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Outline
 Introduction
 Thermal cloud effects in optical lattices
 Damping of collective modes
 Generalized GP equation in optical lattices
 Instability of the condensate
 Summary and outlook

In this talk, I will mainly focus on giving an overview.
Detailed discussion about the kinetic theory in optical
lattices based on 2PI formalism will be given by Satoru
Konabe’s poster presentation.
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Introduction
Ultracold atoms in optical lattice potentials

Review of T=0 condensate dynamics
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Ultracold Atomic Gases in Periodic Potentials
(Optical Lattices)

 Ideal crystal-like systems: no impurities, possibilities of tuning
the lattice parameters.

 Periodic potentials produced by two counter propagating laser beams.
ω, q ω, −q

: recoil energy.

d : lattice constant fixed by laser wavelength.

dimensionless parameter describing
strength of the lattice potential.

s :
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PhysicsPhysics in the Presence of Optical Lattices in the Presence of Optical Lattices
 No interaction (spin polarized Fermi gas, very dilute Bose gas)

Interference in momentum distribution, Bloch oscillations

 Weak interaction (shallow optical lattices)

 Strong interaction (deep optical lattices)

Josephson oscillations, damping of condensate oscillations,
Landau and dynamical instabilities

strongly-correlated quantum gases, superfluid-Mott insulator
transition
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Ideal Bose Gas in 1DIdeal Bose Gas in 1D  Optical PotentialOptical Potential
 Bloch wave function

k/G (quasi-momentum)

E/
E R S=1

 Bloch Energy Band
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 Gross-Pitaevskii (GP) equation
Condensate in Optical Lattices (Condensate in Optical Lattices (TT=0)=0)

 Equilibrium density profile

(a: s-wave scattering length)

Condensate density profile averaged
over the lattice constant d has the
Thomas-Fermi profile:

renormalized coupling constant
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 Ground state solution can be generalized to solutions carrying
quasi-momentum. Look for stationary solutions (Bloch solutions).

Condensate Bloch BandCondensate Bloch Band

with ukc periodic function

k / q
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 Bogoliubov-Bloch excitations
Excitation Spectrum (Excitation Spectrum (VVtraptrap=0=0))

S=4

S=1

S=0.75

 Phonon-like dispersion law in the long wavelength limit

: effective mass
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 Introduce smoothed density averaged over lattice spacing, and
write down the energy functional.

Coarse-Grained Hydrodynamic EquationCoarse-Grained Hydrodynamic Equation

 One derives course-grained hydrodynamic equations.

 We will later generalize this course-grained GP theory to finite
temperatures, including the effect of thermal cloud atoms.

: effective mass : renormalized coupling constant

Kraemer et al. (2003)
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Dipole OscillationsDipole Oscillations
 1D optical lattice + 3D harmonic trap potential

mode frequency v.s. lattice height

Cataliotti et al. (2001)
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Condensates in Moving LatticesCondensates in Moving Lattices

 Dynamical instability above a critical velocity.

ω+δω, q+δq ω, −q

 Moving optical lattices can produced by controlling the laser
frequencies. Fallani et al., (2004)
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Dynamical InstabilityDynamical Instability
 In the tight-binding limit, the dispersion relation in the presence of

the lattice potential moving with the velocity v, is given by

 Dynamical instability occurs if

 Excitation energies possess the imaginary
part, which leads to the exponential increase
of the amplitude of collective oscillations.

Wu and Niu (PRA 2001) This kind of instability is well understood
within the usual (T=0) GP equation！
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Motivation:Motivation:
Thermal Cloud Effects in theThermal Cloud Effects in the

Condensate Dynamics at FiniteCondensate Dynamics at Finite
TemperaturesTemperatures

 Damping of the condensate oscillations.
 Instability of the condensate in the presence of the

thermal cloud.
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Damping of the Condensate OscillationDamping of the Condensate Oscillation
F. Ferlaino,et.al (2002)

The direction
of the lattice

 Thermal cloud atoms cannot
coherently move in the presence
of optical lattice potentials.

 Dipole oscillations exhibit strong
damping with increasing lattice
depth.
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Instability of the Condensate in theInstability of the Condensate in the
Presence of Thermal CloudPresence of Thermal Cloud

ω+δω, q+δq ω, −q

L.de.Sarlo et al. PRA 72 013603 (2004)

T > 0

T ~ 0

 In the presence of the thermal cloud, one observes a strong
reduction of the condensate atoms, even when the lattice velocity
is well below the critical velocity for the dynamical instability.
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Energetic InstabilityEnergetic Instability

V

when the velocity exceeds the critical velocity (Landau criterion)

 If the condensate is moving with the velocity v, the excitation
energy is given by

 The excitation energy can become negative

 The excitations are spontaneously produced, making the
condensate unstable.

 What is the role of thermal cloud in optical lattices?
 What is the microscopic mechanism of the instability?
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Finite-Temperature Theory of BoseFinite-Temperature Theory of Bose
Condensates in Optical LatticesCondensates in Optical Lattices

 Hartree-Fock-Popov formalism

 Nonequilibrium kinetic theory (Konabe’s poster)
Generalized GP Equation for the condensate
Kinetic equation for the noncondensate

Equilibrium calculation
Excitation spectrum
Landau damping

2PI effective
action

 In order to understand the role of thermal cloud in optical lattices,
we want to develop finite-temperature theory.
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Hartree-Fock-Popov Hartree-Fock-Popov CalculationsCalculations

 GP equation

Bogoluibov equations

condensate
noncondensate

Arahata and Nikuni, JLTP (in press)



19

Condensate FractionCondensate Fraction
Calculations using the trap parameters for
Florence experiment:

400000  N
795 nm

92 Hz
9.0 Hz

N
c
/N

T [nk]

Semiclassical prediction of an
ideal Bose gas in a 3D
harmonic trap
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Damping of the Dipole OscillationDamping of the Dipole Oscillation
 Landau damping rate

Experimented data 

F. Ferlaino, et.al  (2002)

<<Lattice depth dependence of Landau damping >>

T=120 nK(~0.86Tc)

Reasonable agreement with the experimental data.
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Temperature Dependence of the Damping RateTemperature Dependence of the Damping Rate
 Landau damping rate

Damping rate decreases significantly with decreasing
temperature !!
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Non-equilibrium Kinetic Theory for BoseNon-equilibrium Kinetic Theory for Bose
CondensatesCondensates  in Optical Latticesin Optical Lattices

 In order to describe non-equilibrium behaviors, such as the
instability of the condensate, one has to derive a kinetic theory
including the effect of periodic potentials.

 We derive a coarse-grained generalized GP (GGP) equation at
finite temperatures, including the effect of lattice potentials.

 Our formalism is a natural extension of the coarse-grained
condensate hydrodynamics derived by Kaemer et al..

 We briefly review the ZNG formalism describing the coupled
dynamics of the trapped condensate and thermal cloud .
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Review of the ZNG formalismReview of the ZNG formalism
 Generalized GP equation can be written as

 The function F describes the exchange of atoms between the
condensate and thermal cloud. It involves noncondensate
Green’s functions, such as

 One also has the equation of motion for the noncondensate
Green’s function (which is often called Kadanoff-Baym equation).
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Gradient ExpansionGradient Expansion

 For the noncondensate Green’s function, we separate out the
variables describing “slow” and “fast” processes.

 To truncate the nonlocal term involving the function F, we
assume that the macroscopic variables vary slowly in space and
time. We thus make use of the approximation

The slow dynamics described by the (R,T) is treated semiclassically.
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Coupled ZNG equationsCoupled ZNG equations

 Generalized GP equation for the condensate:

 With these approximations, one obtains a closed set of the
condensate and thermal cloud.

 Semiclassical kinetic equation for the noncondensate
distribution: collisional

exchange of atoms

collisions between thermal
cloud atoms
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Collision TermsCollision Terms

C22

collisions between thermal
cloud atoms

1 2

3 4
C12

condensate

+ inverse

collisions between atoms in the
condensate and thermal cloud
(colllisional exchange)

 Collision term in the kinetic equation.

 Dissipative term in the GP equation.
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Finite-Temperature Dynamics in Optical LatticesFinite-Temperature Dynamics in Optical Lattices
 The ZNG coupled equations have been successfully used to

describe the dynamics of trapped Bose gases at finite temperatures.

condensate density profile in a
lattice potential + harmonic
confinement

 In order to extend the kinetic theory to include optical lattices, one
has to deal with the rapid spatial variation associated with the
underlying lattice potential.

 For this purpose, it is convenient to work with the effective action,
which involves integrations over position.
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2PI Formalism for Bose gases in Optical Lattices2PI Formalism for Bose gases in Optical Lattices

 We derive the 2PI effective action for the condensate wavefunction
and the noncondensate Green’s functions.

 The generalized GP equation is obtained from

Konabe and Nikuni, JLTP (in press)
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 In order to eliminate rapid variations associated with lattice
potentials, we must go back to the effective action, and introduce
the Bloch functions.

rapid oscillation associated with lattice potentials

 One obtains

 Introduce coarse-grained quantities (average over lattice spacing)
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Coarse-Grained GP EquationCoarse-Grained GP Equation

local energy of the condensate in an optical
lattice with the finite momentum                .

dissipative term describing the exchange of atoms
between the condensate and thermal cloud.

= modified dispersion along the lattice direction

 We derive a coarse-grained effective action for the smoothed
variables.

 From the functional derivative, and making the gradient expansion,
we finally obtain the finite-T coarse-grained GP equation
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Generalized GP Hydrodynamic EquationsGeneralized GP Hydrodynamic Equations
 We consider the low condensate velocity limit (kc<<q).

condensate chemical potential in an optical lattice

effective
masses
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Summary of the KineticSummary of the Kinetic  Theory inTheory in
Optical LatticesOptical Lattices

 Condensate dynamics is described by the coarse grained
generalized GP equation.

 Noncondensate Green’s function can also be expressed in
terms of the Bloch wave function.
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Instability of the CondensateInstability of the Condensate
 Collisional damping

 Landau damping

 Critical velocity

Konabe and Nikuni, J. Phys. B 39, S101 (2006)

Iigaya, Konabe, Danshita, and Nikuni, PRA 74, 053611 (2006)

Konabe and Nikuni, JLTP (in press)
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Instability in a Moving LatticeInstability in a Moving Lattice

 We use the coarse-grained GGP equation to discuss the instability
of a condensate in a moving lattice.
ω+δω, q+δq ω, −q

 We calculate damping of condensate collective modes. We will
show that the damping rate can become negative in the presence
of the moving optical lattice.

  This means that the fluctuation of the condensate exponentially
grows, leading to the instalibity.
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Collisional Collisional DampingDamping  RateRate

 Condensate velocity and sound velocities are defined as

 In calculating the dissipative term in the GGP equation, we assume
that is the thermal cloud is in static equilibrium distribution (Bose
distribution function). Static thermal cloud approximation

[Williams and Griffin (2001)]

 The frequency and damping rate for the phonon mode
propagating along the lattice direction are given by



36

Landau DampingLandau Damping  RateRate
 The noncondensate density fluctuation is treated within the linear

response theory:

 For simplicity, we calculate the density response function in the
Hartree-Fock approximation

 Iigaya et al., PRA (2006) used Hartree-Fock-Popov approximation
for the tight-binding model to calculate the Landau damping rate.
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Instability of the CondensateInstability of the Condensate
 The expressions for the collsional and Landau damping show that

the damping rate can be negative when

 This condition turns out to be precisely the same as the usual
Landau criterion for the negative excitation energy.

 This indicates the growth instability

 This result clearly shows the crucial role of the thermal cloud in the
optical lattice, and give an insight into the microscopic mechanism
of the Landau instability.
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SummarySummary
 We discussed the effects of thermal cloud atoms in Bose-condensed

gases in the presence of optical lattices.

 We derived the coarse-grained GGP equation at finite temperatures.

 The effects of a lattice potential is incorporated into the equation of
motion for the condensate by a modified dispersion (effective mass)
and a renormalized coupling constant.

 We used the coarse-grained GGP equation to discuss the Landau
instability.
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OutlookOutlook
 Coupled non-equilibrium dynamics of the condensate and thermal

cloud. This will involve a kinetic equation for the noncondensate
distribution function in the presence of an optical lattice.

 Two-fluid hydrodynamics in the presence of an optical lattice.

 Dynamics of a two-component Fermi gas in the presence of an
optical lattice.


