ON RESIDUES OF DIFFERENTIAL FORMS OVER A FIELD OF CHARACTERISTIC p

Takeo OHI

(Received June 20, 1995)

Abstract

Let K be a function field over a field k of characteristic $p>0$ and let R be a discrete valuation ring of K / k. E. Kunz showed that if ω is a closed differential form and $\nu_{R}(\omega) \geq-1$, then $\operatorname{res}_{R, \underline{t}}(\omega)$ does not depend on the choice of parameter $\underline{t}=\left\{t_{1}, t_{2}, \cdots, t_{n}\right\}$.

In this paper, we investigate $\operatorname{res}_{R, \underline{t}}(\omega)$ in the case where $\nu_{R}(\omega) \geq-p^{m}+$ 1 for $\omega \in Z_{m}$.

AMS 1991 Mathematics Subject Classification. Primary 13N05, 12H05.

Key words and phrases. Differential form, residue, Cartier operator, function field.

§0. Introduction

Let K be a function field of n variables over a field k of characteristic $p>0$ and let R be a discrete valuation ring of K / k such that the residue field D of R has transcendence degree $n-1$ over k. Y. Suzuki [3] proved the following Theorem A and Corollary B.

Theorem A. If ω is a differential form in $Z_{m} \Omega^{r}(K / k)$ such that $\nu_{R}(\omega) \geq$ $-p^{m-1}$, then res $_{R, \underline{t}}(\omega)$ is uniquely determined up to addition by differentials in $B_{m-1} \Omega^{r-1}(D / k)$.

Corollary B. $\quad \operatorname{res}_{R}: Z_{\infty} \Omega^{r}(K / k) \longrightarrow Z_{\infty} \Omega^{r-1}(D / k) / B_{\infty} \Omega^{r-1}(D / k)$ is well defined. (for the definition, see section 1).

His method of proof is the following: First he proved the commutativity of residue map and Cartier operator. Secondly he proved that if $\omega \in Z_{m} \Omega^{r}(K / k)$ and $\nu_{R}(\omega) \geq-p^{m-1}$, then $\nu_{R^{(m)}}\left(C_{K}^{(m-1)}(\omega)\right) \geq-1$ and $C_{K}^{(m-1)}(\omega)$ is a closed differential, where $C_{K}^{(m-1)}$ is an iterated Cartier operator. From two results
above and a result of E. Kunz (Exercise (1) in §17 of [1]), he proved Theorem A and Corollary B.

On the other hand, our main results are the following:
Theorem 2. If ω is a differential form in $Z_{m} \Omega(K / k)$ such that $\nu_{R}(\omega) \geq$ $-p^{m}+1$, then $\operatorname{res}_{R, t}(\omega)$ is uniquely determined up to addition by differentials in $B_{m} \Omega(D / k)$.

Corollary. \quad res $_{R}: Z_{\infty} \Omega(K / k) \longrightarrow Z_{\infty} \Omega(D / k) / B_{\infty} \Omega(D / k)$ is well defined.

Our method of proof is quite different from Suzuki's method and our Theorem 2 and Suzuki's Theorem A are independent to each other, that is, Theorem A does not imply Theorem 2 and vice versa. But both Theorem 2 and Theorem A imply the same Corollary.

An advantage of our result is in the following fact. The number $-p^{m}+1$ in our Theorem 2 is the best possible (see Example in $\S 2$).

§1. Preliminaries

Throughout this paper, K will denote a function field of n variables over a field k of characteristic $p>0$ and R a discrete valuation ring of rank one of K / k such that the residue field D of R has transcendence degree $n-1$ over k. Furthermore we always assume that K and D are separable over k.

We choose n elements $t_{1}, t_{2}, \ldots, t_{n}$ in R such that $t_{1} R$ is the maximal ideal of R and such that $\overline{t_{2}}, \ldots, \overline{t_{n}}$ is a p-basis of D / k, where \bar{a} denotes the canonical image in D of $a \in R$. We will call such a family $\underline{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ a parameter of $(K / k, R)$. We put $K_{i}=k K^{p^{i}}, R_{i}=k R^{p^{i}}$ and $\underline{t^{(i)}}=\underline{t^{p^{i}}}=$ $\left\{t_{1}^{p^{i}}, t_{2}^{p^{i}}, \cdots, t_{n}^{p^{i}}\right\}(i=0,1,2, \cdots)$.

Let A be a G-algebra, where G and A are commutative rings, and let $\left(\Omega(A / G), d_{A / G}\right)$ be the universal differential algebra of A / G. Then we know that $\Omega(A / G)=\oplus \Omega^{r}(A / G), \Omega^{r}(A / G)=\wedge^{r} \Omega^{1}(A / G)$ and $\Omega^{1}(A / G)$ is the module of Kähler differentials of A / G (c.f. §3 in [1]). If there is no confusion, we simply write $d, \Omega, \Omega(D)$ and $\Omega(R)$ instead of $d_{A / G}, \Omega(K / k), \Omega(D / k)$ and $\Omega(R / k)$, respectively.

Lemma 1. Let $\underline{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a parameter of $(K / k, R)$. Then $\underline{t}=$ $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ is a p-basis of R / k.

Proof. From the following exact sequence of vector spaces over D
(c.f. Th. 25.2 in [2]),

$$
0 \longrightarrow t_{1} R / t_{1}^{2} R \longrightarrow \Omega^{1}(R) \otimes_{R} D \longrightarrow \Omega^{1}(D) \longrightarrow 0
$$

we get that $\operatorname{dim}\left(\Omega^{1}(R) \otimes_{R} D\right)=1+(n-1)=n\left(\operatorname{dim} \Omega^{1}(D)=n-1\right.$ from separability of $D / k)$. It follows from Nakayama's lemma that $\left\{d t_{1}, d t_{2}, \ldots, d t_{n}\right\}$ generates $\Omega^{1}(R)$ over R. On the other hand, since $\Omega^{1}=\Omega^{1}(R) \otimes_{R} K$ has dimension n over $K,\left\{d t_{1}, d t_{2}, \ldots, d t_{n}\right\}$ must form a basis of $\Omega^{1}(R)$ over R.

We will show that $k R^{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]=R$. Let $S=k R^{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Then S is a local ring with the residue field $k D^{p}\left[\overline{t_{2}}, \ldots, \overline{t_{n}}\right]=D$ (see Remark below). Hence $R=S+t_{1} R$. Since R is a finite S-module and t_{1} is an element of the maximal ideal of S, it follows from Nakayama's lemma that $S=R$. By 5.6 Proposition in [1], we see that $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ is a p-basis of R / k.

Remark. By using the conditions that both K / k and D / k are separable, we observe that $k R^{p}$ is a discrete valuation ring of rank one with the residue field $k D^{p}$ and that $\underline{t^{p}}=\left\{t_{1}^{p}, t_{2}^{p}, \ldots, t_{n}^{p}\right\}$ is a parameter of $\left(k K^{p} / k, k R^{p}\right)$. In fact, we have $K^{p} \otimes_{k^{p}} k=k K^{p}$ since K^{p} / k^{p} is separable, and hence we also get $R^{p} \otimes_{k^{p}} k=k R^{p}$. Thus it follows that $k R^{p} /\left(t_{1}^{p}\right)=R^{p} /\left(t_{1}^{p}\right) \otimes_{k^{p}} k=D^{p} \otimes_{k^{p}} k$ and that $D^{p} \otimes_{k^{p}} k=k D^{p}$ by separability of D / k. Similarly, we observe that $\left\{{\overline{t_{2}}}^{p}, \ldots,{\overline{t_{n}}}^{p}\right\}$ is a p-basis of $k D^{p} / k$ and that $\underline{t^{(i)}}$ is a parameter of $\left(K_{i} / k, R_{i}\right)$ for each i.

We will define a k-linear map of degree $-1, \operatorname{res}_{R, \underline{t}}: \Omega \longrightarrow \Omega(D)$. Let \hat{R} be the completion of R. Then there exists a unique coefficient field $E=E_{t_{2}, \ldots, t_{n}}$ of \hat{R} such that $\hat{R}=E\left[\left[t_{1}\right]\right]$ and $E \supset k\left(t_{2}, \ldots, t_{n}\right)$ (c.f. Th. 28.3 in [2]). The quotient field of \hat{R} is the formal power series field $E\left(\left(t_{1}\right)\right)$ and K can be regarded as a subfield of $E\left(\left(t_{1}\right)\right)$. Let ω be a differential form in $\Omega^{r}(r \geq 1)$. Then ω is uniquely expressed in the form

$$
\omega=\sum_{1<i_{1}<\cdots<i_{r}} g_{i_{1} \cdots i_{r}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}+\sum_{1<i_{2}<\cdots<i_{r}} h_{i_{2} \cdots i_{r}} d t_{1} \wedge d t_{i_{2}} \wedge \cdots \wedge d t_{i_{r}}
$$

where $g_{i_{1} \cdots i_{r}}, h_{i_{2} \cdots i_{r}} \in K$. Let $h_{i_{2} \cdots i_{r}}=\sum_{k} h_{i_{2} \cdots i_{r}, k} t_{1}^{k}$ be the formal expression of $h_{i_{2} \cdots i_{r}}$ in $\hat{K}=E\left(\left(t_{1}\right)\right)$. We define the residue of ω by

$$
\operatorname{res}_{R, \underline{t}}(\omega)=\sum_{i_{2}<\cdots<i_{r}} \overline{h_{i_{2} \cdots i_{r},-1}} d \overline{t_{i_{2}}} \wedge \cdots \wedge d \overline{t_{i_{r}}}
$$

where \bar{a} is the canonical image of $a \in \hat{R}$ in D. Thus we can define the map $r e s_{R, \underline{t}}: \Omega \longrightarrow \Omega(D)$ by linearlity.

We observe that $\operatorname{res}_{R, t}$ has the following property

$$
r e s_{R, \underline{\underline{L}}} \circ d+d_{D / k} \circ r e s_{R, \underline{t}}=0 .
$$

It follows from this property that res $_{R, \underline{t}}$ maps closed differentials to closed ones and exact differentials to exact ones.

We will denote by $Z(\Omega)$ (= ker d), all of closed differentials in Ω and by $B(\Omega)(=i m d)$, all of exact differentials in Ω. If there is no confusion, we will write Z, B instead of $Z(\Omega), B(\Omega)$, respectively. It follows that Z is a graded $k K^{p}$-subalgebra of Ω with $Z^{0}=k K^{p}$ and that B is a two-sided homogeneous ideal of Z.

Definition. For a parameter $\underline{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of $(K / k, R)$, we define the graded subalgebras $H_{m}(\underline{t})$ of Z and $I_{m}(\underline{t})$ of $Z(\Omega(R))(m=1,2 \ldots)$ as follows;

$$
\begin{aligned}
H_{m}(\underline{t}) & :=K_{m}\left[t_{1}^{p^{m}-1} d t_{1}, t_{2}^{p^{m}-1} d t_{2}, \cdots, t_{n}^{p^{m}-1} d t_{n}\right], \\
I_{m}(\underline{t}) & :=R_{m}\left[t_{1}^{p^{m}-1} d t_{1}, t_{2}^{p^{m}-1} d t_{2}, \cdots, t_{n}^{p^{m}-1} d t_{n}\right] .
\end{aligned}
$$

We have by Exercise (6) in $\S 5$ of [1] that

$$
Z=B \bigoplus H_{1}(\underline{t}), \quad Z(\Omega(R))=B(\Omega(R)) \bigoplus I_{1}(\underline{t})
$$

for every parameter \underline{t} of $(K / k, R)$ (c.f. Lemma 1).
The Cartier operator $C_{K / k}$ (we denote it by C if there is no confusion) is defined to be a surjective homomorphism of degree zero of graded K_{1}-algebra $\left(K_{1}=k K^{p}\right)$

$$
C: Z \longrightarrow \Omega\left(K_{1} / k\right)
$$

such that $C(B)=0, C(a)=a$ for any $a \in Z^{0}=K_{1}$ and $C\left(t_{i}^{p-1} d t_{i}\right)=d_{1} t_{i}^{p}$ for each i, where d_{1} is the differentiation of $\Omega\left(K_{1} / k\right)$ (Exercise (6) in $\S 5$ of [1]). It follows that C induces an isomorphism of $H_{1}(\underline{t})$ on $\Omega\left(K_{1} / k\right)$, but C does not depend on R and a fortiori C does not depend on \underline{t}. Similarly we can also define Cartier operators $C_{R / k}, C_{D / k}, C_{K_{i} / k}$ and $C_{R_{i} / k}$. We have by Lemma 2 of [3] that

$$
C_{D / k} \circ \operatorname{res}_{R, \underline{t}}=\operatorname{res}_{R_{1}, \underline{\underline{p}}} \circ C
$$

for every parameter \underline{t} of $(K / k, R)$.
The Cartier opreators $C_{K_{i} / k}\left(=C_{i}\right)(i=0,1,2, \ldots)$ define the subsets $B_{m}=$ $B_{m}(\Omega)$ and $Z_{m}=Z_{m}(\Omega)$ of Ω inductively as follows: We first set $B_{0}\left(\Omega_{i}\right)=0$,
$Z_{0}\left(\Omega_{i}\right)=\Omega_{i}$ for each i, where $\Omega_{i}=\Omega\left(K_{i} / k\right)$. We note that $C_{0}=C$ and $\Omega_{0}=\Omega$. Next we set, for every integer $m \geq 0$,

$$
B_{m+1}\left(\Omega_{i}\right)=C_{i}^{-1}\left(B_{m}\left(\Omega_{i+1}\right)\right), \quad Z_{m+1}\left(\Omega_{i}\right)=C_{i}^{-1}\left(Z_{m}\left(\Omega_{i+1}\right)\right)
$$

For example, $B_{2}=B_{2}(\Omega)$ is obtained as follows; $B_{1}\left(\Omega_{1}\right)=C_{1}^{-1}(0)$ and $B_{2}(\Omega)=C_{0}^{-1}\left(B_{1}\left(\Omega_{1}\right)\right)=C_{0}^{-1}\left(C_{1}^{-1}(0)\right)$.

We can easily see that $B_{1}=B, Z_{1}=Z$ and

$$
0=B_{0} \subset B_{1} \subset \cdots \subset B_{m} \subset \cdots \subset Z_{m} \subset \cdots \subset Z_{1} \subset Z_{0}=\Omega
$$

It follows that $Z_{m}(m \geq 0)$ is a graded K_{m}-subalgebra of Ω and that B_{m} is a two-sided homogeneous ideal of Z_{m} such that $Z_{m} / B_{m} \simeq \Omega_{m}$. Furthermore, we set $Z_{\infty}=\bigcap_{m=1}^{\infty} Z_{m}$ and $B_{\infty}=\bigcup_{m=1}^{\infty} B_{m}$.

Let $\underline{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a parameter of $(K / k, R)$. Then for every element ω of Ω, we define $\nu_{R}(\omega)$ as follows;

$$
\nu_{R}(\omega)=\max \left\{s \in Z \mid t_{1}^{-s} \omega \in \Omega(R)\right\}
$$

If $\omega \in \Omega^{0}=K$, then $\nu_{R}(\omega)$ is the valuation value of ω such that $\nu_{R}\left(t_{1}\right)=1$. We note that $\nu_{R}(\omega)$ is dependent on R but not dependent on the parameter \underline{t}.

Furthermore we fix a special basis of Ω over K for the parameter \underline{t} named Λ;

$$
\Lambda=\left\{d t_{i_{1}} \wedge d t_{i_{2}} \wedge \cdots \wedge d t_{i_{r}} \mid 0 \leq r \leq n, 1 \leq i_{1}<\cdots<i_{r} \leq n\right\}
$$

(when $r=0, d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}$ means 1). Then Λ is also a basis of $\Omega(R)$ over R. Furthermore we see that an element $\omega=\sum a_{i_{1}, \ldots, i_{r}} d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}$ belongs to $\Omega(R)$ if and only if all $a_{i_{1}, \ldots, i_{r}}$ belong to R.

Lemma 2. For any parameter \underline{t} of $(K / k, R)$ and for any natural number m,

$$
Z_{m}=B_{m} \bigoplus H_{m}(\underline{t})
$$

as K_{m}-modules (additive groups or k-modules).
Proof. We shall prove this by induction on m, it holding for $m=1$ (Exercise (6) in $\S 5$ in [1]). We assume it for $m-1(m \geq 2)$. By using the assumption of induction to the case of the parameter \underline{t}^{p} of $\left(K_{1} / k, R_{1}\right)$, we have that

$$
Z_{m-1}\left(\Omega_{1}\right)=B_{m-1}\left(\Omega_{1}\right) \bigoplus H_{m-1}\left(\underline{t^{p}}\right),
$$

where $H_{m-1}\left(\underline{t^{p}}\right)=k K_{1}^{p^{m-1}}\left[\left(t_{1}^{p}\right)^{p^{m-1}-1} d t_{1}^{p},\left(t_{2}^{p}\right)^{p^{m-1}-1} d t_{2}^{p}, \cdots,\left(t_{n}^{p}\right)^{p^{m-1}-1} d t_{n}^{p}\right]$. Since $K_{m}=k K_{1}^{p^{m-1}}$ and $t_{j}^{p^{m}-1} d t_{j}=\left(t_{j}^{p}\right)^{p^{m-1}-1} t_{j}^{p-1} d t_{j}$, it follows that $C\left(H_{m}(\underline{t})\right)=H_{m-1}\left(\underline{t}^{p}\right)$. By the definition of Z_{m} and B_{m},

$$
Z_{m}=C^{-1}\left(Z_{m-1}\left(\Omega_{1}\right)\right) \text { and } B_{m}=C^{-1}\left(B_{m-1}\left(\Omega_{1}\right)\right)
$$

If $\omega \in B_{m} \cap H_{m}(\underline{t})$, then $C(\omega) \in B_{m-1}\left(\Omega_{1}\right) \cap H_{m-1}\left(\underline{t}^{p}\right)=(0)$; hence $\omega \in \operatorname{ker} C \cap H_{m}(\underline{t}) \subset B_{1} \cap H_{1}(\underline{t})=(0)$.

It holds that $Z_{m} \supset B_{m}+H_{m}(\underline{t})$. Conversely, we will prove that $Z_{m} \subset$ $B_{m}+H_{m}(\underline{t})$. Let $\omega \in Z_{m}$. Then $C(\omega)=x+y$ for some $x \in B_{m-1}\left(\Omega_{1}\right)$ and $y \in H_{m-1}\left(\underline{t^{p}}\right)$. Since C is surjective, there exist $\alpha \in B_{m}$ and $\beta \in H_{m}(\underline{t})$ such that $C(\alpha)=x$ and $C(\beta)=y$. Hence $\omega-\alpha-\beta \in \operatorname{ker} C=B=B_{1} \subset B_{m}$. Thus $Z_{m}=B_{m}+H_{m}(\underline{t})$.

Let \underline{t} be a parameter of $(K / k, R)$. Any element $a \neq 0$ of K can be uniquely expressed in the form

$$
a=\sum \alpha_{s_{1}, \cdots, s_{n}} t_{1}^{s_{1}} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}, \quad \alpha_{s_{1}, \cdots, s_{n}} \in k K^{p}
$$

where s_{i} runs over $\{0,1, \cdots, p-1\}$ for each i. Then we have the following lemma.

Lemma 3. $\nu_{R}(a)=\min _{s_{1}, \cdots, s_{n}}\left(\nu_{R}\left(\alpha_{s_{1}, \cdots, s_{n}} t_{1}^{s_{1}} \cdots t_{n}^{s_{n}}\right)\right)$.
Proof. It is easy to see that $\nu_{R}\left(\alpha_{s_{1}, \cdots, s_{n}}\right)$ are multiples of $p, \nu_{R}\left(t_{i}\right)=0$ for $i \geq 2$ and $\nu_{R}\left(t_{1}\right)=1$. Therefore the values of valuation ν_{R} of the following p elements are distinct to each other except $\infty=\infty$;
$\sum \alpha_{0, s_{2}, \cdots, s_{n}} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}},\left(\sum \alpha_{1, s_{2}, \cdots, s_{n}} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}\right) t_{1}, \cdots,\left(\sum \alpha_{p-1, s_{2}, \cdots, s_{n}} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}\right) t_{1}^{p-1}$.
Therefore it holds that

$$
\nu_{R}(a)=\min _{i=0,1, \cdots, p-1}\left(\nu_{R}\left(\sum \alpha_{i, s_{2}, \cdots, s_{n}} t_{1}^{i} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}\right)\right) .
$$

Let $\min _{s_{2}, \cdots, s_{n}}\left(\nu_{R}\left(\alpha_{i, s_{2}, \cdots, s_{n}}\right)\right)=r_{i} p \quad\left(r_{i} \in Z\right)$ and $\quad \alpha_{i, s_{2}, \cdots, s_{n}}=t_{1}^{r_{i} p} \alpha_{i, s_{2}, \cdots, s_{n}}^{\prime}$ $\left(\alpha_{i, s_{2}, \cdots, s_{n}}^{\prime} \in k R^{p}\right)$ for each i. Then $\sum \alpha_{i, s_{2}, \cdots, s_{n}}^{\prime} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}$ is an element of R and its image $\sum \overline{\alpha_{i, s_{2}, \cdots, s_{n}}^{\prime}} \overline{\overline{2}}^{s_{2}} \cdots{\overline{t_{n}}}^{s_{n}}$ in D is not zero, because $\left\{\overline{t_{2}}, \cdots, \overline{t_{n}}\right\}$ is a p-basis of $D / k D^{p}$ and at least one of the elements $\left\{\overline{\alpha_{i, s_{2}, \cdots, s_{n}}^{\prime}}\right\}$ is not zero. Therefore, for each i, it holds that

$$
\nu_{R}\left(\sum \alpha_{i, s_{2}, \cdots, s_{n}} t_{1}^{i} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}\right)=\min _{s_{2}, \cdots, s_{n}}\left(\nu_{R}\left(\alpha_{i, s_{2}, \cdots, s_{n}} t_{1}^{i} t_{2}^{s_{2}} \cdots t_{n}^{s_{n}}\right)\right) .
$$

This completes the proof.
Lemma 4. Let $\alpha, \beta \in H_{1}(\underline{t})$. If $\nu_{R}(\alpha)=\nu_{R}(\beta)$, then $\nu_{k R^{p}}(C(\alpha))=\nu_{k R^{p}}(C(\beta))$.
Proof. Since $\alpha, \beta \in H_{1}(\underline{t})=k K^{p}\left[t_{1}^{p-1} d t_{1}, \cdots, t_{n}^{p-1} d t_{n}\right]$, it follows that $\nu_{R}(\alpha)=$ $\nu_{R}(\beta)=m p$, or $\nu_{R}(\alpha)=\nu_{R}(\beta)=m p+p-1$, for some integer m. Since $k R^{p}$ is a discrete valuation ring with a prime element $t_{1}^{p}, \nu_{k R^{p}}\left(t_{1}^{p}\right)=1$ and since $C\left(t_{i}^{p-1} d t_{i}\right)=d t_{i}^{p}$ for each i, we obtain that $\nu_{k R^{p}}(C(\alpha))=\nu_{k R^{p}}(C(\beta))=m$.

§2. Main theorems

Let ω be an element of $Z_{m}(m \geq 1)$. Then we have by Lemma 2 that ω is uniquely expressed in the form $\omega_{1}+\omega_{2}$, where $\omega_{1} \in B_{m}, \omega_{2} \in H_{m}(\underline{t})$.

Theorem 1. Let ω, ω_{1}, and ω_{2} be as above. Then we have
$\nu_{R}(\omega)=\min \left(\nu_{R}\left(\omega_{1}\right), \nu_{R}\left(\omega_{2}\right)\right)$.
Proof. If $\nu_{R}\left(\omega_{1}\right) \neq \nu_{R}\left(\omega_{2}\right)$, then we have $\nu_{R}(\omega)=\min \left(\nu_{R}\left(\omega_{1}\right), \nu_{R}\left(\omega_{2}\right)\right)$. Therefore we may assume that $\nu_{R}\left(\omega_{1}\right)=\nu_{R}\left(\omega_{2}\right)=s$. Then it is enough to show that $\nu_{R}(\omega)=s$. We prove this by induction on m.

First we prove the case of $m=1$. Using the base Λ of Ω over K, we can express ω_{1} and ω_{2} as follows ;

$$
\begin{aligned}
& \omega_{1}=\cdots+x d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}+\cdots \\
& \omega_{2}=\cdots+y d t_{i_{1}} \wedge \cdots \wedge d t_{i_{r}}+\cdots
\end{aligned}
$$

In the case $\nu_{R}(x)=\nu_{R}(y)=s$, it will be enough to show $\nu_{R}(x+y)=s$. Since $\omega_{2} \in H_{1}(\underline{t}), y$ is of the form $\alpha t_{i_{1}}^{p-1} \cdots t_{i_{r}}^{p-1}\left(\alpha \in k K^{p}\right)$. Since $\omega_{1} \in B, \omega_{1}=d \omega_{0}$ for some $\omega_{0} \in \Omega$. Since any element a of K is uniquely written in the form

$$
a=\sum_{i_{1}, \cdots, i_{r}=0}^{p-1} \alpha_{i_{1} \cdots i_{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \quad\left(\alpha_{i_{1} \cdots i_{n}} \in k K^{p}\right),
$$

hence the definition of $d a$, the definition of $d \omega_{0}$ and Lemma 3 show that $\nu_{R}(x+y)=s$.

Next we assume that this theorem is true for $1,2, \cdots, m-1(m \geq 2)$. We may assume that $\nu_{R}\left(\omega_{1}\right)=\nu_{R}\left(\omega_{2}\right)=s$. Since $B_{m} \subset Z_{m-1}$, it follows that $B_{m}=B_{m} \cap Z_{m-1}=B_{m} \cap\left(B_{m-1}+H_{m-1}\right)=B_{m-1}+B_{m} \cap H_{m-1}$ (direct sum). Therefore $\omega_{1} \in B_{m}$ is uniquely written in the form $\omega_{11}+\omega_{12}$, where $\omega_{11} \in B_{m-1}$ and $\omega_{12} \in B_{m} \cap H_{m-1}$. Since $\omega_{11} \in B_{m-1}$ and $\omega_{12} \in H_{m-1}$, we get by the assumption of induction that

$$
s=\nu_{R}\left(\omega_{1}\right)=\min \left(\nu_{R}\left(\omega_{11}\right), \nu_{R}\left(\omega_{12}\right)\right) .
$$

Case I. $\nu_{R}\left(\omega_{11}\right)=s$. It is easy to see that $\omega_{12}+\omega_{2} \in H_{m-1}+H_{m}=H_{m-1}$ and $\nu_{R}\left(\omega_{11}+\omega_{2}\right) \geq s$. Since $\omega_{11} \in B_{m-1}$, we get by the assumption of induction on m that

$$
\begin{aligned}
\nu_{R}(\omega) & =\nu_{R}\left(\omega_{1}+\omega_{2}\right)=\nu_{R}\left(\omega_{11}+\left(\omega_{12}+\omega_{2}\right)\right) \\
& =\min \left(\nu_{R}\left(\omega_{11}\right), \nu_{R}\left(\omega_{12}+\omega_{2}\right)\right)=s .
\end{aligned}
$$

Case II. $\nu_{R}\left(\omega_{12}\right)=s$ and $\nu_{R}\left(\omega_{11}\right)>s$. In this case, we have that $\omega_{12} \in$ $B_{m} \cap H_{m-1} \subset H_{1}, \omega_{2} \in H_{m} \subset H_{1}$ and $\nu_{R}\left(\omega_{12}\right)=\nu_{R}\left(\omega_{2}\right)=s$, where $s=$ $m p$, or $s=m p+p-1$ for some integer m (see Lemma 4). By Lemma 4, $\nu_{k R^{p}}\left(C\left(\omega_{12}\right)\right)=\nu_{k R^{p}}\left(C\left(\omega_{2}\right)\right)=m$. On the other hand, since $\omega_{12} \in B_{m}$ and $\omega_{2} \in H_{m}$, we have $C\left(\omega_{12}\right) \in B_{m-1}\left(\Omega_{1}\right)$ and $C\left(\omega_{2}\right) \in H_{m-1}\left(\underline{t^{p}}\right)$. By the assumption of induction on m, we get that

$$
\begin{aligned}
\nu_{k R^{p}}\left(C\left(\omega_{12}+\omega_{2}\right)\right) & =\nu_{k R^{p}}\left(C\left(\omega_{12}\right)+C\left(\omega_{2}\right)\right) \\
& =\min \left(\nu_{k R^{p}}\left(C\left(\omega_{12}\right)\right), \nu_{k R^{p}}\left(C\left(\omega_{2}\right)\right)\right)=m .
\end{aligned}
$$

It then follows that $\nu_{R}\left(\omega_{12}+\omega_{2}\right)=m p$ or $m p+p-1$ (c.f. Lemma 4). Furthermore one can observe that $\nu_{R}\left(\omega_{12}+\omega_{2}\right)=s$ (c.f. Lemma 3). Since $\nu_{R}\left(\omega_{11}\right)>s$, we get that $\nu_{R}(\omega)=\nu_{R}\left(\omega_{11}+\omega_{12}+\omega_{2}\right)=s$, as desired.

Theorem 2. Let ω be an element of Z_{m} such that $\nu_{R}(\omega) \geq-p^{m}+1$. Let $\underline{t}=\left\{t_{1}, \cdots, t_{n}\right\}$ and $\underline{u}=\left\{u_{1}, \cdots, u_{n}\right\}$ be two parameters of $(K / k, R)$. Then $\operatorname{res}_{R, \underline{t}}(\omega)-\operatorname{res}_{R, \underline{u}}(\omega)$ is an element of $B_{m} \Omega(D / k)$. In other words, res ${ }_{R, t}(\omega)$ is uniquely determined by R up to addition by differentials in $B_{m} \Omega(D / k)$.

Proof. By Lemma 2 we have $\omega=\omega_{1}+\omega_{2}$, where $\omega_{1} \in B_{m}$ and $\omega_{2} \in H_{m}(\underline{t})$. Theorem 1 says that $\nu_{R}\left(\omega_{2}\right) \geq-p^{m}+1$. On the other hand, since $H_{m}(\underline{t})=$ $K_{m}\left[t_{1}^{p^{m}-1} d t_{1}, \cdots, t_{n}^{p^{m}-1} d t_{n}\right]$, we get $\nu_{R}\left(\omega_{2}\right) \equiv 0,-1\left(\bmod p^{m}\right)$. Hence it follows that $\nu_{R}\left(\omega_{2}\right) \geq-1$. From E. Kunz (Exercise (1) in $\S 17$ of [1]), we have $\operatorname{res}_{R, \underline{t}}\left(\omega_{2}\right)=\operatorname{res}_{R, \underline{u}}\left(\omega_{2}\right)$. Since both $\operatorname{res}_{R, \underline{t}}$ and $r e s_{R, \underline{u}} \operatorname{map} B_{m}$ to $B_{m} \Omega(D / k)$, we get that

$$
\operatorname{res}_{R, \underline{t}}(\omega)-\operatorname{res}_{R, \underline{u}}(\omega)=\operatorname{res}_{R, \underline{t}}\left(\omega_{1}\right)-\operatorname{res}_{R, \underline{u}}\left(\omega_{1}\right) \in B_{m} \Omega(D / k) .
$$

From this theorem, we can define the residue map res $_{R}$, which is independent from the choice of a parameter \underline{t}.

Corollary. res $_{R}: Z_{\infty} \longrightarrow Z_{\infty} \Omega(D / k) / B_{\infty} \Omega(D / k)$ is well defined.
We will show an example which asserts that the number $-p^{m}+1$ in Theorem 2 is the best possible. In fact, we can find a function field K / k, a
valuation ring R of K / k, two parameters \underline{t} and \underline{u} of $(K / k, R)$ and a differential form $\omega \in Z_{m}$ such that $\nu_{R}(\omega)=-p^{m}, \operatorname{res}_{R, \underline{u}}(\omega)=0$ and such that $\operatorname{res}_{R, \underline{t}}(\omega) \notin Z_{m+1}(\Omega(D))$. So the difference $\operatorname{res}_{R, \underline{t}}(\omega)-\operatorname{res}_{R, \underline{u}}(\omega)$ does not belong to $B_{\infty}(\Omega(D))$ because $B_{\infty}(\Omega(D)) \subset Z_{m+1}(\Omega(D))$.

Example. Let $K=k(x, y, z)$ be the rational function field of 3 variables x, y, z over k and let $R=k(y, z)[x]_{(x)}$. Then $\underline{t}=\{x, y, z\}$ is a parameter of $(K / k, R)$. If we set $y_{1}=y-x$, then $\underline{u}=\left\{x, y_{1}, z\right\}$ is also a parameter of $(K / k, R)$. We note that $R=k\left(y_{1}, z\right)[x]_{(x)}$ and that $\widehat{R}=k(y, z)[[x]]=k\left(y_{1}, z\right)[[x]]$.

Let $\omega=\left(x^{-1} y\right)^{p^{m}} y^{p^{m}-1} z^{p^{m}-1} d y \wedge d z$. It follows that $\omega \in H_{m}(\underline{t}) \subset Z_{m}$ and $\operatorname{res}_{R, \underline{t}}(\omega)=0$. On the other hand,

$$
\omega=\left(1+x^{-1} y_{1}\right)^{p^{m}}\left(x+y_{1}\right)^{p^{m}-1} z^{p^{m}-1}\left\{\left(d x+d y_{1}\right) \wedge d z\right\}
$$

From this, it follows that
$\operatorname{res}_{R . \underline{u}}(\omega)=\bar{y}_{1} p^{m} \bar{z}^{p^{m}-1} d \bar{z}$ and $C_{D / k}^{m}\left(\bar{y}_{1} p^{m} \bar{z}^{p^{m}-1} d \bar{z}\right)=\bar{y}_{1} p^{m} d \bar{z}^{p^{m}}$,
where $C_{D / k}^{m}=C_{D_{m-1} / k} \circ \cdots \circ C_{D / k}\left(D_{i}=k D^{p^{i}}\right)$.
Since $\left\{\bar{y}^{1} p^{m}, \bar{z}^{p^{m}}\right\}$ is a p-basis of D_{m} / k, we have

$$
d\left(\overline{y 1}^{p^{m}} d \bar{z}^{p^{m}}\right)=d \overline{y y}^{p^{m}} \wedge d \bar{z}^{p^{m}} \neq 0
$$

Thus we get that $\bar{y}_{1} p^{m} d \bar{z}^{p^{m}} \notin Z\left(\Omega\left(D_{m}\right)\right)$ and $\operatorname{res}_{R, \underline{u}}(\omega) \notin Z_{m+1}(\Omega(D))$.

References

[1] E. Kunz, Kähler Differentials, Vieweg Advanced Lectures in Mathematics, 1986.
[2] H.Matsumura, Commutative Algebra (Second Edition), Benjamin, New York, 1980
[3] Y. Suzuki, A remark on residues of differential forms in algebraic function fields of several variables, SUT Journal of Mathematics, Vol. 29, No. 2 (1993), 311-322.

Takeo Ohi
Faculty of Science, Science University of Tokyo 26 Wakamiya-cho, Shinjuku-ku, Tokyo 162, Japan

