INTEGRAL REPRESENTATIONS
 OF CYCLIC GROUPS

Kenshi KIDA

(Received November 4, 1994)

Abstract

The purpose of this paper is to determine the set of non- isomorphic indecomposable $R G$-lattices, where R is a certain ring of algebraic integers, and G is a cyclic group of prime order. AMS 1991 Mathematics Subject Classification. Primary 16S34; Secondary 16U60. Key words and phrases. Cyclic group, extension, indecomposable module, integral representations.

§1. Introduction.

Let G be a finite group, and let R be a ring of integers. By $R G$, we denote the group ring consisting of all formal combinations of the elements of G with coefficients in R. We shall here be concerned with representations of G by matrices with entries in R, or equivalently, with left $R G$-modules having a free finite R-basis.

The first systematic study of this problem occurred in a paper by Diederichsen [1]. Let G denote a cyclic group generated by an element g of prime order p. Also we set

$$
K=\mathbb{Q}\left(\zeta_{p}\right), \quad S=\text { alg. int. }\{K\}=\mathbb{Z}\left[\zeta_{p}\right]
$$

where for a positive integer s, ζ_{s} is a primitive s-th root of 1 over \mathbb{Q}. The following result was shown:
Theorem. (Diederichsen [1], Reiner [3]). Every $\mathbb{Z} G$-module M is isomorphic to a direct sum

$$
\left(A_{1}, a_{1}\right) \oplus \cdots \oplus\left(A_{r}, a_{r}\right) \oplus A_{r+1} \oplus \cdots \oplus A_{n} \oplus Y
$$

where the $\left\{A_{\nu}\right\}$ are S-ideals in K, the $\left\{a_{\nu}\right\}$ are chosen so that $a_{i} \in A_{i}, a_{i} \notin$ $\left(\zeta_{p}-1\right) A_{i}$, and Y is a \mathbb{Z}-module having a finite \mathbb{Z}-basis such that $g y=y$ for all $y \in Y$. The isomorphism class of M is determined by the integers r, n, the \mathbb{Z}-rank of Y, and the ideal class of $A_{1} \cdots A_{n}$ in K.

In this paper, we shall classify all left $R G$-modules, where G is a cyclic group of order p, and

$$
R=\text { alg. int. }\left\{\mathbb{Q}\left(\zeta_{q}\right)\right\}=\mathbb{Z}\left[\zeta_{q}\right]
$$

Our proof will be based on the treatment given by Heller-Reiner [2].

§2. Representations of a cyclic group of order p

Throughout this section, let G be a cyclic group generated by an element σ of prime order p.

For convenience, we set

$$
R=\mathbb{Z}\left[\zeta_{q}\right], \quad B=R\left[\zeta_{p}\right]=\mathbb{Z}\left[\zeta_{p q}\right]
$$

where p and q are distinct odd primes. We have ring isomorphisms

$$
\begin{align*}
& \frac{R G}{(\sigma-1) R G} \simeq R \tag{2.1}\\
& \frac{R G}{\left(\Phi_{p}(\sigma)\right) R G} \simeq B \tag{2.2}
\end{align*}
$$

given by $\sigma \longmapsto 1$, and $\sigma \longmapsto \zeta_{p}$, respectively, where $\Phi_{p}(x)$ is the cyclotomic polynomial of order p (and degree $p-1$). By (2.1) and (2.2), both R and B are left $R G$-modules.

Let M be any $R G$-module, and set

$$
N=\{m \in M ;(\sigma-1) m=0\} .
$$

Then N is an $R G$-submodule of M annihilated by $(\sigma-1)$. Therefore we may consider that N is R-torsion-free.

Hence there exist ideals $I_{1}, I_{2}, \cdots, I_{t}$ of R such that

$$
N \simeq I_{1} \oplus I_{2} \oplus \cdots \oplus I_{t}
$$

This gives the structure of N both as R-module and as $R G$-module.
On the other hand M / N is annihilated by $\Phi_{p}(\sigma)$, so that it may be viewed as B-module. Also M / N is B-torsion-free. Therefore there exist ideals J_{1}, J_{2}, \cdots, J_{u} of B such that

$$
M / N \simeq J_{1} \oplus J_{2} \oplus \cdots \oplus J_{u}
$$

This shows that M / N is considered both as B-module and as $R G$-module. The problem of classifying all $R G$-modules is reduced to that of determining extensions of $J_{1} \oplus J_{2} \oplus \cdots \oplus J_{u}$ by $I_{1} \oplus I_{2} \oplus \cdots \oplus I_{t}$.

For the rest of this section, we write Ext in place of Ext ${ }_{R G}^{1}$. Since $R G$ is a commutative ring, we may view Ext itself as $R G$-module.
Lemma. There are $R G$-isomorphisms

$$
\operatorname{Ext}\left(B_{j}, A_{i}\right) \simeq A_{i} / p A_{i}
$$

where integral ideals $A_{1}, \cdots, A_{h_{R}}$ are representatives of the h_{R} distinct ideal classes of $\mathbb{Q}\left(\zeta_{q}\right)$, and integral ideals $B_{1}, \cdots, B_{h_{B}}$ are representatives of the h_{B} distinct ideal classes of $\mathbb{Q}\left(\zeta_{p q}\right)$.

Proof. By (2.2), the following sequence

$$
0 \longrightarrow \Phi_{p}(\sigma) \cdot R G \xrightarrow{\tau} R G \longrightarrow B \longrightarrow 0
$$

is exact. Then, for every B_{j}, there exists an integral ideal S_{j} of $R G$ such that the sequence

$$
0 \longrightarrow \Phi_{p}(\sigma) \cdot R G \xrightarrow{\tau} S_{j} \longrightarrow B_{j} \longrightarrow 0
$$

is exact. It follows that

$$
\begin{aligned}
0 \longrightarrow & \operatorname{Hom}_{R G}\left(B_{j}, A_{i}\right) \longrightarrow \operatorname{Hom}_{R G}\left(S_{j}, A_{i}\right) \xrightarrow{\tau^{*}} \\
& \operatorname{Hom}_{R G}\left(\Phi_{p}(\sigma) \cdot R G, A_{i}\right) \longrightarrow \operatorname{Ext}\left(B_{j}, A_{i}\right) \longrightarrow \operatorname{Ext}\left(S_{j}, A_{i}\right) \longrightarrow \cdots .
\end{aligned}
$$

The mapping τ^{*} is induced from τ as follows:
for each $f \in \operatorname{Hom}_{R G}\left(S_{j}, A_{i}\right)$,

$$
\left(\tau^{*} f\right) x=f(\tau x), \quad x \in \operatorname{Hom}_{R G}\left(\Phi_{p}(\sigma) \cdot R G, A_{i}\right) .
$$

For convenience let $Y=\Phi_{p}(\sigma) \cdot R G$. Since S_{j} is $R G$-projective, we obtain $\operatorname{Ext}\left(S_{j}, A_{i}\right)=0$. Therefore,

$$
\begin{equation*}
\operatorname{Ext}\left(B_{j}, A_{i}\right) \simeq \operatorname{Hom}_{R G}\left(Y, A_{i}\right) / \tau^{*} \operatorname{Hom}_{R G}\left(S_{j}, A_{i}\right) \tag{2.3}
\end{equation*}
$$

Now set $y=\Phi_{p}(\sigma) \in Y$; then each $F \in \operatorname{Hom}_{R G}\left(Y, A_{i}\right)$ is completely determined by the value $F(y) \in A_{i}$, and each $a \in A_{i}$ is of the form $F(y)$ for some such F. Thus

$$
\operatorname{Hom}_{R G}\left(Y, A_{i}\right) \simeq A_{i}
$$

as $R G$-modules. Let us determine which elements in A_{i} correspond to elements in the image of τ^{*}. Because τ is the inclusion mapping, the image of τ^{*} in A_{i} is exactly $\Phi_{p}(\sigma) A_{i}$, and by (2.3) we obtain

$$
\operatorname{Ext}\left(B_{j}, A_{i}\right) \simeq A_{i} / \Phi_{p}(\sigma) A_{i} .
$$

Since

$$
\Phi_{p}(\sigma) a=p a, \quad a \in A_{i},
$$

we get

$$
\operatorname{Ext}\left(B_{j}, A_{i}\right) \simeq A_{i} / p A_{i} .
$$

This completes the proof.

Note that p is unramified in R. If

$$
p R=P_{1} P_{2} \cdots P_{m}
$$

is the factorization of $p R$ into distinct prime ideals of R, then

$$
R / p R \simeq R / P_{1} \oplus R / P_{2} \oplus \cdots \oplus R / P_{m} \simeq \underbrace{F \oplus F \oplus \cdots \oplus F}_{m},
$$

where F is a finite field of characteristic p. Since

$$
A_{i} / p A_{i} \simeq R / p R, \quad 1 \leq i \leq h_{R}
$$

we obtain that $\operatorname{Ext}\left(B_{j}, A_{i}\right)$ is isomorphic to the direct sum of m copies of F.
On the other hand, by the following pullback diagram,

we define the group homomorphism $\varphi_{i j}: u\left(A_{i}\right) \times u\left(B_{j}\right) \longrightarrow u(R / p R)$. In addition, we define the group homomorphism $\pi_{s_{1} s_{2} \cdots s_{k}}^{(k)}$ from $u(A / p A) \simeq$ $\underbrace{F^{*} \oplus F^{*} \oplus \cdots \oplus F^{*}}_{m}$ to $\underbrace{F^{*} \oplus \cdots \oplus F^{*}}_{k}\left(F^{*}=F-\{0\}\right)$ by

$$
\pi_{s_{1} s_{2} \cdots s_{k}}^{(k)}\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\left(a_{s_{1}}, \cdots, a_{s_{k}}\right)
$$

for every $k=1,2, \cdots, m$, and set

$$
l_{i j}=\sum_{k=1}^{m} \sum_{1 \leq s_{1}<s_{2}<\cdots<s_{k} \leq m}\left|\frac{\operatorname{Im} \pi_{s_{1} s_{2} \cdots s_{k}}^{(k)}}{\operatorname{Im} \pi_{s_{1} s_{2} \cdots s_{k}}^{(k)} \circ \varphi_{i j}}\right| .
$$

Now we are ready to prove the following result:
Theorem. Keep the above notations. Up to RG-isomorphism, there are $h_{A}+$ $h_{B}+\sum_{1 \leq i \leq h_{A}, 1 \leq j \leq h_{B}} l_{i j}$-indecomposable $R G$-lattices, given by

$$
A_{i}, B_{j}, \quad\left(B_{j}, A_{i}\right)_{k_{i j}} \quad\left(1 \leq i \leq h_{A}, 1 \leq j \leq h_{B}, 1 \leq k_{i j} \leq l_{i j}\right)
$$

where $\left(B_{j}, A_{i}\right)_{k_{i j}}$ are the isomorphism classes of non-splitting extentions of B_{j} by A_{i}.
Proof. Let M be an indecomposable $R G$-module. By the discussion at the beginning of this section, we know that M must be an extension of $J_{1} \oplus J_{2} \oplus$
$\cdots \oplus J_{u}$ by $I_{1} \oplus I_{2} \oplus \cdots \oplus I_{t}$ for some t and u. If $t=0$, then we must have $M \simeq B_{j}$ for some j. While if $u=0$, then $M \simeq A_{i}$ for some i.

Therefore, for the rest of the proof, we assume that both t and u are positive. Since M is indecomposable, we must have $t=u=1$, that is, M must be an extension of B_{j} by A_{i}. It follows that $M \simeq A_{i} \oplus_{R} B_{j}$.

Now we consider the extensions of B_{j} by A_{i}; each extension determines an extension class in $\operatorname{Ext}\left(B_{j}, A_{i}\right)$, which is represented by an element $\overline{\alpha_{i}}$ in $\overline{A_{i}}=$ $A_{i} / p A_{i}$. If $\overline{\alpha_{i}}=\overline{0}$, we get a split extension, which is clearly decomposable. On the other hand, we consider the orbits of $\operatorname{Ext}\left(B_{j}, A_{i}\right)$ under the action of $\operatorname{Aut} A_{i} \times \operatorname{Aut} B_{j}$. Because $\varphi_{i j}$ is not an epimorphism in general, there are $l_{i j}$-isomorphism classes of non-splitting extensions of B_{j} by A_{i}.

Acknowledgement

The author would like to express his sincere thanks to the referee for his useful advice.

References

[1] F. E. Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Hamb. Abh. 14 (1940), 357-412.
[2] A. Heller and I. Reiner, Representations of cyclic groups in rings of integers, I, Ann. of Math. 76 (1962), 73-92.
[3] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146.

Kenshi Kida

Department of Mathematics, Science University of Tokyo
26 Wakamiya, Shinjuku-ku, Tokyo 162, Japan

