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Abstract. An initial value problem for an impulsive system of differential-
difference equations is considered. By means of piecewise continuous auxiliary
functions which are modifications of classical Lyapunov’s functions, some suf-
ficient conditions for global stability of the zero solution of such problems are
presented. The discontinuity of these auxiliary functions corresponds to the
fact that solutions of the systems under consideration are piecewise continuous
functions.
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§1. Introduction

Impulsive differential-difference equations are obtained by the natural com-
bination of the impulsive ordinary differential equations without delay and the
differential-difference equations without impulses. They are adequate math-
ematical models of numerous processes and phenomena in science and tech-
nology that are characterized by a change of their state by jumps and by a
dependence of the process at each moment of time on its pre-history. The
impulsive systems of differential and differential-difference equations are rich
in mathematical problems as compared to the corresponding theory of the
systems without impulses. That is why in the last years these systems have
been subjected to intensive developments by many authors (see [1]–[8], [10]
and references therein).
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One of the most important aspects of the qualitative theory of such equa-
tions is the stability theory. A quite general method of investigation of the
stability of the solutions of impulsive differential-difference equations is the
Lyapunov direct method [1], [4]–[13]. The application of this method to the
investigation of stability of the solutions of equations of the type considered
requires the use of a class of piecewise continuous auxiliary functions which are
modification to the classical Lyapunov’s functions. Moreover, the technique
in the application essentially depends on the choice of minimal subsets of a
suitable space of piecewise continuous functions, by the elements of which the
derivatives of Lyapunov’s functions are estimated [9], [11]–[13].

In the present paper some sufficient conditions for the global stability
are presented for the solutions of nonlinear systems of impulsive differential-
difference equations when the impulsive action takes place at prescribed and
fixed moments.

§2. Preliminary notes and definitions

Let R+ = [0,∞), Rn be the n-dimensional Euclidean space with elements
x = col(x1, . . . , xn) and the norm |x| =

(∑n
k=1 x2

k

)1/2, h > 0, t0 ∈ R, ϕ0 ∈
C[[t0 − h, t0], Rn].

Consider the initial value problem

ẋ(t) = f(t, x(t), x(t − h)), t 6= τk, t > t0, (1)

x(t) = ϕ0(t), t ∈ [t0 − h, t0], (2)

∆x(τk) = x(τk + 0) − x(τk − 0) = Ik(x(τk)), τk > t0, k = 1, 2, . . . (3)

where f : (t0,∞) × Rn × Rn → Rn, Ik: Rn → Rn, k = 1, 2, . . .,

t0 ≡ τ0 < τ1 < . . . τk < τk+1 < . . .

Introduce the following notations:

Gk = {(t, x) ∈ [t0,∞) × Rn: τk−1 < t < τk} , k = 1, 2, . . . ,

G = ∪∞
k=1Gk, C0 = C [[t0 − h, t0], Rn] ,

‖ϕ‖ = maxt∈[t0−h,t0] |ϕ(t)| is the norm of the function ϕ ∈ C0, K = {a ∈
C[R+, R+]: a(u) is strictly increasing with respect to u and a(0) = 0},
Bε(t0, C0) = {ϕ ∈ C0: ‖ϕ‖ < ε}, ε = const > 0, x(t) = x(t; t0, ϕ0) is a
solution, if any, of the problem (1), (2), (3), J+(t0, ϕ0) is the maximal interval
of the type [t0, β) in which the solution x(t; t0, ϕ0) is defined, τh

l = τl + h,
l = 0, 1, 2, . . ..
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We shall give a description of the solution x(t) = x(t; t0, ϕ0) of the problem
(1), (2), (3).

1. For t0 − h ≤ t ≤ t0 the solution x(t) coincides with the initial function
ϕ0 ∈ C0.

2. Let {
ti

}∞

i=1
=

{
τk

}∞

k=1
∪

{
τh
l

}∞

l=0

and t1 ≤ t2 ≤ . . . ≤ ts ≤ ts+1 ≤ . . ..
It is possible that {

τk

}∞

k=1
∩

{
τh
l

}∞

l=0
6= ∅

in general, i.e., τk = τh
l for some positive integers k and l.

2.1. For t0 < t ≤ t1 the solution x(t) coincides with the solution of the
problem (1), (2) without impulses (3).

2.2. For ti < t ≤ ti+1, i = 1, 2, . . ., one of the following three cases may
occur:

a) If ti ∈
{
τk

}∞

k=1
\
{
τh
l

}∞

l=0
and ti = τk for some positive integer k, then the

solution of the problem (1), (2), (3) coincides with the solution of the problem

ẏ(t) = f(t, y(t), x(t − h)), (4)

y(τk) = x(τk) + Ik(x(τk)). (5)

b) If ti ∈
{
τh
l

}∞

l=0
\

{
τk

}∞

k=1
, then x(t) coincides with the solution of the

problem

ẏ(t) = f(t, y(t), x(t − h + 0)), (6)

y(ti) = x(ti). (7)

c) If ti ∈
{
τk

}∞

k=1
∩

{
τh
l

}∞

l=0
and ti = τk for some positive integer k, then

the solution x(t) of the problem (1), (2), (3) coincides with the solution of the
problem (5), (6).

3. The function x(t) is piecewise continuous on J+(t0, ϕ0), continuous from
the left at the points τ1, τ2, . . . ∈ J+(t0, ϕ0) and

x(τk + 0) = x(τk) + Ik(x(τk)), τk ∈ J+(t0, ϕ0).

We shall use the following definitions of stability and global stability of the
zero solution of the problem (1), (2), (3).
Definition 1([7]). The zero solution x(t) ≡ 0 of the problem (1), (2), (3) is
said to be

a) stable if
(∀ε > 0) (∀t0 ∈ R) (∃δ = δ(t0, ε) > 0);
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(∀ϕ0 ∈ Bδ(t0, C0)) (∀t ∈ J+(t0, ϕ0)) =⇒

|x(t; t0, ϕ0)| < ε.

b) uniformly stable if

(∀ε > 0) (∃δ = δ(ε) > 0); (∀t0 ∈ R)

(∀ϕ0 ∈ Bδ(t0, C0)) (∀t ∈ J+(t0, ϕ0)) =⇒

|x(t; t0, ϕ0)| < ε.

c) globally equiattractive if

(∀t0 ∈ R) (∀α > 0) (∀ε > 0)

(∃σ = σ(t0, α, ε) > 0); (∀ϕ0 ∈ Bα(t0, C0))

(∀t ≥ t0 + σ, t ∈ J+(t0, ϕ0)) =⇒

|x(t; t0, ϕ0)| < ε.

d) uniformly globally attractive if the number σ in c) does not depend on
t0 ∈ R.

e) globally equiasymptotically stable if it is stable and globally equiattractive.
f) uniformly globally asymptotically stable if it is uniformly stable, uniformly

globally attractive and

(∀α > 0) (∃β = β(α) > 0); (∀t0 ∈ R)

(∀ϕ0 ∈ Bα(t0, C0)) (∀t ∈ J+(t0, ϕ0)) =⇒

|x(t; t0, ϕ0)| < β.

g) exponentially globally asymptotically stable if there exists a constant c > 0
such that

(∀α > 0) (∃k = k(α) > 0); (∀t0 ∈ R)

(∀ϕ0 ∈ Bα(t0, C0)) (∀t ∈ J+(t0, ϕ0)) =⇒

|x(t; t0, ϕ0)| ≤ k(α)‖ϕ0‖ exp[−c(t − t0)].

In the following considerations we shall use a class of piecewise continuous
functions which are modifications to Lyapunov’s functions [1], [4]–[7], [10].



IMPULSIVE DIFFERENTIAL–DIFFERENCE EQUATIONS 59

Definition 2. We say that the function V : [t0,∞) × Rn → R+ belongs to
the class V0 if

1. The function V is continuous in G and V (t, 0) = 0 for t ∈ [t0,∞).
2. The function V is Lipschitz continuous with respect to its second argu-

ment x ∈ Rn in each of the sets Gk, k = 1, 2, . . ..
3. For each k = 1, 2, . . . and x0 ∈ Rn there exist the finite limits

V (τk−0, x0) = lim
(t, x) ∈ Gk

(t, x) → (τk, x0)

V (t, x), V (τk+0, x0) = lim
(t, x) ∈ Gk+1

(t, x) → (τk, x0)

V (t, x).

4. The following equality holds

V (τk − 0, x0) = V (τk, x0), k = 1, 2, . . . , x0 ∈ Rn.

Furthermore we shall also use the classes of functions ([1], [9]–[13])
PC[[t0,∞), Rn] =

{
x: [t0,∞) → Rn: x(t) is piecewise continuous with

points of discontinuity of the first kind (i.e., left and right limits exist there,
and they are finite) τ1, τ2, . . . in the interval [t0,∞) at which it is continuous
from the left

}
, and

Ω1 =
{
x ∈ PC[[t0,∞), Rn]:

V (s, x(s)) ≤ V (t, x(t)), t − h ≤ s ≤ t, t ≥ t0, V ∈ V0

}
.

Let V ∈ V0 and x ∈ PC[[t0,∞), Rn]. Let t 6= τk, k = 1, 2, . . .. Introduce
the function

D−V (t, x(t)) = lim inf
σ→−0

σ−1
[
V (t + σ, x(t) + σf(t, x(t), x(t − h))) − V (t, x(t))

]
.

Introduce the following conditions:

H1. f ∈ C[(t0,∞) × Rn × Rn, Rn].

H2. f(t, 0, 0) = 0 for t ∈ (t0,∞).

H3. The function f is Lipschitz continuous with respect to its second and
third arguments in (t0,∞) × Rn × Rn uniformly on t ∈ (t0,∞).

H4. Ik ∈ C[Rn, Rn], k = 1, 2, . . ..

H5. Ik(0) = 0, k = 1, 2, . . ..

H6. t0 ≡ τ0 < τ1 < . . . < τk < τk+1 < . . ..

H7. lim
k→∞

τk = ∞.

We shall use the following lemmas:
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Lemma 1. Let the conditions H1–H7 hold. Then J+(t0, ϕ0) = [t0,∞).

Proof. Since by the conditions H1–H5 the solution x(t) = x(t; t0, ϕ0) of the
problem (1), (2), (3), ϕ0 ∈ C0 uniquely exists in each one of the intervals
(τk, τk+1], k = 0, 1, 2, . . ., then from the conditions H6, H7 we conclude that it
can be continued for each t ≥ t0. 2

Lemma 2([13]). Let the following conditions hold:
1. v ∈ C[[t − 0,∞) × Rn, R+] and v is locally Lipschitz continuous with

respect to its second argument z in [t0,∞) × Rn.
2. g∗ ∈ C[(t0,∞) × R+,R+] and the maximal solution u(t; t0, u0) of the

scalar differential equation

u̇(t) = g∗(t, u(t)), u(t0) = u0 ≥ 0

is defined in the interval [t0, ω).
3. The solution z(t) = z(t; t0, ϕ0) of the problem (1), (2) for which v(t0, ϕ0(t0))

≤ u0 is defined in the interval [t0, ω).
4. The inequality

D−v(t, z(t)) ≤ g∗(t, v(t, z(t)))

is valid for each t ≥ t0 and any function z ∈ C[[t0,∞), Rn] for which

v(s, z(s)) ≤ v(t, z(t)), s ∈ [t0, t],

where

D−v(t, z(t)) = lim inf
σ→−0

σ−1
[
v(t + σ, z(t) + σf(t, z(t), z(t − h))) − v(t, z(t))

]
.

Then
v(t, z(t; t0, ϕ0)) ≤ u(t; t0, u0), t ∈ [t0, ω).

Lemma 3. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. g ∈ PC[(t0,∞) × R+, R+].
3. Bk ∈ C[R+,R+], k = 1, 2, . . ..
4. The maximal solution r(t; t0, u0) of the impulsive problem

u̇(t) = g(t, u(t)), t > t0, t 6= τk, k = 1, 2, . . . ,

u(t0 + 0) = u0 ≥ 0,

∆u(τk) = Bk(u(τk)), τk > t0, k = 1, 2, . . .

(8)
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is defined in the interval [t0,∞).
5. The functions ψk: R+ → R+, ψk(u) = u+Bk(u) are nondecreasing with

respect to u.

6. The function V ∈ V0 is such that the inequalities D−V (t, x(t)) ≤ g(t, V (t, x(t))), t 6= τk, k = 1, 2, . . . ,

V (t + 0, x(t) + Ik(x(t))) ≤ ψk(V (t, x(t))), t = τk, k = 1, 2, . . .
(9)

are valid for each t ∈ [t0,∞) and x ∈ Ω1.

7. u0 ≥ V (t0, ϕ0(t0)).
Then

V (t, x(t; t0, ϕ0)) ≤ r(t; t0, u0), t ∈ [t0,∞). (10)

Proof. From Lemma 1 it follows that J+(t0, ϕ0) = [t0,∞).
Since in the interval (τk, τk+1], k = 1, 2, . . ., x(t) coincides with the solution

of the problem (1), (5), we conclude that for τk < t ≤ τk+1 the function x(t)
satisfies the integral equation

x(t) = x(τk) + Ik(x(τk)) +
t∫

τk

f(s, x(s), x(s − h))ds.

On the other hand, the maximal solution of the problem (8) is defined by
the equality

r(t; t0, u0) =



r0(t; t0, u+
0 ), t0 < t ≤ τ1,

r1(t; τ1, u
+
1 ), τ1 < t ≤ τ2,

...

rk(t; τk, u
+
k ), τk < t ≤ τk+1,

...

where rk(t; τk, u
+
k ) is the maximal solution of the equation u̇ = g(t, u) without

impulses, that is defined in the interval (τk, τk+1], k = 0, 1, 2, . . ., for which
u+

k = ψk(rk−1(τk; τk−1, u
+
k−1)), k = 1, 2, . . . and u+

0 = u0.
Let t ∈ (t0, τ1]. From Lemma 2 it follows that

V (t, x(t; t0, ϕ0)) ≤ r(t; t0, u0),

i.e., inequality (10) is valid for t ∈ (t0, τ1].
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Assume that (10) is satisfied for (τk−1, τk], k > 1. Then, making use of (9)
and the fact that the function ψk is nondecreasing, we get

V (τk + 0, x(τk + 0; t0, ϕ0)) ≤ ψk(V (τk, x(τk; t0, ϕ0)))

≤ ψk(r(τk; t0, u0)) = ψk(rk−1(τk; τk−1, u
+
k−1)) = u+

k .

We apply again Lemma 2 for t ∈ (τk, τk+1] and obtain

V (t, x(t; t0, ϕ0)) ≤ rk(t; τk, u
+
k ) = r(t; t0, u0),

i.e., inequality (10) is also satisfied for t ∈ (τk, τk+1]. The proof is completed
by induction. 2

Corollary 1. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. The function V ∈ V0 is such that the inequalities

D−V (t, x(t)) ≤ 0, t 6= τk, k = 1, 2, . . . ,

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk, k = 1, 2, . . .

are valid for each t ≥ t0 and x ∈ Ω1.
Then

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)), t ∈ [t0,∞).

§3. Main results

Theorem 1. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. The functions V ∈ V0 and a ∈ K are such that

a(|x(t)|) ≤ V (t, x(t)), t ∈ [t0,∞), x ∈ PC[[t0,∞), Rn]. (11)

3. The inequalities

D−V (t, x(t)) ≤ −cV (t, x(t)), t 6= τk, k = 1, 2, . . . , (12)

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk, k = 1, 2, . . . (13)

are valid for each t ≥ t0, each function x ∈ Ω1, V ∈ V0 and c ∈ R+.
Then the zero solution of the problem (1), (2), (3) is globally equiasymp-

totically stable.
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Proof. Let ε > 0. From the condition V (t0, 0) = 0 and the properties of
the function V (t0, x) at the point x = 0 it follows that there exists a constant
δ = δ(t0, ε) > 0 such that if |x| < δ, then

sup
|x|<δ

V (t0 + 0, x) < a(ε).

Let ϕ0 ∈ Bδ(t0, C0) and let x(t) = x(t; t0, ϕ0) be the solution of the problem
(1), (2), (3). From Lemma 1 it follows that J+(t0, ϕ0) = [t0,∞). Since the
conditions of Corollary 1 are fulfilled, we have

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)), t ∈ [t0,∞). (14)

Since ϕ0 ∈ Bδ(t0, C0) implies |ϕ0(t0)| < δ, we have V (t0 + 0, ϕ0(t0)) < a(ε).
From (11) and (14) and the above inequality we get the inequalities

a(|x(t; t0, ϕ0)|) ≤ V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)) < a(ε),

hence |x(t; t0, ϕ0)| < ε for t ∈ [t0,∞). This implies the stability of the solution
x(t) ≡ 0 of the problem (1), (2), (3).

We shall show that it is also globally equiattractive. Let α = const > 0
and ϕ0 ∈ Bα(t0, C0). From (12) and (13) follows the inequality

V (t, x(t; t0, ϕ0)) ≤ V (t0, ϕ0(t0)) exp[−c(t − t0)]. (15)

Let M(t0, α) = sup{V (t0, x): |x| < α} and σ >
1
c

ln
M(t0, α)

a(ε)
. Then from

(15) for t ≥ t0 + σ follows the inequality

V (t, x(t; t0, ϕ0)) ≤ a(ε).

From the above inequality and (11) we obtain

|x(t; t0, ϕ0)| < ε for t ≥ t0 + σ.

Hence the zero solution of the problem (1), (2), (3) is globally equiattractive.
2

Theorem 2. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. The functions V ∈ V0, a, b ∈ K and γ: [t0,∞) → [1,∞) are such that

a(|x(t)|) ≤ V (t, x(t)) ≤ γ(t)b(|x(t)|), t ∈ [t0,∞), (16)

x ∈ PC[[t0,∞), Rn].



64 D. BAINOV, G. KULEV AND I. STAMOVA

3. The inequalities

D−V (t, x(t)) ≤ −g(t)c(|x(t)|), t 6= τk, k = 1, 2, . . . , (17)

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk, k = 1, 2, . . . (18)

are valid for any t ≥ t0, any function x ∈ Ω1 with V ∈ V0, g: [t0,∞) → (0,∞),
and c ∈ K.

4. The equality
∞∫

t0

g(s)c
[
b−1

(
η

γ(s)

)]
ds = ∞

is valid for sufficiently small values of η > 0.
Then the zero solution of the problem (1), (2), (3) is globally equiasymp-

totically stable.

Proof. As in the proof of Theorem 1 it is shown that the zero solution of
the problem (1), (2), (3) is stable.

Let α = const > 0, ε > 0 and η = a(ε)
2 . From the condition 4 of Theorem

2 it follows that we can choose a positive number σ = σ(t0, α, ε) so that

t0+σ∫
t0

g(s)c
[
b−1

(
η

γ(s)

)]
ds > γ(t0)b(α). (19)

Let ϕ0 ∈ Bα(t0, C0). Suppose that for each t ∈ [t0, t0 + σ] the inequality

|x(t; t0, ϕ0)| ≥ b−1
(

η

γ(t)

)
(20)

holds. Then from (17) and (18) we deduce the inequalities

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)) −
t∫

t0

g(s)c(|x(s; t0, ϕ0)|)ds

≤ V (t0 + 0, ϕ0(t0)) −
t∫

t0

g(s)c
[
b−1

(
η

γ(s)

)]
ds, t ∈ [t0, t0 + σ].

From the above inequalities, (16) and (19) for t = t0 + σ we obtain the
inequalities

V (t, x(t; t0, ϕ0)) ≤ γ(t0)b(α) −
t∫

t0

g(s)c
[
b−1

(
η

γ(s)

)]
ds < 0,
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which contradicts (16).
Hence inequality (20) is not valid for each t ∈ [t0, t0 + σ], i.e., there exists

t′ ∈ [t0, t0 + σ] such that

|x(t′; t0, ϕ0)| < b−1
(

η

γ(t′)

)
.

Then from (16), (17) and (18) we obtain that for t ≥ t′ (and therefore for
t ≥ t0 + σ too) the following inequalities are valid:

a(|x(t; t0, ϕ0)|) ≤ V (t, x(t; t0, ϕ0)) ≤ V (t′, x(t′; t0, ϕ0))

≤ γ(t′)b(|x(t′; t0, ϕ0)|) ≤ η < a(ε).

Consequently, |x(t; t0, ϕ0)| < ε for t ≥ t0 + σ, i.e., the zero solution of the
problem (1), (2), (3) is globally equiattractive. 2

Theorem 3. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. The functions V ∈ V0 and a, b ∈ K are such that

a(|x(t)|) ≤ V (t, x(t)) ≤ b(|x(t)|), t ∈ [t0,∞), (21)

x ∈ PC[[t0,∞), Rn],

and a(r) → ∞ as r → ∞.
3. The inequalities

D−V (t, x(t)) ≤ −c(|x(t)|), t 6= τk, k = 1, 2, . . . , (22)

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk, k = 1, 2, . . . (23)

are valid for any t ≥ t0, each function x ∈ Ω1 with V ∈ V0, c ∈ K.
Then the zero solution of the problem (1), (2), (3) is uniformly globally

asymptotically stable.

Proof. We shall first prove that the zero solution of the problem (1), (2),
(3) is uniformly stable.

Let ε > 0. Choose δ = δ(ε) > 0 so that b(δ) < a(ε). Let ϕ0 ∈ Bδ(t0, C0)
and let x(t) = x(t; t0, ϕ0) be the solution of the problem (1), (2), (3).

From (21) and (23) we deduce the inequalities

a(|x(t; t0, ϕ0)|) ≤ V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0))

≤ b(|ϕ0(t0)|) ≤ b(‖ϕ0‖) < b(δ) < a(ε),
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from which it follows that |x(t; t0, ϕ0)| < ε for t ∈ [t0,∞). Hence the zero
solution of the problem (1), (2), (3) is uniformly stable.

Let α > 0. Choose a constant β = β(α) > 0 so that a(β) > b(α). This is
possible in view of the condition a(r) → ∞ as r → ∞. Let ϕ0 ∈ Bα(t0, C0).
Since the conditions of Corollary 1 are met, we have

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)), t ∈ [t0,∞).

From the above inequality, (21) and (23), we obtain the inequalities

a(|x(t; t0, ϕ0)|) ≤ V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0))

≤ b(|ϕ0(t0)|) ≤ b(‖ϕ0‖) < b(α) < a(β), t ∈ [t0,∞).

Hence |x(t; t0, ϕ0)| < β, t ∈ [t0,∞).
Finally we shall prove that the zero solution of the problem (1), (2), (3) is

uniformly globally attractive.
Let ε > 0 and α > 0 be chosen arbitrarily. Choose η = η(ε) > 0 so that

b(η) < a(ε) and let σ = σ(ε, α) > 0 be such that σ > b(α)
c(η) . Let ϕ0 ∈ Bα(t0, C0).

Suppose that for each t ∈ [t0, t0+σ] the inequality |x(t; t0, ϕ0)| ≥ η holds. Then
from (22) and (23) we deduce the inequalities

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)) −
t∫

t0

c(|x(τ ; t0, ϕ0)|)dτ

≤ b(α) − c(η)σ < 0,

which contradicts (21). Hence there exists t∗ ∈ [t0, t0+σ] such that |x(t∗; t0, ϕ0)|
< η. Then from (21), (22) and (23) we obtain that for t ≥ t∗ (hence for
t ≥ t0 + σ too) the following inequalities are valid

a(|x(t; t0, ϕ0)|) ≤ V (t, x(t; t0, ϕ0)) ≤ V (t∗, x(t∗; t0, ϕ0))

≤ b(|x(t∗; t0, ϕ0)|) ≤ b(η) < a(ε).

This shows that the zero solution of the problem (1), (2), (3) is uniformly
globally attractive. 2

Corollary 2. If in Theorem 3 the condition (22) is replaced with the con-
dition

D−V (t, x(t)) ≤ −cV (t, x(t)), t 6= τk, k = 1, 2, . . . , (24)

for t ≥ t0, x ∈ Ω1, V ∈ V0, c = const > 0,

then the zero solution of the problem (1), (2), (3) is uniformly globally asymp-
totically stable.
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The proof of Corollary 2 is analogous to the proof of Theorem 3. But we
shall use the inequality instead

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)) exp[−c(t − t0)], t ≥ t0

which follows from (23) and (24).

Theorem 4. Let the following conditions hold:
1. Conditions H1–H7 are met.
2. The function V ∈ V0 is such that for any α > 0, there exists k(α) > 0

such that

|x(t)| ≤ V (t, x(t)) ≤ k(α)|x(t)|, t ∈ [t0,∞), (25)

x ∈ PC[[t0,∞), Rn].

3. The inequalities

D−V (t, x(t)) ≤ −cV (t, x(t)), t 6= τk, k = 1, 2, . . . , (26)

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk, k = 1, 2, . . . (27)

are valid for each t ≥ t0, each function x ∈ Ω1 with V ∈ V0, c = const > 0.
Then the zero solution of the problem (1), (2), (3) is exponentially globally

asymptotically stable.

Proof. Let ϕ0 ∈ Bα(t0, C0). From (26) and (27) we obtain

V (t, x(t; t0, ϕ0)) ≤ V (t0 + 0, ϕ0(t0)) exp[−c(t − t0)], t ≥ t0.

From the above estimate and (25) we deduce the inequalities

|x(t; t0, ϕ0)| ≤ k(α)|ϕ0(t0)| exp[−c(t − t0)]

≤ k(α)‖ϕ0‖ exp[−c(t − t0)], t ≥ t0.

This shows that the zero solution of the problem (1), (2), (3) is exponentially
globally asymptotically stable. 2
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§4. Examples

Example 1. Consider the problem
ẋ(t) = A(t)x(t) + B(t)x(t − h), t > 0, t 6= τk,

x(t) = ϕ1(t), t ∈ [−h, 0],

∆x(τk) = Ckx(τk), k = 1, 2, . . . ,

(28)

where x ∈ Rn; A(t) and B(t) are n × n matrix-valued functions which are
continuous in R+; B(t) is diagonal, and A(t) is skewsymmetric; Ck = diag(c1k,
. . . , cnk), −1 < cik ≤ 0; h > 0; ϕ1 ∈ C[[−h, 0], Rn], 0 < τ1 < τ2 < . . . < τk <
τk+1 < . . . and limk→∞ τk = ∞.

Let V (t, x) = 〈x, x〉, where 〈x, y〉 is the scalar product of the vectors x, y ∈
Rn. Then the set

Ω1 =
{
x ∈ PC[R+, Rn]: 〈x(s), x(s)〉 ≤ 〈x(t), x(t)〉, t − h ≤ s ≤ t, t ≥ 0

}
.

For t ≥ 0 and x ∈ Ω1 we shall have

D−V (t, x(t)) = 2〈x(t), B(t)x(t−h)〉 ≤ 2〈x(t), B(t)x(t)〉, t 6= τk, k = 1, 2, . . .

and

V (τk + 0, x(τk) + Ckx(τk)) =
n∑

i=1

(1 + cki)2x2
i ≤ V (τk, x(τk)), k = 1, 2, . . . .

If B(t) = diag(b1(t), . . . , bn(t)) and bk(t) ≤ −γk < 0 for k = 1, 2, . . . , n and
t ∈ R+, then by Theorem 3 the zero solution of the problem (28) is uniformly
globally asymptotically stable.

In the case when n = 1, A(t) = −a < 0 and B(t) = b, 1 + bh > 0, the
solution of the problem (28) satisfies the inequality

|x(t; t0, ϕ0)| < (1 + bh)‖ϕ0‖ exp[−a(t − t0)]
∏

t0<τk<t

(1 + Ck).

In this case the zero solution of (28) is uniformly globally asymptotically stable.

Example 2. Consider the problem

ẋ(t) = a(t)y(t) + b(t)x(t)[x2(t − h) + y2(t − h)], t 6= τk, t > 0

ẏ(t) = −a(t)x(t) + b(t)y(t)[x2(t − h) + y2(t − h)], t 6= τk, t > 0

X(t) = col(x (t), y(t)) =ϕ2(t), t ∈ [−h, 0],

∆x(τk) = ckx(τk), ∆y(τk) = dky(τk), k = 1, 2, . . . ,

(29)
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where t ∈ R+; the functions a(t) and b(t) are continuous for t ∈ R+; b(t) ≤
−γ < 0 for t ∈ R+; −1 < ck ≤ 0, −1 < dk ≤ 0, 0 < τ1 < τ2 < . . . < τk <
τk+1 < . . ., limk→∞ τk = ∞; h > 0; ϕ2 ∈ C[[−h, 0], R2].

Let V (t, x, y) = x2 + y2. Then the set

Ω1 =
{
X ∈ PC[R+, R2]:x2(s) + y2(s) ≤ x2(t) + y2(t), t − h ≤ s ≤ t, t ≥ 0

}
.

For t ≥ 0 and col(x, y) ∈ Ω1 we obtain

D−V (t, x(t), y(t)) = 2b(t)
[
x2(t) + y2(t)

] [
x2(t − h) + y2(t − h)

]
≤ 2b(t)

[
x2(t) + y2(t)

]2
≤ −2γ

[
x2(t) + y2(t)

]2
, t 6= τk,

V (τk + 0, x(τk) + ckx(τk), y(τk) + dky(τk)) =

(1 + ck)2x2(τk) + (1 + dk)2y2(τk) ≤ V (τk, x(τk), y(τk)).

Since the conditions of Theorem 3 are met, the zero solution of the problem
(29) is uniformly globally asymptotically stable.

Example 3. Consider the problem
ẋ(t) = −g(t)x(t − h), t 6= τk, t > 0,

x(t) = ϕ3(t), t ∈ [−h, 0],

∆x(τk) = ckx(τk),

(30)

where the function g(t) is continuous for t ∈ R+, g(t) → 0 as t → ∞ and
∞∫
0

g(t)dt = ∞, g(t) > 0; −1 < ck ≤ 0; h > 0; ϕ3 ∈ C[[−h, 0], R].

Consider the function V (t, x) = 1
2x2. Then

Ω1 =
{
x ∈ PC[R+, R]:

1
2
x2(s) ≤ 1

2
x2(t), t − h ≤ s ≤ t, t ≥ 0

}
.

For t ≥ 0 and x ∈ Ω1

D−V (t, x(t)) = −g(t)x(t)x(t − h) ≤ −g(t)x2(t), t 6= τk

and

V (τk + 0, x(τk) + ckx(τk)) =
1
2
(1 + ck)2x2(τk) ≤ V (τk, x(τk)).

Hence the conditions of Theorem 2 are satisfied and the zero solution of the
problem (30) is globally equiasymptotically stable.
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