REMARKS ON COHOMOLOGY RINGS OF THE QUATERNION GROUP AND THE QUATERNION ALGEBRA

Katsunori SANADA

(Received April 6, 1995)

Abstract

We will give a homomorphism of the cohomology rings $H^{*}(\Gamma, \Gamma) \rightarrow$ $H^{*}\left(Q_{8},{ }_{\psi} \Gamma\right)$ induced by the ring homomorphism from the integral group algebra $\Lambda=\mathbb{Z} Q_{8}$ of the quaternion group Q_{8} to the quaternion algebra $\Gamma=\Lambda e$ for a central idempotent e in $\mathbb{Q} Q_{8}$.

AMS 1991 Mathematics Subject Classification. Primary 16A61.

Key words and phrases. Hochschild (co)homology, quaternion group, quaternion algebra.

Introduction

Let G be a finite group and e a central idempotent of $\mathbb{Q} G$. We set $\Lambda=\mathbb{Z} G$ and $\Gamma=\mathbb{Z} G e$. The ring homomorphism $\varphi: \Lambda \rightarrow \Gamma, w \mapsto w e$ derives a homomorphism $F^{n}: H^{n}(\Gamma, M) \rightarrow H^{n}\left(G,{ }_{\psi} M\right)$ for any left Γ^{e}-module M, where ${ }_{\psi} M$ denotes M regarded as a G-module using the ring homomorphism $\psi: \Lambda \rightarrow \Gamma^{\mathrm{e}}, x \mapsto x e \otimes\left(x^{-1} e\right)^{\circ}$ for $x \in G$. The map F^{n} induces the homomorphism of the cohomology rings $F^{*}: H^{*}(\Gamma, \Gamma) \rightarrow H^{*}\left(G,{ }_{\psi} \Gamma\right)$. In the paper we determine F^{*} in the case G is the quaternion group Q_{8} and Γ is the quaternion algebra over \mathbb{Z}.

In Section 1, as preliminaries, we give the above F^{n} on the cochain level explicitly for any finite group G following [CE] and [M]. Moreover we show that F^{n} preserves the cup product, hence that F^{n} yields the ring homomorphism F^{*}. In Section 2 we give the ring structure of $H^{*}\left(Q_{8},{ }_{\psi} \Gamma\right)$ (Theorem 1). In fact, we define a transformation map between the well known periodic resolution of period 4 and the standard resolution for Q_{8}, and compute the cup products of the generators of $H^{*}\left(Q_{8},{ }_{\psi} \Gamma\right)$. In Section 3, we determine the ring homomorphism F^{*} by investigating the images under F^{1} of the generators χ, ξ and ω of $H^{*}(\Gamma, \Gamma)=\mathbb{Z}[\chi, \xi, \omega] /\left(2 \chi, 2 \xi, 2 \omega, \chi^{2}+\xi^{2}+\omega^{2}\right)$ (Theorem 2).

§1. Preliminaries

Let G be a finite group and e a central idempotent of the group algebra $\mathbb{Q} G$. We set $\Lambda=\mathbb{Z} G$ and $\Gamma=\mathbb{Z} G e$ in this section. Then we have a ring homomorphism $\varphi: \Lambda \rightarrow \Gamma$ by $\varphi(w)=w e$ for $w \in \Lambda$. Let M be a left $\Gamma^{\mathrm{e}}{ }_{-}$ module, which is regarded as a left Λ^{e}-module using $\varphi^{\mathrm{e}}: \Lambda^{\mathrm{e}} \rightarrow \Gamma^{\mathrm{e}}$, hence it is denoted by $\varphi^{e} M$. Then we have a homomorphism

$$
H^{n}(\Gamma, M) \rightarrow H^{n}\left(\Lambda, \varphi^{e} M\right)
$$

for $n \geqslant 0$ (see [CE, Chapter IX, Section 5]). This is induced by the homomorphisms
$\operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{n}, M\right) \xrightarrow{g_{n}^{\#}} \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\Gamma^{\mathrm{e}} \otimes_{\Lambda^{\mathrm{e}}}\left(X_{\Lambda}\right)_{n}, M\right) \xrightarrow{\sim} \operatorname{Hom}_{\Lambda^{\mathrm{e}}}\left(\left(X_{\Lambda}\right)_{n}, \varphi^{\mathrm{e}} M\right)$
by means of the standard complex X_{Λ} and X_{Γ} of Λ and Γ respectively, where the above $g_{n}^{\#}$ is given by

$$
\begin{aligned}
& g_{n}: \Gamma^{\mathrm{e}} \otimes_{\Lambda^{\mathrm{e}}}\left(X_{\Lambda}\right)_{n} \rightarrow\left(X_{\Gamma}\right)_{n} \\
& \quad\left(\gamma \otimes \gamma^{\prime \circ}\right) \otimes_{\Lambda^{\mathrm{e}}} \lambda_{0}\left[\lambda_{1}, \ldots, \lambda_{n}\right] \lambda_{n+1} \mapsto \gamma\left(\lambda_{0} e\right)\left[\lambda_{1} e, \ldots, \lambda_{n} e\right]\left(\lambda_{n+1} e\right) \gamma^{\prime}
\end{aligned}
$$

Unless otherwise stated, in the rest of the paper, X_{Λ} and X_{Γ} denotes the standard complex of Λ and Γ respectively.

Next, we have an isomorphism

$$
H^{n}(\Lambda, N) \xrightarrow{\sim} H^{n}\left(G,{ }_{\eta} N\right):=\operatorname{Ext}_{\Lambda}^{n}\left(\mathbb{Z},{ }_{\eta} N\right)
$$

for a left Λ^{e}-module N (see [M, Chapter X, Theorem 5.5]). In the above, ${ }_{\eta} N$ denotes N regarded as a G-module using the ring homomorphism

$$
\eta: \Lambda \rightarrow \Lambda^{\mathrm{e}}, \quad x \mapsto x \otimes\left(x^{-1}\right)^{\circ} \quad \text { for } \quad x \in G
$$

The above map is induced by the homomorphism

$$
\begin{aligned}
& \operatorname{Hom}_{\Lambda^{e}}\left(\left(X_{\Lambda}\right)_{n}, N\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n},{ }_{\eta} N\right) \\
& \quad f \mapsto\left(x_{0}\left[x_{1}|\cdots| x_{n}\right] \mapsto f\left(x_{0}\left[x_{1}, \ldots, x_{n}\right]\left(x_{0} x_{1} \cdots x_{n}\right)^{-1}\right)\right) \quad \text { for } \quad x_{i} \in G,
\end{aligned}
$$

where $\left(X_{G}\right)_{n}$ denotes $\left(X_{\Lambda}\right)_{n} \otimes_{\Lambda} \mathbb{Z}$ and the element $x_{0}\left[x_{1}|\cdots| x_{n}\right]$ denotes $x_{0}\left[x_{1}, \ldots, x_{n}\right] \otimes_{\Lambda} 1$ for $x_{i} \in G$.

Therefore, for any left Γ^{e}-module M, we have the homomorphism of cohomologies

$$
F^{n}: H^{n}(\Gamma, M) \rightarrow H^{n}\left(G,{ }_{\psi} M\right)
$$

given by

$$
\begin{aligned}
\tilde{F}^{n}: & \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{n}, M\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{n},{ }_{\psi} M\right) \\
& \tilde{F}^{n}(f)\left(x_{0}\left[x_{1}|\cdots| x_{n}\right]\right)=f\left(x_{0} e\left[x_{1} e, \ldots, x_{n} e\right]\left(x_{0} \cdots x_{n}\right)^{-1} e\right)
\end{aligned}
$$

where ${ }_{\psi} M$ denotes M regarded as a G-module using the ring homomorphism $\psi=\varphi^{\mathrm{e}} \circ \eta: \Lambda \rightarrow \Lambda^{\mathrm{e}} \rightarrow \Gamma^{\mathrm{e}}, x \mapsto x e \otimes\left(x^{-1} e\right)^{\circ}$ for $x \in G$.

Furthermore F^{n} preserves the cup products, that is, the following diagram is commutative, which is shown by direct calculation on the cochain level:

In the above, \cup_{Γ} denotes the map induced by the ordinary cup product $H^{n}\left(G,{ }_{\psi} M\right) \otimes H^{n^{\prime}}\left(G,{ }_{\psi} M^{\prime}\right) \rightarrow H^{n+n^{\prime}}\left(G,{ }_{\psi} M \otimes_{\psi} M^{\prime}\right)$ and the left Λ-homomor$\operatorname{phism}{ }_{\psi} M \otimes_{\psi} M^{\prime} \rightarrow{ }_{\psi}\left(M \otimes_{\Gamma} M^{\prime}\right)$ given by $\left(a \otimes a^{\prime} \mapsto a \otimes_{\Gamma} a^{\prime}\right)$. Hence F^{n} yields the ring homomorphism $F^{*}: H^{*}(\Gamma, \Gamma) \rightarrow H^{*}\left(G,{ }_{\psi} \Gamma\right)$, where we set $H^{*}(-,-)=\bigoplus_{n \geqslant 0} H^{n}(-,-)$.

§2. $H^{*}\left(Q_{8},{ }_{\psi} \Gamma\right)$

Let G denote the quaternion group $Q_{8}=\langle x, y| x^{4}=1, x^{2}=y^{2}, y x y^{-1}=$ $\left.x^{-1}\right\rangle$. We set $e=\left(1-x^{2}\right) / 2 \in \mathbb{Q} G$. Then e is a central idempotent of $\mathbb{Q} G$ and $\mathbb{Q} G e$ is the quaternion algebra over \mathbb{Q}, that is, $\mathbb{Q} G e=\mathbb{Q} e \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} i j$ where we set $i=x e$ and $j=y e$. In the following, we set $\Lambda=\mathbb{Z} G$ and $\Gamma=\Lambda e=\mathbb{Z} e \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} i j$ the quaternion algebra over \mathbb{Z}. Let ${ }_{\psi} \Gamma$ denote Γ regarded as a G-module using the ring homomorphisms $\psi: \Lambda \rightarrow \Gamma^{\mathrm{e}} ; x \mapsto$ $-i \otimes i^{\circ}, y \mapsto-j \otimes j^{\circ}$ as in Section 1.

We will determine the cohomology ring $H^{*}\left(G,{ }_{\psi} \Gamma\right)$ using the fact that the integral complete cohomology ring $\hat{H}^{*}(G, \mathbb{Z})$ has an invertible element of degree 4 (and of order 8) (cf. [CE, Chapter XII, Sections 7 and 11]).
2.1. Module structure. The following periodic Λ-free resolution of \mathbb{Z} of period 4 is well known (see [CE, Chapter XII, Section 7] or [T, Chapter 3, Periodicity]):

$$
\begin{aligned}
(Y, \delta): & \cdots \rightarrow \Lambda^{2} \xrightarrow{\delta_{1}} \Lambda \xrightarrow{\delta_{4}} \Lambda \xrightarrow{\delta_{3}} \Lambda^{2} \xrightarrow{\delta_{2}} \Lambda^{2} \xrightarrow{\delta_{1}} \Lambda \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0 \\
& \delta_{1}\left(z_{1}, z_{2}\right)=z_{1}(y-1)+z_{2}(x-1) \\
& \delta_{2}\left(z_{1}, z_{2}\right)=\left(z_{1}(x-1)-z_{2}(y+1), z_{1}(x y+1)+z_{2}(x+1)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{3}(z)=(-z(x y-1), z(x-1)) \\
& \delta_{4}(z)=z N_{G}
\end{aligned}
$$

where Λ^{2} denotes the direct sum $\Lambda \oplus \Lambda$ and N_{G} denotes $\sum_{w \in G} w(\in \Lambda)$. Applying the functor $\operatorname{Hom}_{\Lambda}\left(-,{ }_{\psi} \Gamma\right)$ on the sequence above, we have the following complex which gives $H^{n}\left(G,{ }_{\psi} \Gamma\right)$, where we identify $\operatorname{Hom}_{\Lambda}\left(Y_{0},{ }_{\psi} \Gamma\right)$ with Γ, $\operatorname{Hom}_{\Lambda}\left(Y_{1},{ }_{\psi} \Gamma\right)$ with $\Gamma^{2}:=\Gamma \oplus \Gamma$ and so on:

$$
\begin{aligned}
& \left(\operatorname{Hom}_{\Lambda}\left(Y,{ }_{\psi} \Gamma\right), \delta^{\#}\right): \cdots \leftarrow \Gamma \stackrel{\delta_{4}^{\#}}{\longleftarrow} \Gamma \stackrel{\delta_{3}^{\#}}{\longleftrightarrow} \Gamma^{2} \stackrel{\delta_{2}^{\#}}{\longleftarrow} \Gamma^{2} \stackrel{\delta_{1}^{\#}}{\longleftarrow} \Gamma \leftarrow 0 \\
& \quad \delta_{1}^{\#}(\gamma)=((y-1) \gamma,(x-1) \gamma) \\
& \quad \delta_{2}^{\#}\left(\gamma_{1}, \gamma_{2}\right)=\left((x-1) \gamma_{1}+(x y+1) \gamma_{2},-(y+1) \gamma_{1}+(x+1) \gamma_{2}\right), \\
& \quad \delta_{3}^{\#}\left(\gamma_{1}, \gamma_{2}\right)=-(x y-1) \gamma_{1}+(x-1) \gamma_{2} \\
& \quad \delta_{4}^{\#}(\gamma)=2(1+x+y+x y) \gamma
\end{aligned}
$$

In the above, we note that $(y-1) \gamma=-j \gamma j-\gamma$ and so on. Therefore, the module structure of $H^{n}\left(G,{ }_{\psi} \Gamma\right)$ is represented by the form of the subquotient of the complex $\operatorname{Hom}_{\Lambda}\left(Y,{ }_{\psi} \Gamma\right)$ as follows:

$$
\begin{aligned}
& H^{n}\left(G,{ }_{\psi} \Gamma\right) \\
& \quad= \begin{cases}\mathbb{Z} e & \text { for } n=0 \\
\mathbb{Z} e / 8 & \text { for } \quad n \equiv 0 \bmod 4, n \neq 0 \\
\mathbb{Z}(i, 0) / 2 \oplus \mathbb{Z}(0, j) / 2 \oplus \mathbb{Z}(i j, i j) / 2 & \text { for } \quad n \equiv 1 \bmod 4 \\
\mathbb{Z}(e, 0) / 2 \oplus \mathbb{Z}(0, e) / 2 \oplus \mathbb{Z}(0, i) / 2 & \\
\quad \oplus \mathbb{Z}(j, j) / 2 \oplus \mathbb{Z}(i j, 0) / 2 & \text { for } \quad n \equiv 2 \bmod 4 \\
\mathbb{Z} i / 2 \oplus \mathbb{Z} j / 2 \oplus \mathbb{Z} i j / 2 & \text { for } \quad n \equiv 3 \bmod 4\end{cases}
\end{aligned}
$$

In the above, M / m denotes the quotient module $M / m M$ for a \mathbb{Z}-module M and an integer m.
2.2. Product on $H^{n}\left(G,{ }_{\psi} \Gamma\right)$. First, we give an initial part of a chain transformation lifting the identity map on \mathbb{Z} between (Y, δ) in Section 2.1 and the standard complex $\left(X_{G}, d_{G}\right)$, that is, $v_{i}: Y_{i} \rightarrow\left(X_{G}\right)_{i} \quad(0 \leqslant i \leqslant 4)$ and $u_{i}:\left(X_{G}\right)_{i} \rightarrow Y_{i} \quad(i=0,1)$ as follows:

$$
\begin{aligned}
& v_{0}=\mathrm{id} \\
& v_{1}(1,0)= {[y], \quad v_{1}(0,1)=[x] ; } \\
& v_{2}(1,0)= {[x \mid y]+[x y \mid x], \quad v_{2}(0,1)=[x \mid x]-[y \mid y] } \\
& v_{3}(1)=- {[x y|x| y]-[x|y| y]+[x|x| x]-[x y|x y| x] ; } \\
& v_{4}(1)=- {\left[N_{G}|x y| x \mid y\right]-\left[N_{G}-1|x| y \mid y\right]+\left[N_{G}-1|x| x \mid x\right]-\left[N_{G}-1|x y| x y \mid x\right] } \\
& \quad-[1|x| y \mid x y]
\end{aligned}
$$

```
\(u_{0}=\mathrm{id} ;\)
\(u_{1}:[1] \mapsto(0,0), \quad[x] \mapsto(0,1), \quad\left[x^{2}\right] \mapsto(0, x+1), \quad\left[x^{3}\right] \mapsto\left(0, x^{2}+x+1\right)\),
    \([y] \mapsto(1,0), \quad[x y] \mapsto(x, 1), \quad\left[x^{2} y\right] \mapsto\left(x^{2}, x+1\right)\),
    \(\left[x^{3} y\right] \mapsto\left(x^{3}, x^{2}+x+1\right)\).
```

Next, we calculate the products of the generators $A=(i, 0), B=(0, j)$ and $C=(i j, i j)$ of $H^{1}\left(G,{ }_{\psi} \Gamma\right)$ using the above chain transformations. These are obtained by means of the following homomorphisms:

$$
\begin{aligned}
& \Gamma^{2} \otimes \Gamma^{2} \xrightarrow{\alpha_{1}^{-1} \otimes \alpha_{1}^{-1}} \\
& \operatorname{Hom}_{\Lambda}\left(Y_{1},{ }_{\psi} \Gamma\right) \otimes \operatorname{Hom}_{\Lambda}\left(Y_{1},{ }_{\psi} \Gamma\right) \\
& \xrightarrow{u_{1}^{\#} \otimes u_{1}^{\#}} \\
& \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{1},{ }_{\psi} \Gamma\right) \otimes \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{1},{ }_{\psi} \Gamma\right) \\
& \xrightarrow{v_{2}^{\#}} \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{2},{ }_{\psi} \Gamma\right) \\
& \operatorname{Hom}_{\Lambda}\left(Y_{2},{ }_{\psi} \Gamma\right) \\
& \alpha_{2} \Gamma^{2}
\end{aligned}
$$

where α_{1} denotes the isomorphism $\operatorname{Hom}_{\Lambda}\left(Y_{1},{ }_{\psi} \Gamma\right) \xrightarrow{\sim} \Gamma^{2}$ stated in Section 2.1, and so on. Let $\Delta_{k, l}$ denote the diagonal approximation giving the cup product $\cup^{k, l}$. Since

$$
\begin{aligned}
& \begin{aligned}
u_{1} \otimes u_{1} & \cdot \Delta_{1,1} \cdot v_{2}(1,0) \\
& =u_{1} \otimes u_{1} \cdot \Delta_{1,1}([x \mid y]+[x y \mid x]) \\
& =u_{1} \otimes u_{1}([x] \otimes x[y]+[x y] \otimes x y[x]) \\
& =(0,1) \otimes x(1,0)+(x, 1) \otimes x y(0,1), \\
u_{1} \otimes u_{1} & \cdot \Delta_{1,1} \cdot v_{2}(0,1) \\
& =(0,1) \otimes x(0,1)-(1,0) \otimes y(1,0)
\end{aligned}
\end{aligned}
$$

and also

$$
\alpha_{1}^{-1}(A)\left(z_{1}, z_{2}\right)=z_{1} i, \quad \alpha_{1}^{-1}(B)\left(z_{1}, z_{2}\right)=z_{2} j, \quad \alpha_{1}^{-1}(C)\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2}\right) i j
$$

it follows that the following equations hold in $H^{2}\left(G,{ }_{\psi} \Gamma\right)$.

$$
\begin{aligned}
& A^{2}=(0, e), \quad B^{2}=(e, e), \quad C^{2}=(e, 0) \\
& A B=B A=(i j, 0), \quad A C=C A=(j, j), \quad B C=C B=(0, i)
\end{aligned}
$$

This shows that $H^{2}\left(G,{ }_{\psi} \Gamma\right)$ is generated by A, B and C. Note that $A^{2}+B^{2}+$ $C^{2}=0$ in $H^{2}\left(G,{ }_{\psi} \Gamma\right)$.

Similarly, we have the following equations in $H^{3}\left(G,{ }_{\psi} \Gamma\right)$ by means of the cup product $\cup^{1,1}, \cup^{2,1}$ and v_{3} stated above.

$$
\begin{aligned}
& A^{3}=B^{3}=C^{3}=0, \quad A B C=0 \\
& A B^{2}=A C^{2}=i, \quad A^{2} B=B C^{2}=j, \quad A^{2} C=B^{2} C=i j
\end{aligned}
$$

This shows that $H^{3}\left(G,{ }_{\psi} \Gamma\right)$ is also generated by A, B and C.
Moreover, we have the following equations in $H^{4}\left(G,{ }_{\psi} \Gamma\right)$ by means of the cup products $\cup^{1,1}, \cup^{2,1}, \cup^{3,1}$ and v_{4} stated above.

$$
A^{2} B^{2}\left(=A^{2} C^{2}=B^{2} C^{2}\right)=4 D
$$

where D denotes e in $H^{4}\left(G,{ }_{\psi} \Gamma\right)$. Since \mathbb{Z} is a G-direct summand of ${ }_{\psi} \Gamma$ using the embedding map $\mathbb{Z} \rightarrow{ }_{\psi} \Gamma$ by $1 \mapsto e$, we have the following monomorphism of the complete cohomology rings.

$$
\hat{H}^{*}(G, \mathbb{Z}):=\bigoplus_{r \in \mathbb{Z}} \hat{H}^{r}(G, \mathbb{Z}) \rightarrow \hat{H}^{*}\left(G,{ }_{\psi} \Gamma\right):=\bigoplus_{r \in \mathbb{Z}} \hat{H}^{r}\left(G,_{\psi} \Gamma\right)
$$

Since D above which is of order 8 in $H^{4}\left(G,{ }_{\psi} \Gamma\right)$ is the image of an element of order 8 in $H^{4}(G, \mathbb{Z})$, invertible in $\hat{H}^{*}(G, \mathbb{Z})$, by the above map, it follows that D is also an invertible element in $\hat{H}^{*}\left(G,{ }_{\psi} \Gamma\right)$.

Thus we have the following theorem.
Theorem 1. The cohomology ring $H^{*}\left(G,{ }_{\psi} \Gamma\right)$ is isomorphic to
$\mathbb{Z}[A, B, C, D] /\left(2 A, 2 B, 2 C, 8 D, A^{2}+B^{2}+C^{2}, A^{3}, B^{3}, C^{3}, A B C, A^{2} B^{2}-4 D\right)$,
where $\operatorname{deg} A=\operatorname{deg} B=\operatorname{deg} C=1$ and $\operatorname{deg} D=4$.
By referring the module structure of $H^{n}\left(G,{ }_{\psi} \Gamma\right)$ in Section 2.1, we know that the monomorphism of the ordinary cohomology rings $H^{*}(G, \mathbb{Z}) \rightarrow H^{*}(G$, $\left.{ }_{\psi} \Gamma\right)$ is induced by the map $X \mapsto A^{2}, Y \mapsto B^{2}, Z \mapsto D$ where X and Y denote certain generators of $H^{2}(G, \mathbb{Z})$ and Z denotes the element of order 8 in $H^{4}(G, \mathbb{Z})$ stated above. Hence we have the following corollary as an immediate consequence of the theorem, while the fact is already known in [A, Section 13].

Corollary. The cohomology ring $H^{*}(G, \mathbb{Z})$ is isomorphic to

$$
\mathbb{Z}[X, Y, Z] /\left(2 X, 2 Y, 8 Z, X^{2}, Y^{2}, X Y-4 Z\right)
$$

where $\operatorname{deg} X=\operatorname{deg} Y=2$ and $\operatorname{deg} Z=4$.
\S 3. The ring homomorphism $F^{*}: H^{*}(\Gamma, \Gamma) \rightarrow H^{*}\left(G,{ }_{\psi} \Gamma\right)$
We use $W=\left(W_{p, q} ; \delta^{\prime}, \delta^{\prime \prime}\right)$ stated in $\left[\mathrm{S}\right.$, Section 3.3] for a Γ^{e}-free complex of Γ giving $H^{n}(\Gamma,-)$. We remark that $W_{p, q}=\Gamma \otimes \Gamma$ for every p, q and

$$
\begin{aligned}
& \delta^{\prime}: W_{1,0} \rightarrow W_{0,0}, \quad[\cdot] \mapsto-j[\cdot] j-[\cdot] ; \\
& \delta^{\prime \prime}: W_{0,1} \rightarrow W_{0,0}, \quad[\cdot] \mapsto i[\cdot]-[\cdot] i,
\end{aligned}
$$

where [•] denotes $1 \otimes 1 \in \Gamma \otimes \Gamma$. Then an initial part of a chain transformation between the standard Γ^{e}-projective resolution $\left(X_{\Gamma}, d_{\Gamma}\right)$ and W above is as follows:

$$
\begin{aligned}
& t_{0}=\mathrm{id}:\left(X_{\Gamma}\right)_{0} \rightarrow W_{0}=W_{0,0} \\
& t_{1}:\left(X_{\Gamma}\right)_{1} \rightarrow W_{1}=W_{0,1} \oplus W_{1,0} \\
& \quad[e] \mapsto(0,0), \quad[i] \mapsto([\cdot], 0), \quad[j] \mapsto(0,[\cdot] j), \quad[i j] \mapsto([\cdot] j, i[\cdot] j) .
\end{aligned}
$$

Applying the functor $\operatorname{Hom}_{\Gamma^{e}}(-, \Gamma)$, we have

$$
t_{1}^{\#}: \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(W_{1}, \Gamma\right) \rightarrow \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{1}, \Gamma\right)
$$

Since the isomorphisms

$$
\operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(W_{1}, \Gamma\right) \xrightarrow{\sim} \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(W_{0,1}, \Gamma\right) \oplus \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(W_{1,0}, \Gamma\right) \xrightarrow{\sim} \Gamma^{0,1} \oplus \Gamma^{1,0}
$$

hold under the notation in [S, Section 3], it follows that $t_{1}^{\#}$ above is represented as follows:

$$
\begin{aligned}
& t_{1}^{\#}: \Gamma^{0,1} \oplus \Gamma^{1,0} \rightarrow \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{1}, \Gamma\right) \\
& \quad\left(z_{1}, z_{2}\right) \mapsto\left([e] \mapsto 0, \quad[i] \mapsto z_{1}, \quad[j] \mapsto z_{2} j, \quad[i j] \mapsto z_{1} j+i z_{2} j\right)
\end{aligned}
$$

Accordingly, $F^{1}: H^{1}(\Gamma, \Gamma) \rightarrow H^{1}\left(G,{ }_{\psi} \Gamma\right)$ stated in Section 1 is given on the cochain levels using $v_{1}^{\#}$ defined in Section 2.2 as follows:

$$
\begin{aligned}
\Gamma^{0,1} \oplus \Gamma^{1,0} & \xrightarrow{t_{1}^{\#}} \operatorname{Hom}_{\Gamma^{\mathrm{e}}}\left(\left(X_{\Gamma}\right)_{1}, \Gamma\right) \xrightarrow{\tilde{F}^{1}} \operatorname{Hom}_{\Lambda}\left(\left(X_{G}\right)_{1},{ }_{\psi} \Gamma\right) \\
\left(z_{1}, z_{2}\right) & \left.\xrightarrow{v_{1}^{\#}} \operatorname{Hom}_{\Lambda}\left(Y_{1},{ }_{\psi} \Gamma\right) \xrightarrow{\alpha_{1}} \Gamma^{2},-z_{1} i\right) .
\end{aligned}
$$

In particular, for the generators $\chi=(0, i), \xi=(i j, 0)$ and $\omega=(j, i j)\left(\in \Gamma^{0,1} \oplus\right.$ $\left.\Gamma^{1,0}\right)$ with $\operatorname{deg} \chi=\operatorname{deg} \xi=\operatorname{deg} \omega=1$ of $H^{*}(\Gamma, \Gamma)=\mathbb{Z}[\chi, \xi, \omega] /\left(2 \chi, 2 \xi, 2 \omega, \chi^{2}+\right.$ $\left.\xi^{2}+\omega^{2}\right)($ see $[$ S, Section 3.4] $)$, we have

$$
F^{1}(\chi)=A, \quad F^{1}(\xi)=B, \quad F^{1}(\omega)=C \quad \text { in } H^{1}\left(G,{ }_{\psi} \Gamma\right)
$$

Thus we have the following theorem.
Theorem 2. The ring homomorphism $F^{*}: H^{*}(\Gamma, \Gamma) \rightarrow H^{*}\left(G,{ }_{\psi} \Gamma\right)$ is induced by $F^{1}(\chi)=A, \quad F^{1}(\xi)=B$ and $F^{1}(\omega)=C$. Hence Ker F^{*} is the ideal generated by $\chi^{3}, \xi^{3}, \omega^{3}$ and $\chi \xi \omega$, and, of course, $\operatorname{Im} F^{*}$ coincides with the canonical image of $\mathbb{Z}[A, B, C]$ in $H^{*}\left(G,{ }_{\psi} \Gamma\right)$. In particular, F^{n} is an isomorphism for $0 \leqslant n \leqslant 2$ and the zero map for $n \geqslant 5$.

Acknowledgement

The author would like to express his gratitude to the referee for valuable comments and suggestions.

References

[A] M. F. Atiyah, Characters and the cohomology of finite groups, Publ. Math. IHES 9 (1961), 23-64.
[CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton. NJ., 1956.
[M] S. MacLane, Homology, Springer-Verlag Berlin Heidelberg New York, 1975.
[S] K. Sanada, On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993), 2727-2748.
[T] C. B. Thomas, Characteristic classes and the cohomology of finite groups, Cambridge University Press, Cambridge, 1986.

Katsunori Sanada
Department of Mathematics, Science University of Tokyo
Wakamiya 26, Shinjuku-ku, Tokyo 162, Japan
E-mail: sanada@rs.kagu.sut.ac.jp

