ` ≤ m − 1), (3.1)

where π
(m)
0 and π

(m)
m−1 are determined by

π
(m)
0

(
Q

0
+ Q

1
N

(0,m)
11 Q−1

)
+ π(m)

m Q−1N
(0,m)
(m−1)1Q−1

= 0, (3.2)

π
(m)
0 Q

1
N

(0,m)
1(m−1)Q1 + π(m)

m

(
Q0 + Q−1N

(0,m)
(m−1)(m−1)Q1

)
= 0, (3.3)

It should be noticed that this proposition does not need any drift condition. Our
major concern in this section is with an asymptotic behavior of π

(m)
m as m → ∞ under

the drift condition (2.3). This is answered by the following theorem.

Theorem 3.1 If β < 0, i.e., the negative drift condition (2.3) holds and if assumption
(i) is satisfied, then we have

lim
m→∞

η−mπ(m)
m =

π1r

ηpr
p(η−1I − R̂)Q1(−U00)

−1, (3.4)

where η, p and r are determined by Proposition 2.1, and π1 and U00 are given by (2.11)
and

U00 = Q0 + Q−1(−Q0 − R̂Q1)
−1Q1.

Furthermore, the right-hand side of (3.4) is positive.

Remark 3.2 The decay rate η of π
(m)
m agrees with the one of πm of the corresponding

queue with an unlimited buffer. This is intuitively expected, and we are more interested
in the prefactor of the geometric decay.
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Remark 3.3 It may look that R does not appear in (3.4). However, we generally need
R to compute π1r, while pr can be computed from (2.7) as

pr = −p(Q0 + 2ηQ−1)q,

where p and q can be computed directly from (2.5) and (2.6).

Remark 3.4 Let G = N
(0,+)
11 Q−1 and Ĝ = N̂

(0,+)
11 Q1. These represents the hitting prob-

abilities at the one lower levels of Markov additive process (X(t), B(t)) and its direction
reversed process (X̂(t), B(t)). So, Ĝ is a defective transition probability matrix by the
drift condition (2.3). The following identities are immediate from the definitions.

RQ−1 = Q1G, R̂Q1 = Q−1Ĝ. (3.5)

From the latter equation, it is easy to see that R̂ can be used instead of Ĝ in computation
of (3.4). We shall see that such a replacement is useful. As is well known, we have

N̂
(0,+)
11 = (−Q0 − R̂Q1)

−1. (3.6)

For example, see Proposition 6.4.2 of [11]. From this, we have

U00 = Q0 + Q−1N̂
(0,+)
11 Q1 = Q0 + Q−1Ĝ.

Hence, U00 is a defective transition rate matrix, and it is indeed invertible. This is also
intuitively clear since U00 is the transition rate for a censored process at level 0 of the
direction reversed QBD (Ŷ (t), Ĵ(t)). The latter is unstable, so the censored process is
defective.

Remark 3.5 Since (3.4) is new, the reader might wonder whether it is compatible with
the existence results. Obviously, it is compatible with the corresponding result for the
M/M/1/m queue. We shall consider further compatibility in Remark 3.7.

To prove this theorem, we give two lemmas, which may have independent interests.

Lemma 3.1 Under the assumptions of Theorem 3.1, we have

lim
m→∞

N
(0,m)
k` = N

(0,+)
k` , (3.7)

lim
m→∞

N
(0,m)
(m−1)(m−1) = (−Q0 − R̂Q1)

−1, (3.8)

lim
m→∞

η−mN
(0,m)
1(m−1)Q1 =

1

ηpr
N

(0,+)
11 rp(−U00), (3.9)

where

U00 = Q0 + Q1N
(0,+)
11 Q−1 + Q−1N̂

(0,+)
11 Q1.

Furthermore, the right-hand side of (3.9) is a non-zero matrix, U00 = Q0 + Q−1N̂
(0,+)
11 Q1

is invertible, and −U
−1

00 is positive.
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Proof. (3.7) is a direct consequence of the monotone convergence theorem. We next

prove (3.8). Since N
(0,m)
(m−1)(m−1) = N̂

(0,m)
11 , we have

lim
m→∞

N
(0,m)
(m−1)(m−1) = N̂

(0,+)
11

by the monotone convergence theorem. Hence, from (3.6), we get (3.8).

We next prove (3.9). By conditioning on the first visit of (X(t), B(t)) to level m before
hitting level 0, we have

N
(0,+)
1m = N

(0,m)
1(m−1)Q1N

(0,+)
mm . (3.10)

Since this equation is a key in our arguments, we also give its formal proof in Appendix
B. Combining this with (2.4), we have

N
(0,+)
11 Rm−1 = N

(0,m)
1(m−1)Q1N

(0,+)
mm

= N
(0,m)
1(m−1)Q1N̂

(−,m)
00 .

Hence, Proposition 2.1 and the monotone convergence of N̂
(−,m)
00 to N̂00 yield

lim
m→∞

η−mN
(0,m)
1(m−1)Q1N̂00 =

1

ηpr
N

(0,+)
11 rp, (3.11)

where

N̂00(i, j) = E(0,i)

[∫ ∞

0

I(X̂(t) = 0, B(t) = j)dt

]
, i, j ∈ SB.

Note that

U00 = Q0 + Q1G + Q−1Ĝ,

and U00 is the transition rate matrix of (X̂(t), B(t)) censoring at level 0. Furthermore, it
is invertible since Ĝ is defective as mentioned in Remark 3.4. So, we have

N̂00 = (−U00)
−1.

This and (3.11) conclude (3.9). Assume that the right-hand side of (3.9) is the null matrix.
Since U00 is invertible, this implies that

N
(0,+)
11 rp = 0.

Similar to N̂
(0,+)
11 in (3.6), N

(0,+)
11 is invertible, so we have rp = 0. This contradicts the

fact that p is positive and r is not null. Hence, the right-hand side of (3.9) can not be
null.

Since N̂
(0,+)
11 Q1 is defective, U00 is a defective transition rate matrix, so it is invertible.

Since Q̂ is irreducible, U00 must be irreducible. Hence, −U
−1

00 is positive.
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Lemma 3.2 Under the assumptions of Theorem 3.1, we have

lim
m→∞

π
(m)
` = π`, ` ≥ 0.

Proof. Note that Q(m)(i, j) converges to Q(i, j) as m → ∞ for each i, j ∈ S and Q
has the stationary distribution. Hence, by Lemma 2.1 of [21], we only need to show that

π(m) ≡ (π
(m)
` ; ` ∈ Nm) is tight for m ≥ 1, that is, for each ε > 0, there exists a positive

integer m0 such that

m∑
`=m0

π
(m)
` 1 < ε, ∀m ≥ m0,

Since

N
(0,m)
(m−1)(m−1)Q1 ≤ N

(−,m)
(m−1)(m−1)Q1 = N̂

(0,+)
11 Q1

and N̂
(0,+)
11 Q1 is defective, (3.3) yields

π(m)
m ≤ π

(m)
0 Q

1
N

(0,+)
11 Rm−2Q1

{
−

(
Q0 + Q−1N̂

(0,+)
11 Q1

)−1
}

.

Using this and the fact that

N
(0,m)
(m−1)` ≤ N̂

(0,+)
1(m−`) = N̂

(0,+)
11 R̂m−`−1,

we have, from (3.1), for 1 ≤ ` ≤ m − 1,

π
(m)
` ≤ π

(m)
0 Q

1
N

(0,+)
11

(
R`−1 − Rm−2Q1

(
Q0 + Q−1N̂

(0,+)
11 Q1

)−1

Q−1N̂
(0,+)
11 R̂m−`−1

)
,

Since the Perron-Frobenius eigenvalue of R̂ is unit, R̂` is uniformly bounded in `. On the
other hand, R` geometrically decay with rate η < 1 by (2.8). Since all the entries of π

(m)
0

are bounded by 1, the above two inequalities conclude the required tightness.

Remark 3.6 Lemma 3.2 can be also obtained from Theorem 3.4 of [12] using uniformiza-
tion of transition rate matrices Q and Q(m), since the uniformized probability matrices P
and P (m) corresponding to Q and Q(m) are stochastically block-monotone and P (m) is a
north-west corner truncation and block-augmented matrix of P .

Proof of Theorem 3.1 From (3.3), we have

π(m)
m = π

(m)
0 Q

1
N

(0,m)
1(m−1)Q1

(
−Q0 − Q−1N

(0,m)
(m−1)(m−1)Q1

)−1

.

Multiplying both sides of this equation with η−m and letting m → ∞, Lemmas 3.1 and
Lemma 3.2 and (2.11) yield

lim
m→∞

η−mπ(m)
m =

π1r

ηpr
pU00U

−1

00 ,
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where the positivity of the right-hand side of this equation is immediate from the last
statement of Lemma 3.1. Thus, (3.4) is obtained if we show that

pU00 = −p(η−1I − R̂)Q1.

Since p is the left invariant vector of R and satisfies (2.5), we have

pU00 = p(Q0 + RQ−1 + R̂Q1)

= p(Q0 + ηQ−1 + R̂Q1)

= p(−η−1Q1 + R̂Q1).

Thus, we get the desired result.

The following result shows that the constant vector in (3.4) can be simplified under
some assumptions on transitions at the upper boundary. These assumptions are typical
in queueing applications, and will be used in the next section.

Corollary 3.1 Under the assumptions of Theorem 3.1, if Q0 = Q0 +Q1 and Q−1 = Q−1,
then we have

lim
m→∞

η−mπ(m)
m =

π1r

η(1 − η)pr
p(I − ηR̂). (3.12)

Proof. Similarly to (2.9), (2.2) is equivalent to

zQ1 + Q0 + z−1Q−1 = (I − z−1R̂)(Q0 + R̂Q1 + zQ1), z 6= 0. (3.13)

Letting z = η−1 in this equation and multiplying p from the left, we have, from (2.5),

p(η−1I − R̂)(η(Q0 + R̂Q1) + Q1) = 0.

This implies that

(1 − η)p(η−1I − R̂)Q1 = −ηp(η−1I − R̂)(Q0 + Q1 + R̂Q1)

= ηp(η−1I − R̂)(−U00).

Applying this to (3.4), we have (3.12).

Remark 3.7 As far as the authors know, (3.4) and (3.12) have not been known even for
special cases except trivial models such as the M/M/1/m queue. However, we can produce
a less trivial example for this using the M/PH/1/m queue. In this model, the service
times are subject to a phase type distribution. Denote this distribution by PH(T, α) (see
Example 4.1 for its definition). Then, this queue is described by the QBD with Q1 = λI,
Q0 = T − λI and Q−1 = tα, where λ is the mean arrival rate and t = (−T )1. Its
stationary joint distribution is known (see Section 3.2 of [15]). From this result, we have

π(m)
m = λπ1R

m−2(−T )−1,

where R = λ(−T + λI − λtα)−1. This implies

lim
m→∞

η−mπ(m)
m =

λπ1r

η2pr
p(−T )−1, (3.14)

In Appendix C, we show that (3.14) indeed agrees with (3.12) for the M/PH/1/m queue.

11



One may wonder whether vector π
(m)
m can be proportional to πm as m goes to infinity

under the setting of Corollary 3.1. This is answered by the following corollary.

Corollary 3.2 Under the assumptions of Corollary 3.1, the right-hand sides of (2.13)
and (3.12) are proportional if and only if p is proportional to ν. In this case, the limits
in (2.13) and (3.12) are identical, and we always have η = ρ, where ρ = νQ11/(νQ−11).

Proof. By Corollary 3.1, the proportionality holds if and only if we have, for some
c > 0,

p(I − ηR̂) = c(1 − η)p. (3.15)

Note that the Perron-Frobenius eigenvalue of R̂ is 1. Denote the associated right eigen-
vector by r̂, and postmultiply both sides of (3.15) with it. Then, c must be 1. So, (3.15)
implies pR̂ = p. However, ν is the left invariant vector of R̂, which easily follows from
(3.13) with z = 1. Hence, p must be proportional to ν. In turn, if this proportionality
holds, then we have (3.15) with c = 1, and the two limits are identical. Furthermore, we
have

ν(Q1 + ηQ0 + η2Q−1) = 0, (3.16)

Since ν is the stationary distribution, this yields

(1 − η)ν(Q1 − ηQ−1) = 0,

Hence, η must be ρ.

Remark 3.8 Consider Q−1, Q0 and Q1 such that Q1 = aQ−1 for some positive a < 1.
Then, ρ must be a, and we have

ν(aQ−1 + Q0 + Q−1) = 0.

Multiplying this with a and using Q1 = aQ−1 again yield (3.16) with η = a. Hence, we
have p = ν. Thus, we have the example that satisfies p = ν. However, this is not a
queueing type model, which is discussed in the next section. Furthermore, η = ρ is hardly
expected for queueing applications except the case of a single background state. So, the
situation of Corollary 3.2 is hard to happen in them.

In Theorem 3.1, we have assumes that β < 0. However, the other two cases β = 0 and
β > 0 may be interesting. For β > 1, the following result is immediate from the reversed
direction version of Lemma 3.2.

Corollary 3.3 If β > 0, then the direction reversed QBD with transition rate matrix Q̂
has the stationary distribution π̂ ≡ (π̂`; ` ≥ 0), and

lim
m→∞

π(m)
m = π̂0. (3.17)

If β = 0, then

lim
m→∞

π(m)
m = 0. (3.18)
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In [4], more detailed limiting behaviors are obtained for the loss probability of
MArP/G/1/K + 1 queue. The corresponding results may be expected for the boundary
probabilities. For example, we may conjecture that, if β = 0, then

lim
m→∞

mπ(m)
m = c

for some positive constant vector c.

4. A MArP/MSP/c with a finite buffer

We consider a MArP/MSP queue with a finite buffer of sizes K ≥ 0. This queue and
its variants have been studied under the name MAP/MSP/1 in [16]. Here, MArP rep-
resents Markovian arrival process which is termed by Neuts. Similarly, MSP represents
Markovian service process, which is another MArP whose arrivals are replaced with ser-
vice completions. This MArP (MSP) is a counting process controlled by a underlying
continuous time Markov chain. Note that the number of servers as well as service dis-
cipline are not essential as long as service does not depend on the number of customers
in system. The difference only appears at the lower boundary. Just for convenience, we
assume that there are c servers, and denote the model by MArP/MSP/c/K + c. In this
model, level 0 accommodate all the states in which the number of customers in system are
not greater than c−1, so level ` ≥ 1 represents the states that there are `+c−1 customers
in system. It is also assumed that arrival and service processes are independent of each
other as long as all servers are busy. In this way, we describe the MArP/MSP/c/K + c
queue by the QBD process truncated by level K + 1.

Let m = K + 1 and let L(m)(t) be the number of customers in system at time t. We
define the level at time t by

Y (m)(t) = max(0, L(m)(t) − c + 1).

Then, we can formulate MArP/MSP/c/K+c as a truncated QBD with level Y (m)(t). To

describe this QBD, denote background processes for arrivals and services by {J (m)
1 (t)}t≥0

and {J (m)
2 (t)}t≥0, respectively. Process {J (m)

1 (t)} is a continuous time Markov chain with

finite state space M1 ≡ {1, 2, . . . , k1}. However, J
(m)
2 (t) may depend on L(m)(t) and

J
(m)
1 (t), and it is activated only when there are customers in system. Thus, {J (m)

2 (t)} is
not a Markov chain, but it becomes so when Y (m)(t) remains in the set {1, 2, . . . ,m}. Let
M2 ≡ {1, 2, . . . , k2} be a state space of this Markov chain. Denote the transition rate
matrix of these Markov chains by k1×k1 (k2×k2) matrix C1 +D1 (C2 +D2), respectively,
where Ci is a defective rate matrix, and Di is a nonnegative matrix for i = 1, 2. If
transitions due to D1 (D2) occur, then a customer arrives (a service is completed).

Thus, C1 and D1 (C2 and D2) generate a MArP (MSP when all servers are busy). It is
assumed that C1 + D1 (C2 + D2) is irreducible and aperiodic. This implies that there is a
unique stationary probability vector ν1 (ν2) satisfying ν1(C1+D1) = 0 (ν2(C2+D2) = 0).

When Y (m)(t) attains value 0 either after or before its state change, transitions of

J
(m)
2 (t) depends on L(m)(t) and J

(m)
1 (t), where L(m)(t) takes values in {0, 1, . . . , c}, and

we need them to describe a service process. Thus, the background process can be given
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by (L(m)(t), J
(m)
1 (t), J

(m)
2 (t)) during Y (m)(t) = 0. Denote its state space by S0. We then

consider three cases that Y
(m)
2 changes from 1 to 0, 0 to 0 and 0 to 1, separately. For

these cases, we denote the transition rate matrices of the background process by Q−1
, Q

0

and Q
1
, respectively. It is routine to give detailed descriptions for them (e.g, see [16] and

Example 4.2 below for the case of c = 1). However, we omit those descriptions since our
arguments does not depend on their specific forms.

Let

Z(m)(t) ≡
(
Y (m)(t), J

(m)
1 (t), J

(m)
2 (t)

)
,

where J
(m)
2 (t) = (L(m)(t), J

(m)
2 (t)) when Y (m)(t) = 0, and J

(m)
2 (t) = J

(m)
2 (t) otherwise.

Then, Z(m)(t) is a Markov chain with state space {0} × S0 ∪ {1, 2, . . . ,m} × SB, where

SB ≡ M1 ×M2. Note that we can set J
(m)
2 (t) = J

(m)
2 (t) for c = 1. Referring to Y (m)(t)

as a level process and to (J
(m)
1 (t), J

(m)
2 (t)) as a background process, the Markov chain

Z(m)(t) is a truncated QBD process with a transition rate matrix Q(m), whose blocks are
given by

Q0 = C1 ⊕ C2, Q0 = (C1 + D1) ⊕ C2,

Q−1 = Q−1 = I1 ⊗ D2, Q1 = D1 ⊗ I2,

where ⊗ and ⊕ stand for the Kronecker product and sum (e.g., see [2]), and I1, I2 are
identity matrices of appropriate sizes. For matrices Q−1

, Q
0

and Q
1
, no specific forms are

given as we discussed above.

It is easy to see that the stationary probability vector for Q−1 + Q0 + Q1 is ν1 ⊗ ν2.
Let

λ = ν1D11, µ =
1

c
ν2D21.

Clearly, λ is the mean arrival rate of customers, and µ is the mean service rate at each
server. Then, in this model, the negative drift condition (2.3) is equivalent to

ρ ≡ λ

cµ
< 1. (4.1)

Note that this queue always has the stationary distribution since levels are finite.

Compute the matrix generating function Q1 + zQ0 + z2Q−1 for real number z. Then,
we have

Q1 + zQ0 + z2Q−1 = (zC1 + D1) ⊕ (zC2 + z2D2). (4.2)

By the Perron-Frobenius theorem, for each z ≥ 0, there exists positive eigenvectors q1(z),
q2(z), p1(z), p2(z) and the corresponding nonnegative eigenvalues θ1(z), θ2(z) such that

p1(z)(zC1 + D1) = θ1(z)p1(z), p2(z)(zC2 + z2D2) = θ2(z)p2(z), (4.3)

(zC1 + D1)q1(z) = θ1(z)q1(z), (zC2 + z2D2)q2(z) = θ2(z)q2(z). (4.4)

Applying these formulas to (4.2), we have

p1(z) ⊗ p2(z)
(
Q1 + zQ0 + z2Q−1

)
= (θ1(z) + θ2(z)) p1(z) ⊗ p2(z), (4.5)(

Q1 + zQ0 + z2Q−1

)
q1(z) ⊗ q2(z) = (θ1(z) + θ2(z)) q1(z) ⊗ q2(z). (4.6)
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Lemma 4.1 Under the stability condition (4.1), there exists a unique η ∈ (0, 1) such
that

θ1(η) + θ2(η) = 0. (4.7)

For this η, let p = p1(η) ⊗ p2(η) and q = q1(η) ⊗ q2(η), then these p and q satisfy (2.5)
and (2.6), that is,

p1(η) ⊗ p2(η)
(
Q1 + ηQ0 + η2Q−1

)
= 0, (4.8)(

Q1 + ηQ0 + η2Q−1

)
q1(η) ⊗ q2(η) = 0. (4.9)

Proof. Since θ1(z) and θ2(z) are convex (see e.g., [10]), θ1(z) + θ2(z) is also convex.
On the other hand, θ′1(1) = −ν1D11, and θ′2(1) = ν2D21, so (4.1) implies that

θ′1(1) + θ′2(1) > 0.

Since θ1(0) > 0, there must be a unique η ∈ (0, 1) satisfying (4.7). Equations (4.8) and
(4.9) are immediate from (4.5), (4.6) and (4.7).

We are now ready to consider the loss probability p
(K+c)
loss of the MArP/MSP/c/K + c

queue, which is defined as

p
(K+c)
loss = λ−1π(m)

m Q11,

where m = K + 1.

Theorem 4.1 For the MArP/MSP/c/K + c queue, if ρ < 1, then we have

lim
K→∞

η−(K+c)p
(K+c)
loss =

(1 − ρ)π
(queue)
c rpr̂

ρηc−1(1 − η)pr
, (4.10)

where π
(queue)
c = π1, i.e., it is the positive vector for the stationary probabilities that there

are c customers in system, η ∈ (0, 1) is the solution of (4.7) and

p = p1(η) ⊗ p2(η),

r = −(Q0 + (ηI + R)Q−1)q1(η) ⊗ q2(η),

and r̂ is the right invariant vector of R̂ normalized as νr̂ = 1, which is given by

r̂ = −(cµ − λ)−1(Q0 + Q1 + R̂Q1)1.

Remark 4.1 It is interesting to see how the loss probability is different from the station-
ary probability at level K + 1, i.e., p

(∞)
K+c ≡ πK+11, of the corresponding unlimited buffer

queue. They have the same decay rate, and their ratio is given by

lim
K→∞

p
(K+c)
loss

p
(∞)
K+c

=
η(1 − ρ)pr̂

ρ(1 − η)p1
.

This may be useful for estimating p
(K+c)
loss for large K if we know the exact values of p

(∞)
K+c.
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Proof. From Corollary 3.1 and Lemma 4.1, (4.10) is obtained if we have

p(I − ηR̂)Q11 = ηcµ(1 − ρ)pr̂. (4.11)

We first show that r̂ is the right invariant vector of R̂ satisfying the normalization. From
(3.13) with z = 1, we have

0 = (Q1 + Q0 + Q−1)1 = (I − R̂)(Q0 + Q1 + R̂Q1)1. (4.12)

Hence, r̂ is the right invariant of R̂, where the minus sign is need for r̂ to be positive.
Similarly, ν is the left invariant vector. This implies that

νr̂ = −(cµ − λ)−1ν(Q0 + Q1 + Q1)1

= (cµ − λ)−1ν(Q−1 − Q1)1 = 1.

Also, from (4.12), we have

R̂Q11 = −(Q0 + Q1)1 − (cµ − λ)r̂ = Q−11 − (cµ − λ)r̂.

This yields

p(I − ηR̂)Q11 = p(Q1 − ηQ−1)1 + η(cµ − λ)pr̂.

Hence, we get (4.11) if p(Q1 − ηQ−1)1 = 0. To prove this, we first derive the following
formulas from (4.3) using the fact that (Ci + Di)1 = 0.

(1 − η)p1(η)D111 = θ1(η)p1(η)11,

η(1 − η)p2(η)D212 = −θ2(η)p2(η)12.

These yield

p(Q1 − ηQ−1)1 = p1(η) ⊗ p2(η)(D1 ⊗ I2 − ηI1 ⊗ D2)1

=
1

1 − η
(θ1(η) + θ2(η))p1(η)11p2(η)12 = 0.

Thus, (4.11) is obtained, which concludes (4.10).

In applications of Theorem 4.1, we need to compute η, πqueue
c , p, r and r̂. In principle,

these can be done through computing R and R̂. However, their analytic expressions
may be also interesting from the theoretical point of view. The following result partially
answers to them.

Corollary 4.1 Under the assumptions and normalization of Theorem 4.1, if pi(η) and
qi(η) are normalized in such a way that

pi(η)1i = 1, pi(η)qi(η) = 1, i = 1, 2, (4.13)

then

lim
K→∞

η−(K+c)p
(K+c)
loss =

(1 − ρ)π
(queue)
c rpr̂

ρηc−1(1 − η)(−(θ′1(η) + θ′2(η)))
, (4.14)
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Proof. Differentiating (4.3) and (4.4) with respect to z at z = η and postmultiplying
with q1(η) and q2(η), respectively, we have

p1(η)C1q1(η) = θ′1(η)p1(η)q1(η) = θ′1(η),

p2(η)(C2 + 2ηD2)q2(η) = θ′2(η)p2(η)q2(η) = θ′2(η),

where the second equalities follow from the normalization. Using these formulas and the
normalization (4.13), we have

pr = −p1(η) ⊗ p2(η) (C1 ⊗ I2 + I1 ⊗ C2 + 2ηI1 ⊗ D2) q1(η) ⊗ q2(η)

= −
(
p1(η)C1q1(η) · p2(η)q2(η)

+p1(η)q1(η) · p2(η)C2q2(η) + 2ηp1(η)q1(η) · p2(η)D2q2(η)
)

= − (θ′1(η) + θ′2(η)) . (4.15)

Substituting this into (4.10), we have (4.14).

Example 4.1 (Phase type renewal process) A simple but important example for
MArP and MSP is a renewal process with a phase type interarrival distribution. Suppose
that transition rate matrix T and nonnegative matrix D generate a MArP. Let D = tα
for a probability vector α, where t = (−T )1. Then, this MArP becomes a renewal process
with an interarrival distribution whose density f is given by

f(x) = α exp(xT )t, x ≥ 0.

This distribution is called a phase type, and denoted by PH(α, T ) (e.g., see [11]). We refer
to this renewal process as a phase type renewal process. For the phase type renewal process
generated by PH(α, T ), (4.3) and (4.4) become simpler. For example, let θ(z),p(z) and
q(z) are the Perron-Frobenius eigenvalue and left and right eigenvectors of zT + tα for
z > 0. Then, it is easy to see that

p(z) = z−1p(z)tα(z−1θ(z)I − T )−1, q(z) = z−1αq(z)(z−1θ(z)I − T )−1t. (4.16)

Note that p(z)t and αq(z) are scalars. These expressions of the eigenvectors are well
known (see, e.g., Section 5 of [19]).

A typical queueing model with phase type renewal arrivals and services is PH/PH/c
queue, where PH stands for the phase type renewal process (see, e.g., [19]). If we truncate
the buffer of this queue by K, then we have a PH/PH/c/K + c queue, which is of course
a special case of the MArP/MSP/c/K + c queue. So, Theorem 4.1 and Corollary 4.1 are
valid for them.

In the rest of this section, we compare our results with Theorem 1 of [4], which gives
asymptotic behaviors for a MArP/G/1/K + 1 queue. If the service time distribution is
limited to phase type, then this model becomes a special case of MArP/MSP/c/K + c.
Thus, Theorem 4.1 and Corollary 4.1 can be considered as a generalization of Theorem
1 of [4]. Here are two generalizations, one from a single server to many server, and
another from independent and identically distributed service times to a Markovian service
process. However, it is not immediate to conclude Theorem 1 of [4] from Theorem 4.1 or
Corollary 4.1 since the modeling is different.

So far, we show how Theorem 1 of [4] for phase type service times is derived from
Theorem 4.1. To this end, we first introduce MArP/PH/1/K + 1 formally.
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Example 4.2 (MArP/PH/1/K + 1 queue) For the MArP/MSP/c/K +c queue with
c = 1, rewrite C2 as T2, and let D2 = t2α2 for a probability vector α2 on M2 and t2 =
−T21. It is easy to see that ν2 = µα2(−T2)

−1 for i = 1, 2, where µ = (α2(−T2)
−11)−1.

Let

Q−1
= I1 ⊗ t2, Q

0
= C1, Q

1
= D1 ⊗ α2.

That is, the service time of a customer who found the system empty is independently sam-
pled from the distribution PH(α2, T2). We refer to this model as the MArP/PH/1/K+1
queue.

We apply Theorem 4.1 to the MArP/PH/1/K + 1 queue. Similarly to (4.16), we
have, from (4.4),

z−1q2(z) =
(
z−1θ2(z)I2 − T2

)−1
t2α2q2(z). (4.17)

Let si(z) = z−1θi(z) for i = 1, 2. Let V denote a generic random variable subject to the
service time distribution PH(α2, T2). Multiplying α2 to (4.17), and noting that α2q2 > 0,
we have

z−1 = E(e−s2(z)V ).

Differentiating both sides of this equation at z = η yields

θ′2(η) = −s1(η) +
1

ηE(V es1(η)V )
, (4.18)

since s1(η) + s2(η) = 0. Let η ∈ (0, 1) be the solution of (4.7), and δ2 = ηα2q2(η). Then,
from (4.17) with z = η, we have

q2(η) = δ2 (s2(η)I2 − T2)
−1 t2. (4.19)

Similarly, letting γ2 = ηp2(η)t2, (4.3) yields

p2(η) = γ2α2(s2(η)I2 − T2)
−1.

We normalize p2(η) and q2(η) by (4.13), then it can be obtained that

γ2 =
θ1(η)

1 − η
, δ2 =

1 − η

θ1(η)E(V es1(η)V )
. (4.20)

The derivations of these formulas are given in Appendix D. Define

χ(z) = E(ezθ1(1/z)V ), z > 0.

This χ(z) is the Perron-Frobenius eigenvalue of the matrix moment generating function:

A(z) ≡ E(e(C1+zD2)V ).
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See [4] for details. It is straightforward to compute the derivative of χ(z) at z = 1/η as

χ′
(

1

η

)
− 1 = (θ1(η) − ηθ′1(η))E(V es1(η)V ) − 1

= η(s1(η) − θ′1(η))E(V es1(η)V ) − 1

= ηE(V es1(η)V )

(
s1(η) − 1

ηE(V es1(η)V )
− θ′1(η)

)
= −ηE(V es1(η)V )(θ′1(η) + θ′2(η)), (4.21)

where the last equality is obtained by (4.18). We are now ready to present the following
result, which is proved in Appendix E.

Corollary 4.2 For MArP/PH/1/K +1 with the normalization (4.13), if ρ < 1, then we
have

lim
K→∞

η−(K+1)p
(K+1)
loss =

(1 − ρ)s1(η)

λ(1 − η)
(
χ′

(
1
η

)
− 1

)π0q1(η)p1(η)r̂1, (4.22)

where r̂1 is the k1-dimensional column vector such that r̂ = r̂1 ⊗ r̂2 and ν1r̂1 = 1.

This corollary must be identical with Theorem 1 of [4]. However, it is still apart from
(4.22). We here need to make correspondences between their and our models. In [4], the
queue is described by the embedded Markov chain at departure epochs. This embedded
Markov chain is a truncation of the so called M/G/1 type queue. In what follows, we
show that they are indeed identical, introducing some notation of the M/G/1 type queue,

Let {(Ln, Jn)} be a Markov chain for the corresponding M/G/1 type queue with an
unlimited buffer, where Ln and Jn represent the number of customers just after departure
and the phase for arrivals, respectively. If Ln remains in the set {1, 2, . . .}, then {(Ln, Jn)}
can be considered as a Markov additive process. Denote this additive process by (Xn, Bn).
For this additive process, we can define matrix Gd corresponding to the G for hitting
states in one lower level. Similarly, we can define matrix R̂d corresponding to the R̂ for
occupation measures. Since this unlimited buffer queue is stable, it is not hard to see that
Gd is a proper transition probability matrix, and ν1 is the left-invariant vector of R̂d.

Let gd and r̂d be the left-invariant and right-invariant vectors of Gd and R̂d, respec-
tively, such that gd1 = 1 and νr̂d = 1. Then, as is noticed in [4], it is well known
that

π0 = (1 − ρ)gd. (4.23)

In Appendix F, we show that

r̂1 = r̂d. (4.24)

Substituting these formulas into (4.22) and using s1(η) = η−1θ1(η), we get

lim
K→∞

η−Kp
(K+1)
loss =

(1 − ρ)2θ1(η)

λ(1 − η)
(
χ′

(
1
η

)
− 1

)gdq1(η)p1(η)r̂d.

This is exactly the result in Theorem 1 of [4]. It may be notable that the loss probability
asymptotics have different expressions. Among them, (4.10) may be most tractable for
numerical computations. It also has an advantage to be valid for many server queues.
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5. Concluding remarks

We finally consider possible extensions of the present results. The QBD process with
finitely many background states is sufficient for many queueing applications, but it is
still limited since it excludes batch arrivals and batch departures. To include them, we
may need unbounded level jumps. This class of queueing models are called GI/G/1 type
(see, e.g., [14]). An extension of the present results for such models may be interesting.
Another extension is to accommodate continuous quantities in background states. For
example, they are required for the models with general service time distributions. For
such an extension, we need to enlarge the framework of the Markov additive process of
this paper. This is also a challenging subject.

Appendix A. Proof of Proposition 3.1

Dividing Q(m) into level 0, {1, . . . ,m − 1} and m, we have
Q

0
Q

1

Q−1

Q
(m)
∗

Q1

Q−1 Q0

 , (A.1)

where Q
(m)
∗ consists of (m − 1) blocks in each rows and columns such that

Q(m)
∗ =


Q0 Q1

Q−1 Q0 Q1

. . . . . . . . .

Q−1 Q0 Q1

Q−1 Q0

 .

Clearly, the stationary distribution π(m) satisfies π(m)Q(m) = 0, which is equivalent to

π
(m)
0 Q

0
+ π

(m)
1 Q−1

= 0, π
(m)
m−1Q1 + π(m)

m Q0 = 0, (A.2)

(π
(m)
0 Q

1
,0, . . . , 0) + (π

(m)
1 , . . . , π

(m)
m−1)Q

(m)
∗ + (0, . . . , 0,π(m)

m Q−1) = 0. (A.3)

Since Q
(m)
∗ is a defective matrix, (−Q

(m)
∗ )−1 exists. Thus, (A.3) becomes

(π
(m)
1 , . . . , π

(m)
m−1) = (π

(m)
0 Q

1
,0, . . . , 0,π(m)

m Q−1)(−Q(m)
∗ )−1. (A.4)

Note that (−Q
(m)
∗ )−1 represents the mean sojourn time in (Nm \ {0,m}) × SB before

absorbing to {0} × SB or {m} × SB. So, (A.2) and (A.4) prove this proposition.

Appendix B. Proof of (3.10)

We formally prove (3.11):

N
(0,+)
1m = N

(0,m)
1(m−1)Q1N

(0,+)
mm , m ≥ 2.
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For convenience, we let τ−
0 = τ c

[1,∞) and τ+
` = τ c

(−∞,`−1] for ` ≥ 1. That is,

τ−
0 = inf{t > 0; X(t) ≤ 0}, τ+

` = inf{t > 0; X(t) ≥ `}.

Then, conditioning the Markov additive process (X(t), B(t)) at time τ+
m, we have

N
(0,+)
1m (i, j) = E(1,i)

(∫ ∞

0

1(X(u) = m,B(u) = j, u < τ−
0 )du

)
=

∫ ∞

0

E(1,i)

(
P(X(τ+

m),B(τ+
m))(X(u) = m,B(u) = j, u < τ−

0 )
)

du

= E(1,i)

(∫ ∞

τ+
m

P(X(τ+
m),B(τ+

m))(X(u) = m,B(u) = j, u < τ−
0 )du1(τ+

m < τ−
0 )

)
=

∑
k

P(1,i)

(
B(τ+

m) = k, τ+
m < τ−

0

)
N (0,+)

mm (k, j).

Hence, (3.11) is obtained if we show that

P(1,i)

(
B(τ+

m) = k, τ+
m < τ−

0

)
= N

(0,m)
1(m−1)Q1(i, k). (B.1)

Let A be the transition rate matrix of (X(t), B(t)). It is easy to see that

A((k, i), (`, j)) =


Q−1(i, j), ` = k − 1,
Q1(i, j), ` = k,
Q+1(i, j), ` = k + 1,
0, otherwise.

Let σt = τ−
0 ∧ τ+

m ∧ t for t > 0, where a ∧ b = min(a, b) for real number a, b. Since σt is
a bounded stopping time with respect to the filtration of the Markov chain (X(t), B(t)),
we have the following Dynkin’s formula (e.g., see Lemma 19.21 of [9]).

E(`,i)(f(X(σt), B(σt)) = f(`, i) + E(`,i)

(∫ σt

0

Af(X(u), B(u))du

)
, (B.2)

where f is a nonnegative and bounded function on N × SB, and

Af(`, i) =
∑

(`′,i′)∈N×SB

A((`, i), (`′, i′))f(`′, i′).

Let ` = 1 and f(`′, i′) = 1(`′ = m, i′ = j) in (B.2), then we have, for m ≥ 2,

P(1,i)(X(σt) = m, B(σt) = k)

= E(1,i)

(∫ σt

0

A((X(u), B(u)), (m, k))du

)
=

∑
i′

∫ ∞

0

P(1,i) (X(u) = m − 1, B(u) = i′, u < σt) Q((m − 1, i′), (m, k))du.
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Letting t → ∞ in the above formula and using the fact that X(τ−
0 ) = 0 6= m, we have

P(1,i)(B(τ+
m) = k, τ+

m < τ−
0 )

=
∑

i′

E(1,i)

(∫ ∞

0

1(X(u) = m − 1, B(u) = i, u < τ+
m ∧ τ−

0 ))du

)
×Q((m − 1, i′), (m, k))

= N
(0,m)
1(m−1)Q1(i, k).

This completes the proof of (3.11).

Appendix C. Proof of (3.14)

We show that (3.14) agrees with (3.4) for the M/PH/1/m queue. This is equivalent to
show that

ηp(η−1I − R̂)Q1 = λpT−1(Q0 + Q1 + R̂Q1)

We here prefer (3.4) to (3.12). Since Q0 +Q1 = T and Q1 = λI, this is further equivalent
to

p(ηI + λT−1)R̂Q1 = 0.

Hence, it is sufficient to show that

p(ηI + λT−1)T1αĜ = 0. (C.1)

since R̂Q1 = Q−1Ĝ and Q−1 = tα. We show that p(ηI + λT−1)T1 = 0. To this end, we
note that p is determined by (2.5), which is written as

p
(
λ(1 − η)I + ηT + η2tα

)
= 0.

We normalize p in such a way that pt = η−1. Then, postmultiplying both sides of this
with 1, we have

p(λI + ηT )1 = η(λp1 − 1).

This yields

(1 − η)(λp1 − 1) = 0,

which implies that λp1 = 1. Hence, we have p(ηT + λI)1 = 0, so we have (C.1).

Appendix D. Proof of (4.20)

From the normalization, we have

α2(s2(η)I2 − T2)
−112 = γ−1

2 ,
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while (4.17) yields

α2(s2(η)I2 − T2)
−1(−T2)12 = η−1.

These two equations imply

1 = α212

= α2(s2(η)I2 − T2)
−1(s2(η)I2 − T2)12

= s2(η)γ−1
2 + η−1.

This concludes the first equation of (4.20) since ηs2(η) = θ2(η) and θ1(η) = −θ2(η). We
next compute the inner product of p2(η) and q2(η).

p2(η)q2(η) = γ2δ2α2(s2(η)I2 − T2)
−2t2

= −γ2δ2
d

dz
α2(zI2 − T2)

−1t2

∣∣∣∣
z=s2(η)

= −γ2δ2
d

ds
E(e−sB)

∣∣∣∣
s=s2(η)

= γ2δ2E(Bes1(η)B).

Hence, the normalization p2(η)q2(η) = 1 concludes the second equation of (4.20).

Appendix E. Proof of Corollary 4.2

From Corollary 4.1 and (4.21), we have

lim
K→∞

η−(K+1)p
(K+1)
loss =

η(1 − ρ)E(Bes1(η)B)π1rpr̂

ρ(1 − η)
(
χ′

(
1
η

)
− 1

) .

Hence, if we show that

π1r =
(1 − η)

ηE(Bes1(η)B)
π0q1(η), (E.1)

pr̂ =
s1(η)

µ(1 − η)
p1(η)r̂1, (E.2)

then Corollary 4.2 is obtained. From (2.11), we have

π1 = π0(I1 ⊗ α2)Q1N
(0,+)
11 = π0(I1 ⊗ α2)R.

Since π0 = π0 ⊗ 1, this, (2.7) and (3.5) yield

π1r = η(π0 ⊗ α2)r

= −η(π0 ⊗ α2)(Q0 + ηQ−1 + Q1G)(q1(η) ⊗ q2(η))

= −η(π0 ⊗ α2)(C1 ⊕ T2 + ηI1 ⊗ t2α2 + (D1 ⊗ I2)G)(q1(η) ⊗ q2(η)). (E.3)
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Since G is the transition probabilities to hit one lower level, which always ends up with
the departure of a customer, G can be decomposed as

G = G1 ⊗ 12α2

for some k1 × k1 transition probability matrix G1. Applying this to (2.10), we have

0 = π0(C1 + (I1 ⊗ 11α2)R(I1 ⊗ t2))

= π0(C1 + (I1 ⊗ 11α2)RQ−1(I1 ⊗ 12))

= π0(C1 + (I1 ⊗ 11α2)Q1G(I1 ⊗ 12))

= π0(C1 + (D1 ⊗ 11α2)(G1 ⊗ 12)

= π0(C1 + D1G1).

Hence, we have π0C1 = −π0D1G1. Substituting this to (E.3) together with (4.19) and
δ2 = ηα2q2(η), we get

π1r = −η(π0 ⊗ α2)(I1 ⊗ T2 + ηI1 ⊗ t2α2)(q1(η) ⊗ q2(η))

= −η(π0 ⊗ α2)(I1 ⊗ T2 + I1 ⊗ (ηt2α2))(q1(η) ⊗ q2(η))

= −ηπ0q1(η)α2(T2 + ηt2α2)q2(η)

= −ηπ0q1(η)(α2T2q2(η) + δ2α2t2).

We further compute this using the fact that

α2T2q2(η) = δ2α2T2 (s2(η)I2 − T2)
−1 t2

= −δ2α2 (s2(η)I2 − T2) (s2(η)I2 − T2)
−1 t2 + δ2s2(η)α2 (s2(η)I2 − T2)

−1 t2

= −δ2α2t2 + δ2s2(η)α2 (s2(η)I2 − T2)
−1 t2

= −δ2α2t2 − δ2s1(η)η−1,

we get

π1r = δ2s1(η)π0q1(η).

Hence, (4.20) concludes (E.1).

We next prove (E.2). To this end, we shall use dual processes for the Markov additive
processes (X(t), B(t)) and (X̂(t), B(t)). These processes are defined as (−X(−t), B(−t))
and (−X̂(−t), B(−t)), respectively. Obviously, (−X(−t), B(−t)) is also a Markov addi-
tive process generated by matrices:

Q∗
i = ∆−1

ν (Qi)
t∆ν, i = 0,±1,

where At is the transpose of matrix A, and ∆a is the diagonal matrix whose i-th diagonal
entry is the i-th entry of a vector a. We use superscript “∗” to indicate the dual process.
Similarly, (−X̂(−t), B(−t)) is generated by matrices:

Q̂∗
i = ∆−1

ν (Q−i)
t∆ν, i = 0,±1.

Let N̂
∗(−,1)
00 be the corresponding matrix with N

(−,1)
00 for the dual direction reversed process

(−X̂(−t), B(−t)). Define

Ĝ∗
+ = N̂

∗(−,1)
00 Q̂∗

1.
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This matrix represents the background state transition probabilities at hitting one upper
level for (−X̂(−t), B(−t)). On the other hand, it can be shown that

R̂ = ∆−1
ν (Ĝ∗

+)t∆ν.

For example, see [14] for a discrete time version of this relation, which is easily converted
to continuous time versions. Since Ĝ∗

+ = G∗ can be obtained by reversing the direction,
this becomes

R̂ = ∆−1
ν (G∗)t∆ν. (E.4)

We now closely look at G∗. We first observe that G∗ is a non-defective transition proba-
bility matrix since the dual process has the same mean drift as the original process. We
next note that

Q∗
−1 = ∆−1

ν (I1 ⊗ αt
2t

t
2)∆ν

= I1 ⊗ ∆−1
ν2

αt
2t

t
2∆ν2 ,

where ν = ν1 ⊗ ν2 is used. Since

tt
2∆ν21 = ν2t2 = µ,

G∗ must has the following form for some k1 × k1 transition probability matrix G∗
1.

G∗ = G∗
1 ⊗ 12ξ2,

where ξ2 = µ−1tt
2∆ν2 . Let g∗ and g∗

1 be the left invariant vectors of G∗ and G∗
1, respec-

tively, then the left invariant vector g∗ of G∗ is given by

g∗ = g∗
1 ⊗ ξ2. (E.5)

Hence, (E.4) implies that the right invariant vector r̂ of R̂ is given by

r̂ = a∆−1
ν (g∗)t = ar̂1 ⊗ (µ−1t2),

for some positive constant a, where r̂1 = ∆−1
ν1

(g∗
1)

t. Since νr̂ = 1, we have a = 1. These
yield

pr̂ = µ−1p1(η)r̂1p2(η)t2

= µ−1γ2η
−1p1(η)r̂1.

Thus, (4.20) concludes (E.2).

Appendix F. Proof of (4.24)

From (E.4) and (E.5), we have r̂1 = ∆−1
ν1

g∗
1. Let g∗

d be the corresponding vector with gd

for the dual of the Markov additive process (Xn, Bn). It can be shown that the background
processes for these additive processes have the common stationary distribution ν1. So,
we have r̂d = ∆−1

ν1
g∗

d similarly to r̂1 (see also [4]). Since both of (1 − ρ)g∗ and (1 − ρ)g∗
d

give the same stationary probabilities of background states in the dual process when the
system is empty, they are identical, and we have (4.24).
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