HOMOCLINIC ORBITS FOR 3-DIMENSIONAL SYSTEMS

Ilham ELI

(Received March 6, 1995)

Abstract

Suppose a dynamical system $d \mathbf{x} / d t=\mathbf{F}(\mathbf{x} ; \mu), \mathbf{x} \in \mathbf{R}^{s}, \mu \in \mathbf{R}^{m}$, has a hyperbolic saddle at $\mathbf{x}=\mathbf{0}$ with a homoclinic loop, for $\mu=\mu^{0}$. When μ varies from μ^{0}, the loop will be destroyed in general. For $s=2$, Perko proved that, if μ varies on an $(m-1)$ dimensional hypersurface, then the system remains to admit homoclinic orbit. We consider here the same problem for $s=3$. The result is: if μ varies on an $(m-2)$ hypersurface, then the system remains to admit homoclinic orbit.

AMS 1991 Mathematics Subject Classification. Primary 58F30; Secondary 34D10.

Key words and phrases. Dynamical system, hyperbolic saddle, homoclinic loop, perturbations.

§1. Introduction

Consider a 3 -dimensional dynamical system

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{d x_{1}}{d t}=F_{1}\left(x_{1}, x_{2}, x_{3} ; \mu\right) \\
\frac{d x_{2}}{d t}=F_{2}\left(x_{1}, x_{2}, x_{3} ; \mu\right) \\
\frac{d x_{3}}{d t}=F_{3}\left(x_{1}, x_{2}, x_{3} ; \mu\right)
\end{array}\right. \tag{1}\\
& F_{j}(0,0,0 ; \mu)=\mathbf{0}, j=1,2,3
\end{align*}
$$

in which $\mu \in \mathbf{R}^{m}, \quad m \geq 3 . F_{j}$ are supposed to be of C^{2}-class with respect to both $\mathbf{x}={ }^{t}\left(x_{1}, x_{2}, x_{3}\right)$ and $\mu={ }^{t}\left(\mu_{1}, \ldots, \mu_{m}\right)$.

Suppose that, for $\mu=\mu^{0}$, (1) has a hyperbolic saddle at $(0,0,0)$ with a homoclinic loop $\Gamma: \mathbf{x}=\gamma(t)$. When μ varies from μ^{0}, the loop will be destroyed in general. For standard exposition of these facts, see [2]. For 2dimensional systems of C^{∞} or C^{ω} class, Perko [4] proved that, if μ varies on an $(m-1)$ dimensional hypersurface, then the system remains to admit homoclinic orbit. We consider here 3-dimensional case.

Now we suppose that, for $\mu=\mu^{0}, \mathbf{F}={ }^{t}\left(F_{1}, F_{2}, F_{3}\right)$ is expanded at $(0,0,0)$ as follows:

$$
\begin{equation*}
\mathbf{F}\left(\mathbf{x}, \mu^{0}\right)=\Lambda \mathbf{x}+\Phi^{0}(\mathbf{x}), \quad \Phi^{0}(\mathbf{x})=O\left(|\mathbf{x}|^{2}\right) \tag{2}
\end{equation*}
$$

in which

$$
\Lambda=\left(\begin{array}{ccc}
\lambda_{1} & \epsilon & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

$$
\lambda_{j} \text { are real and } \lambda_{1} \leq \lambda_{2}<0<\lambda_{3}, \quad \epsilon=0 \text { if } \lambda_{1} \neq \lambda_{2}
$$

Now we put

$$
\begin{gather*}
I_{j}=\int_{-\infty}^{\infty} \exp \left[-\int_{0}^{t}\left(\nabla \mathbf{F}-{ }^{t} D F\right)(\gamma(s)) d s\right]\left\{\mathbf{F} \times \frac{\partial \mathbf{F}}{\partial \mu_{j}}\right\}(\gamma(t)) d t \tag{3}\\
={ }^{t}\left(I_{j 1}, I_{j 2}, I_{j 3}\right),
\end{gather*}
$$

for $j=1, \ldots, m$, in which we assume $\mu=\mu^{0}$.
We will prove the following theorem:
Theorem. Suppose that, for $\mu=\mu^{0}$, (1) has a hyperbolic saddle at $(0,0,0)$ with a homoclinic loop Γ, and $\mathbf{F}={ }^{t}\left(F_{1}, F_{2}, F_{3}\right)$ is expanded at $(0,0,0)$ as shown in (2), with the following condition (Λ) :

$$
\lambda_{3}>\lambda_{2}-\lambda_{1}
$$

Further, suppose that

$$
\left|\begin{array}{ll}
I_{11} & I_{21} \tag{4}\\
I_{12} & I_{22}
\end{array}\right| \neq 0
$$

Then there are $\delta>0$ and two functions h_{1}, h_{2} of $\left(\mu_{3}, \ldots, \mu_{m}\right)$ defined for $\left|\mu_{3}-\mu_{3}{ }^{0}\right|+\ldots+\left|\mu_{m}-\mu_{m}{ }^{0}\right|<\delta$ such that, when $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots, \mu_{m}\right)$ varies satisfying $\mu_{j}=h_{j}\left(\mu_{3}, \ldots, \mu_{m}\right), j=1,2$, then (1) remains to admit homoclinic loop at $(0,0,0)$.

This is a 3-dimensional generalization of a theorem of Perko [4]. Generalizations to higher dimensional case will be further topics.

§2. Proof of the Theorem

For simplicity, we write $\mathbf{F}\left(\mathbf{x}, \mu^{0}\right)$ as $\mathbf{F}_{0}(\mathbf{x}), \partial \mathbf{F}\left(\mathbf{x}, \mu^{0}\right) / \partial \mu_{j}$ as $\partial \mathbf{F}_{0}(\mathbf{x}) / \partial \mu_{j}$.
By taking suitable coordinates, we can assume that the local stable manifold S_{0} and local unstable manifold U_{0} are

$$
S_{0}: x_{3}=0 \quad \text { and } \quad U_{0}: x_{1}=x_{2}=0
$$

respectively, and that the condition (4) holds still. Then we have, in (2),

$$
\Phi_{1}^{0}\left(0,0, x_{3}\right)=\Phi_{2}^{0}\left(0,0, x_{3}\right)=\Phi_{3}^{0}\left(x_{1}, x_{2}, 0\right)=0
$$

For general μ, we write stable manifold and unstable manifold as M_{μ}^{S} and M_{μ}^{U}, respectively. By the stable manifold theorem [3], these manifolds are C^{2} continuous with respect to μ.

We assume that $\gamma(0)=\mathbf{x}_{0} \in S_{0}$. Let Π be a plane crossing with Γ at \mathbf{x}_{0}. Take a point $\mathbf{b} \in U_{0} \cap \Gamma$. Let $\mathbf{a}_{\mu} \in M_{\mu}^{S}$ and $\mathbf{b}_{\mu} \in M_{\mu}^{U}$ be points such that they depends on μ as C^{2}-class functions, and $\mathbf{a}_{\mu_{0}}=\mathbf{x}_{0}, \mathbf{b}_{\mu_{0}}=\mathbf{b}$.

Now let $\phi(t, \xi, \mu), \xi \in \mathbf{R}^{3}$, denote the solution of (1) which satisfies the initial condition $\phi(0, \xi, \mu)=\xi$. Let τ^{U} be the time such that $\phi\left(\tau^{U}, \mathbf{b}, \mu^{0}\right)=\mathbf{x}_{0}$, and $\tau_{\mu}^{S}, \tau_{\mu}^{U}$ be the times such that $\phi\left(\tau_{\mu}^{S}, \mathbf{a}_{\mu}, \mu\right) \in \Pi, \phi\left(\tau_{\mu}^{U}, \mathbf{b}_{\mu}, \mu\right) \in \Pi$. The following lemma is proved easily, as in Perko [4].

Lemma 1. Under the hypothese of Theorem, we can take τ_{μ}^{S} and τ_{μ}^{U} so that $\tau_{\mu}^{S} \rightarrow 0$ and $\tau_{\mu}^{U} \rightarrow \tau^{U}$ as $\mu \rightarrow \mu^{0}$.

Write $\phi\left(t+\tau_{\mu}^{S}, \mathbf{a}_{\mu}, \mu\right)$ as $\mathbf{x}^{S}(t, \mu)$ and $\phi\left(t+\tau_{\mu}^{U}, \mathbf{b}_{\mu}, \mu\right)$ as $\mathbf{x}^{U}(t, \mu)$. Put

$$
\mathbf{x}^{S}(0, \mu)=\mathbf{x}_{0}^{S}(\mu) \text { and } \mathbf{x}^{U}(0, \mu)=\mathbf{x}_{0}^{U}(\mu)
$$

$$
\begin{equation*}
\mathbf{d}(\mu)=\mathbf{x}_{0}^{U}(\mu)-\mathbf{x}_{0}^{S}(\mu) \tag{5}
\end{equation*}
$$

If $\mathbf{d}(\mu)=\mathbf{0}$, then $\mathbf{x}^{S}(t, \mu)=\mathbf{x}^{U}(t, \mu)$ represents a homoclinic loop. Write $\mathbf{x}^{S}(t, \mu)$ or $\mathbf{x}^{U}(t, \mu)$ simply as $\mathbf{x}(t, \mu)$, and

$$
\begin{gathered}
\xi_{k}(t, \mu)=\frac{\partial \mathbf{x}(t, \mu)}{\partial \mu_{k}} \\
\rho_{k}(t, \mu)=\xi_{k}(t, \mu) \times \mathbf{F}(\mathbf{x}(t, \mu), \mu)
\end{gathered}
$$

then

$$
\frac{d \xi_{k}}{d t}=D \mathbf{F}(\mathbf{x}(t, \mu), \mu) \xi_{k}+\frac{\partial \mathbf{F}(\mathbf{x}(t, \mu), \mu)}{\partial \mu_{k_{j}}}
$$

and

$$
\begin{equation*}
\frac{d \rho_{k}}{d t}=\left(\nabla \mathbf{F}-{ }^{t} D \mathbf{F}\right)(\mathbf{x}(t, \mu), \mu) \rho_{k}+\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}(\mathbf{x}(t, \mu), \mu) \tag{6}
\end{equation*}
$$

To see (6), writing ξ_{k} and ρ_{k} simply as ξ and ρ, respectively, and differentiating ρ by t,

$$
\begin{gathered}
\frac{d \rho}{d t}=\frac{d \xi}{d t} \times \mathbf{F}+\xi \times \frac{d \mathbf{F}}{d t} \\
=\left((D \mathbf{F}) \xi+\frac{\partial \mathbf{F}}{\partial \mu_{k}}\right) \times \mathbf{F}+\xi \times((D \mathbf{F}) \mathbf{F}) .
\end{gathered}
$$

Let $D \mathbf{F}=\left(a_{i j}\right)$. Then the first component of $\{((D \mathbf{F}) \xi) \times \mathbf{F}+\xi \times((D \mathbf{F}) \mathbf{F})\}$ is, by an easy calculation,

$$
\begin{aligned}
& \left|\begin{array}{cc}
\Sigma a_{2 j} \xi_{j} & F_{2} \\
\Sigma a_{3 j} \xi_{j} & F_{3}
\end{array}\right|+\left|\begin{array}{cc}
\xi_{2} & \Sigma a_{2 j} F_{j} \\
\xi_{3} & \Sigma a_{3 j} F_{j}
\end{array}\right| \\
& =\left(a_{22}+a_{33}\right)(\xi \times \mathbf{F})_{1}-a_{21}(\xi \times \mathbf{F})_{2}-a_{31}(\xi \times \mathbf{F})_{3} .
\end{aligned}
$$

The second and third components are obtained similarly, and we have

$$
((D \mathbf{F}) \xi) \times \mathbf{F}+\xi \times((D \mathbf{F}) \mathbf{F})=\left(\nabla \mathbf{F}-{ }^{t} D \mathbf{F}\right)(\xi \times \mathbf{F})
$$

which shows (6). Write

$$
\nabla \mathbf{F}-{ }^{t} D \mathbf{F}=\mathrm{H}, \quad \mathrm{H}\left(\mu=\mu_{0}\right)=\mathrm{H}_{0}
$$

Then (6) can be written as

$$
\frac{d \rho_{k}}{d t}=\mathrm{H} \rho_{k}+\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}
$$

For $\rho_{k}=\rho_{k}^{S}$ with $\mu=\mu^{0}$ we have, solving the first order linear differential equation (6'),

$$
\begin{gathered}
{\left[\exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right] \rho_{k}^{S}\left(t, \mu^{0}\right)\right]_{t_{0}}^{t_{1}}} \\
=\int_{t_{0}}^{t_{1}} \exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right]\left\{\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}\right\}(\gamma(t)) d t
\end{gathered}
$$

Letting $t_{0}=0, \quad t_{1} \rightarrow \infty$, we get

$$
\lim _{t \rightarrow \infty}\left\{\exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right] \rho_{k}^{S}\left(t, \mu^{0}\right)\right\}-\rho_{k}^{S}\left(0, \mu^{0}\right)
$$

$$
=\int_{0}^{\infty} \exp \left[-\int_{0}^{\infty} \mathrm{H}_{0}(\gamma(s)) d s\right]\left\{\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}\right\}(\gamma(t)) d t
$$

Similarly we have

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty}\left\{\exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right] \rho_{k}^{U}\left(t, \mu^{0}\right)\right\}-\rho_{k}^{U}\left(0, \mu^{0}\right) \\
& =\int_{0}^{-\infty} \exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right]\left\{\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}\right\}(\gamma(t)) d t
\end{aligned}
$$

By the condition (Λ), we obtain that

> the first and second components of

$$
\exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right] \rho_{k}^{S}\left(t, \mu_{0}\right) \text { tend to } 0 \text { as } t \rightarrow \infty
$$

and that

$$
\lim _{t \rightarrow-\infty} \exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right] \rho_{k}^{U}\left(t, \rho^{0}\right)=\mathbf{0}
$$

respectively, which will be shown later. Then we get

$$
\begin{gather*}
\rho_{k}^{U}\left(0, \mu^{0}\right)-\rho_{k}^{S}\left(0, \mu^{0}\right) \tag{8}\\
=\left[\frac{\partial \mathbf{x}^{U}\left(0, \mu^{0}\right)}{\partial \mu_{k}}-\frac{\partial \mathbf{x}^{S}\left(0, \mu^{0}\right)}{\partial \mu_{k}}\right] \times \mathbf{F}_{0}\left(\mathbf{x}_{0}\right) \\
=\frac{\partial \mathbf{d}\left(\mu_{0}\right)}{\partial \mu_{k}} \times \mathbf{F}_{0}\left(\mathbf{x}_{0}\right) \\
=\int_{-\infty}^{\infty} \exp \left[-\int_{0}^{t} \mathrm{H}_{0}(\gamma(s)) d s\right]\left\{\frac{\partial \mathbf{F}}{\partial \mu_{k}} \times \mathbf{F}\right\}(\gamma(t)) d t+\left(\begin{array}{c}
0 \\
0 \\
c_{k}
\end{array}\right) \\
=I_{k}+\left(\begin{array}{c}
0 \\
0 \\
c_{k}
\end{array}\right)
\end{gather*}
$$

Since there holds, for vectors $\mathbf{A}, \mathbf{B}, \mathbf{F}$,

$$
(\mathbf{A} \times \mathbf{F}) \times(\mathbf{B} \times \mathbf{F})=((\mathbf{A} \times \mathbf{B}) \cdot \mathbf{F}) \mathbf{F}
$$

the third components of

$$
\mathbf{I}_{1} \times \mathbf{I}_{2} \quad \text { and }\left(\left\{\frac{\partial \mathbf{d}\left(\mu^{0}\right)}{\partial \mu_{1}} \times \frac{\partial \mathbf{d}\left(\mu^{0}\right)}{\partial \mu_{2}}\right\} \cdot \mathbf{F}_{0}\left(\mathbf{x}_{0}\right)\right) \mathbf{F}_{0}\left(\mathbf{x}_{0}\right)
$$

coincide. If (4) holds, then $\left[\partial \mathbf{d}\left(\mu^{0}\right) / \partial \mu_{1}\right] \times\left[\partial \mathbf{d}\left(\mu^{0}\right) / \partial \mu_{2}\right] \neq 0$. Therefore, we may take, for example, that

$$
\left|\begin{array}{ll}
\partial d_{1}\left(\mu^{0}\right) / \partial \mu_{1} & \partial d_{1}\left(\mu^{0}\right) / \partial \mu_{2} \\
\partial d_{2}\left(\mu^{0}\right) / \partial \mu_{1} & \partial d_{2}\left(\mu^{0}\right) / \partial \mu_{2}
\end{array}\right| \neq 0
$$

Then, by the implicite function theorem, there are two functions h_{1}, h_{2} of $\left(\mu_{3}, \ldots, \mu_{m}\right)$, defined for $\left|\mu_{3}-\mu_{3}^{0}\right|+\ldots+\left|\mu_{m}-\mu_{m}^{0}\right|<\delta$ with sufficiently small $\delta>0$, such that, when $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots, \mu_{m}\right)$ varies satisfying $\mu_{j}=$ $h_{j}\left(\mu_{3}, \ldots, \mu_{m}\right), j=1,2$, then $d_{1}(\mu)=d_{2}(\mu)=0$. Since $\mathbf{d}(\mu)$ moves on the plane Π, we obtain that $\mathbf{d}(\mu)=\mathbf{0}$, which proves the existence of homoclinic loop.

It remains to prove (7) and (7^{\prime}).
On the local stable manifold for $\mu=\mu^{0}$, we have $x_{3}=0$ and

$$
\Phi_{3}^{0}\left(x_{1}, x_{2}, 0\right)=0, \quad \frac{\partial \Phi_{3}^{0}\left(x_{1}, x_{2}, 0\right)}{\partial x_{1}}=\frac{\partial \Phi_{3}^{0}\left(x_{1}, x_{2}, 0\right)}{\partial x_{2}}=0
$$

Then $(1,3)$ and $(2,3)$ elements h_{13}^{0} and h_{23}^{0} of H_{0} are zero. As $x_{1}^{S}\left(t, \mu^{0}\right)=$ $\exp \left[\lambda_{1} t\right](a+o(1)), x_{2}^{S}\left(t, \mu^{0}\right)=\exp \left[\lambda_{2} t\right](b+o(1))$, we get, when $t \rightarrow \infty$,

$$
\begin{aligned}
\mathrm{H}_{0} & =\left(\begin{array}{ccc}
\lambda_{2}+\lambda_{3} & & \\
& \lambda_{3}+\lambda_{1} & \\
& & \lambda_{1}+\lambda_{2}
\end{array}\right)+\left(\begin{array}{cc}
O\left(\exp \left[\lambda_{2} t\right]\right) & 0 \\
O\left(\exp \left[\lambda_{2} t\right]\right) & 0 \\
O\left(\exp \left[\lambda_{2} t\right]\right) &
\end{array}\right) \\
-\int_{0}^{t} \mathrm{H}_{0} d s & =\left(\begin{array}{ccc}
-\left(\lambda_{2}+\lambda_{3}\right) t & -\left(\lambda_{3}+\lambda_{1}\right) t & \\
& & -\left(\lambda_{1}+\lambda_{2}\right) t
\end{array}\right)+\left(\begin{array}{cc}
O(1) & 0 \\
O(1) & 0 \\
O(1) &
\end{array}\right)
\end{aligned}
$$

hence

$$
\exp \left[-\int_{0}^{t} \mathrm{H}_{0} d s\right]=\left(\begin{array}{cc}
O\left(\exp \left[-\left(\lambda_{3}+\lambda_{1}\right) t\right]\right) & 0 \\
O\left(\exp \left[-\left(\lambda_{3}+\lambda_{1}\right) t\right]\right) & 0 \\
O\left(\exp \left[-\left(\lambda_{1}+\lambda_{2}\right) t\right]\right)
\end{array}\right)
$$

As $\rho_{k}^{S}(t)=O\left(\exp \left[\lambda_{2} t\right]\right)$, we have

$$
\exp \left[-\int_{0}^{t} \mathrm{H}_{0} d s\right] \rho_{k}^{S}(t)=\left(\begin{array}{c}
O\left(\exp \left[\left(-\lambda_{1}+\lambda_{2}-\lambda_{3}\right) t\right]\right) \\
O\left(\exp \left[\left(-\lambda_{1}+\lambda_{2}-\lambda_{3}\right) t\right]\right) \\
O\left(\exp \left[-\lambda_{1} t\right]\right)
\end{array}\right)
$$

Since $-\lambda_{1}+\lambda_{2}-\lambda_{3}<0$ by (Λ), the first and second elements of the right side tend to 0 as $t \rightarrow \infty$, which proves (7).

Next, as $t \rightarrow-\infty$, we have

$$
\begin{aligned}
\exp \left[-\int_{0}^{t} \mathrm{H}_{0} d s\right]= & O\left(\exp \left[-\left(\lambda_{2}+\lambda_{3}\right) t\right]\right)+O(1) \\
\rho_{k}^{U}(t) & =O\left(\exp \left[\lambda_{3} t\right]\right) \\
\exp \left[-\int_{0}^{t} \mathrm{H}_{0} d s\right] \rho_{k}^{U}(t) & =O\left(\exp \left[-\lambda_{2} t\right]\right)+O\left(\exp \left[\lambda_{3} t\right]\right)
\end{aligned}
$$

Since $\lambda_{2}<0<\lambda_{3}$, the right side tends to $\mathbf{0}$ as $t \rightarrow \infty$, which proves (7^{\prime}). REMARK. When \mathbf{F} is expanded at $(0,0,0)$ as follows:

$$
\begin{gathered}
\mathbf{F}\left(\mathbf{x}, \mu^{0}\right)=\Lambda \mathbf{x}+O\left(|\mathbf{x}|^{2}\right), \\
\Lambda=\left(\begin{array}{ccc}
\lambda_{1} & -\nu & 0 \\
\nu & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \\
\lambda_{j}, \quad \nu \text { are real, and } \lambda_{1}<0<\lambda_{3},
\end{gathered}
$$

then we can obtain also a similar result as above.

References

[1] G. F. D. Duff, Limit cycles and rotated vector fields, Ann. Math. (2) 67 (1953), 15-31.
[2] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci. vol.42, Springer-Verlag, 1983.
[3] J. Palis, Jr. and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, 1982.
[4] L. M. Perko, Homoclinic loop and multiple limit cycle bifurcation surfaces, Trans. Amer. Math. Soc. 344 (1994), 101-130.

Ilham Eli
Department of Mathematics, Graduate School of Science and Technology, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan

