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Abstract. Friedland and Hsiung [1] proved an analogue of F. Schur’s theo-
rem concerning the holomorphic sectional curvature of some almost Hermitian
manifolds called almost Hermitian L-manifolds, of which Kählerian manifolds
are special ones. Recently, Hsiung and Xiong [3] gave a classification of almost

Hermitian manifolds and extended the above work of Friedland and Hsiung to a
new class of almost Hermitian manifolds called the class of almost C Hermitian
manifolds.

In this paper we shall further extend the above work of Hsiung and Xiong by

studying the general sectional, the holomorphic sectional and the holomorphic
bisectional curvatures of almost Hermitian manifolds of all classes, together
with some relationship among the three types of sectional curvatures.

§1. Introduction

Let M be a Riemannian 2n-manifold, and gij , J
j
i and Rhijk the components

of a Riemannian metric tensor, and an almost complex structure J , and the
curvature tensor, of M respectively. Throughout this paper, all Latin indices
take the values 1, ..., 2n unless stated otherwise. By using the following iden-
tities. Hsiung and Xiong [3] have defined the following four classes of almost
complex structures on the Riemannian manifold M :

(1.1) Rhijk = J r
h J s

i Rrsjk,

(1.2) Rhijk = J r
h J s

i Rrsjk + J r
h J s

j Rrisk + J r
h J s

k Rrijs,

(1.3) Rhijk = J p
h J q

i J r
j J s

k Rpqrs,
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(1.4) J r
i1 J s

i2 Rrsi3k + J r
i2 J s

i3 Rrsi1k + J r
i3 J s

i1 Rrsi2k = 0,

where the repeated indices imply summation.
Let L and K denote the classes of almost complex structures (or manifolds)

and the Kählerican structures (or manifolds), respectively. Let L1,L2,L3 and
C denote the classes of almost complex structures (or manifolds) satisfying
(1.1),...,(1.4) respectively. Hsiung and Xiong [3] have showed the following
inclusion relation:

(1.5) K ⊂ L1 ⊂ L2

C ⊂ L3 ⊂ L.

Thus for 1 = 1, 2, 3 as i decreases, the structures (or manifolds) in Li resemble
Kählerian structures (or manifolds) more closely.

If Jj
i and gij satisfy

(1.6) gijJ
i

h J j
k = ghk,

then the almost complex structure J and the manifold M are called an almost
Hermitian structure and an almost Hermitian manifold, respectively, and gij

is called an almost Hermitian metric. For simplicity, throughout this paper,
unless stated otherwise, by an almost Hermitian manifold M we shall always
mean a manifold with an almost Hermitian structure J and an almost Hermit-
ian metric gij . Friedland and Hsiung [1] called an almost Hermitian structure
J (or manifold M) an almost L structure (or manifold) if it satisfies

(1.7) [∇j ,∇k]J h
i ≡ (∇j∇k −∇k∇j)J h

i = 0,

where ∇ denotes the Levi-Civita connection of gij . Obviously, Kählerian man-
ifolds are almost L manifolds since M is Kählerian if and only if

(1.8) ∇iJ
k

j = 0 for all i, j, k.

Friedland and Hsiung [1] have obtained a necessary and sufficient condition
for an almost L manifold to have constant holomorphic sectional curvature H
at each point and showed that H is an absolute constant for such a manifold.
Hsiung and Xiong [3] have proved that an almost L manifold is an almost
Hermitian L1 manifold and extended the above result of Friedland and Hsiung
to an almost Hermitian C manifold.

The purpose of this paper is to extend further the above results of Hsiung
and Xiong to an almost Hermitian manifold of each class with respect to a
general sectional curvature or holomorphic sectional curvature, or holomorphic
bisectional curvature, and to discuss the relationship among the three types
of sectional curvatures for each of these manifolds.
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In §2 (resp. §3) we recall some fundamental notation, definitions and well-
known results on Riemannian structures (resp. almost complex structures)
which are needed for the later discussions.

In §§ 4,5 and 6, we give a necessary and sufficient condition for an almost
Hermitian manifold of each class to be of constant general sectional curva-
ture, or constant holomorphic sectional curvature or constant holomorphic
bisectional curvature at each point of the Riemannian manifold, respectively.

Some relationship among the three types of sectional curvatures for an
almost Hermitian manifold of each class are derived in §7.

For simplicity we shall denote an almost Hermitian Li manifold by AHi for
i = 1, 2, 3, and a Kählerian manifold, an almost Hermitian C manifold and an
almost Hermitian manifold respectively by K,AHC and AH. From (1.5) we
thus obtain the following inclusion relations

(1.9) K ⊂ AH1 ⊂ AH2

AHC
⊂ AH3 ⊂ AH.

Now we introduce the new notion of AH ′
1 manifold which denotes an almost

Hermitian manifold satisfying

(1.10) Rhijk = −J r
h J s

i Rrsjk.

It should be noted that the difference between (1.1) and (1.10) is only a sign,
and therefore that AH ′

1 ⊂ AHC ⊂ AH3, and the intersection of the two
classes AH1 and AH ′

1 is the class of locally Euclidean spaces, that is, the class
of spaces with Rhijk = 0

§2. Riemannian structures

Let M be a Riemannian manifold of dimension m ≥ 2 with Riemannian
metric tensor gij , and let (gij) be the inverse matrix of (gij). We shall follow
the usual tensor convention that indices can be raised and lowered by using
gij and gij respectively. Let Rhijk, Rij , R denote the Riemannian curvature
tensor, the Ricci curvature tensor and the scalar curvature of M , respectively.

The following identities are known, the last two of which are called the
Bianchi identity and the Ricci identity respectively:

(2.1) Rhijk + Rhjki + Rhkij = 0,

(2.2) ∇`Rhijk + ∇jRhik` + ∇kRhi`j = 0,

(2.3) ∇i∇jT
h

k −∇j∇iT
h

k = T s
k Rh

sji − T h
s Rs

kji,
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where ∇ denotes the Levi-Civita connection of M , and T h
k is an arbitrary

tensor of type (1, 1).
The sectional curvature with respect to the two-dimensional plane (u, v)

determined by two linearly independent tangent vectors u and v of M at a
point p is given by

K = K(u, v) =
Rhijkuhviujvk

(ghkgij − ghjgik)uhviujvk

=
R(u, v, u, v)

[g(u, v)]2 − g(u, u)g(v, v)
,(2.4)

where

(2.5) R(u, v, u, v) = Rhijkukviujvk,

(2.6) g(u, u) = giju
iuj , g(u, v) = giju

ivj , g(u, v) = giju
ivj

Note that K(u, v) is the Gaussian curvature of the two-dimensional geodesic
submanifold of M tangent to the plane (u, v) at P . If the sectional curvature at
any point of the Riemannian manifold does not depend on the two-dimensional
plane at the point, then

(2.7) Rhijk = K(ghkgij − ghjgik).

The Riemannian manifold is said to be locally Euclidean or locally flat if
K = 0, i.e., if Rhijk = 0. For nonzero function K on M , from (2.2) and (2.7)
it is easy to show that

(2.8) Rij = (m − 1)Kgij ,

(2.9) R = m(m − 1)K,

and for m ≥ 3, K and therefore R are absolute constants on the manifold M
and M is said to be of constant curvature. Furthermore, M is a n Einstein
manifold as a consequence of (2.8).

Now we want to define an angle between 2-planes through a point p in
the tangent space Tp(M) of the Riemannian m-manifold M at p. Let Π =
(a, b) and Π′ = (c, d) be two 2-planes determined respectively by orthonormal
tangent vectors a, b and c, d at the point p. Then the determinant

(2.10) (Π, Π′) =
∣∣∣∣ g(a, c) g(a, d)
g(b, c) g(b, d)

∣∣∣∣
is called the inner product of Π and Π′. When Π and Π′ coincide, since a and
b are not parallel, we have

(2.11) (Π, Π) = g(a, a)g(b, b) − [g(a, b)]2 > 0.

So we can define the angle 〈Π, Π′〉 between Π and Π′ such that

(2.12) cos〈Π, Π′〉 =
(Π, Π′)√

(Π,Π)(Π′, Π′)
, 0 ≤ 〈Π, Π′〉 ≤ π/2.
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§3. Almost complex structures

In this section M is a Riemannian manifold as in § 2 but with dimension
m = 2n. If a tensor J j

i of type (1.1) on M satisfies

(3.1) J j
i J k

j = −δk
i ,

where δk
i are the Kronecker deltas defined by

δk
i =

{
1, i = k,

0, i 6= k,

then J ji is called an almost complex structure on M , and M is called an
almost complex manifold.

If J is Hermitian, then as a consequence of (3.1) and (1.6) the tensor Jij of
type (0, 2) defined by

(3.2) Jij = gjkJ k
i

is skew-symmetric. If the differential form Jij is closed, then J j
i is called an

almost Kählerian structure, and M an almost Kählerian manifold. It is clear
that an almost Kählerian structure satisfies

(3.3) Jhij ≈ ∇hJij + ∇iJjh + ∇jJhi = 0.

The tensor Jhij is skew-symmetric in all indices.
An almost Hermitian structure J j

i satisfying

(3.4) Ji ≈ −∇jJ
j

i = 0

is called an almost semi-Kählerian structure. An almost Kählerian structure
is almost semi-Kählerian.

An almost Hermitian structure J j
i satisfying

(3.5) ∇iJ
k

j + ∇jJ
k

i = 0

is called a nearly Kählerian structure. Since J i
i = gijJij = 0, from (3.4) and

(3.5) it follows that a nearly Kählerian manifold is almost semi-Kählerian.
Let M be an almost Hermitian manifold with an almost complex struc-

ture J j
i . Then the two-dimensional plane (u, Ju) determined by an arbitrary

tangent vector u of M and the tangent vector Ju at a point p is called a holo-
morphic plane, and the sectional curvature with respect to the holomorphic
plane at p is called the holomorphic sectional curvature at p. If the holomor-
phic sectional curvature at p is independent of the holomorphic plane at p,
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then M is said to be of constant holomorphic sectional curvature at p. We
easily obtain

H(u) = K(u, Ju) = −
RhpjqJ

p
i J q

k uhuiujuk

[g(u, u)]2

= −R(u, Ju, u, Ju)
[g(u, u)]2

.(3.6)

Let v be another tangent vector of M at p. Then the holomorphic bisec-
tional curvature B(u, v) of M at p with respect to the vectors u and v is
defined as follows (see Goldberg and Kobayashi [2]):

(3.7) B = B(u, v) = −R(u, Ju, v, Jv)
g(u, u)g(v, v)

.

It is clear that B(u, u) = H(u). So the holomorphic bisectional curvature is a
generalization of the holomorphic sectional curvature.

Now let u and v be two unit tangent vectors of M at p, and let φ, θ and θ′

be the angles between u and v, Ju and v and u and Jv, respectively. Then
we obtain

cos φ = g(u, v) = g(Ju, Jv) = giju
ivj ,

cos θ = g(Ju, v) = Jiju
ivj ,

cos θ′ = g(Jv, u) = − cos θ.(3.8)

Furthermore, for two holomorphic planes Π = (u, Ju) and Π′ = (v, Jv), we
have, in consequence of (2.10),

(Π, Π) = (Π′Π′) = 1,

(Π, Π′) = cos2 φ + cos2 θ,(3.9)

which together with (2.12) imply

(3.10) cos〈Π,Π′〉 = cos2 φ + cos2 θ.

Thus

(3.11) 0 ≤ cos2 φ + cos2 θ ≤ 1.

In particular, when Π and Π′ are orthogonal, φ = θ = π/2; when Π and Π′

coincide, θ = π/2 and φ 6= θ.
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For the later developments, using (3.1), we can easily show that the follow-
ing identities (3,12),(3,13),...,(3,16) are equivalent respectively to identities
(2.1), (1.1),...,(1.4):

(3.12) J p
j J q

k (Rhipq + Rhpqi + Rhqip) = 0,

(3.13) J p
j Rhipk + J p

k Rhijp = 0,

(3.14) J p
h Rpijk + J p

i Rhpjk + J p
j Rhipk + J p

k Rhijp = 0,

(3.15) J p
h J q

i Rpqjk − J p
j J q

k Rhipq = 0,

(3.16) J p
h Rkpij + J p

i Rkpjh + J p
j Rkphi = 0.

§4. General sectional curvatures

In this section we shall discuss general sectional curvatures of almost Her-
mitian manifolds. At first we have

Theorem 4.1. If an almost Hermitian 2n-manifold M2n is of constant general
sectional curvature K at each point, then M2n is an AH3 manifold.

Proof. The identity (2.7) yields

J p
h J q

i J r
j J s

k Rpqrs = J p
h J q

i J r
j J s

k K(gpsgqr − gprgqs)

= K(JhsJirJ
r

j J s
k − JhrJisJ

r
j J s

k )

= K(ghkgij − ghjgik) = Rhijk,

which is the defining equation (1.3) of an AH3 manifold. ¤
Now we want to prove the following theorem for some smaller classes of

almost Hermitian manifolds.

Theorem 4.2. If an AH1 or AH ′
1 2n-manifold M2n for n > 1 has constant

general sectional curvature K, then M2n is locally flat.

Proof. Suppose that M2n is an AH1 manifold of constant general sectional
curvature K in (1.1), we can easily obtain

(4.1) K(ghkgij − ghjgik + JhjJik − JhkJij) = 0.

Multiplying (4.1) by gij we have (n − 1)ghk K = 0, which implies K = 0.
Hence, by (2.7), Rhijk = 0 is deduced. Thus M2n is locally flat.
If M2n is an AH ′

1, manifold of constant general sectional curvature K, from
(1.9), we have

(4.2) K(ghkgij − ghjgik − JhjJik + JhkJij) = 0,

which yields nghkK = 0. Hence M2n is also locally flat. ¤
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§5. Holomorphic sectional curvatures

In this section we discuss holomorphic sectional curvatures of AH manifolds.
For an AH manifold, Friedland & Hsiung [1] have established

Theorem 5.1. A necessary and sufficient condition for an almost complex
2n-manifold M2n with an almost complex structure J j

i and a Riemannian
metric gij to be of constant holomorphic sectional curvature H at each point
is that the Riemann curvature tensor Rhijk of M2n with respect to gij satisfies:

(Rjrsk + Rkrsj)J r
h J s

i + (Rirsk + Rkrsi)J r
h J s

j

+ (Rirsj + Rjrsi)J r
h J s

k + (Rhrsk + Rkrsh)J r
i J s

j

+ (Rhrsj + Rjrsh)J r
i J s

k + (Rhrsi + Rirsh)J r
k J s

j

= 4H(ghigjk + gijghk + ghjgik).(5.1)

In this section, we use Theorem 5.1 to deduce a necessary and sufficient
condition for an AH 2n-manifold M2n of each special class to have constant
holomorphic sectional curvature H at each point. At first we have

Theorem 5.2. A necessary condition for an AH 2n-manifold M2n to be of
constant holomorphic sectional curvature H at each point is that the Riemann
curvature tensor Rhijk of M2n satisfies

Rhijk = −RhipqJ
p

j J q
k − RpqrsJ

p
h J q

i J r
j J s

k

+
1
3
Phijk +

1
3
Qhijk +

4
3
HGhijk,(5.2)

where

Phijk = (RhpqkJ q
i − RipqkJ q

h )J p
j

+ (Rjpqk − Rjqpk)J p
h J q

i

+ (RjqpiJ
q

h − RjqphJ q
i )J p

k ,(5.3)

Qhijk = − 2RpqjhJ p
h J q

i + (RhkpqJ
p

i − RikpqJ
p

h )J q
j

+ (RjipqJ
q

h − RjhpqJ
q

i )J p
k ,(5.4)

(5.5) Ghijk = ghkgij − ghjgik + JhkJij − JhjJik − 2JhiJjk.

Furthermore, the Ricci tensor and scalar curvature of such a manifold are
given respectively by

(5.6) Rij = −RpqJ
p

i J q
j + 3RpiqrJ

pqJ r
j + 3RpjqrJ

pqJ r
i + 4(n + 1)Hgij ,
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(5.7) R = 3RpsrqJ
pqJrs + 4n(n + 1)H.

Proof. Multiplying (5.1) by J h
h1

J i
i1

and changing h1, i1 back to h, i respec-
tively, we obtain

(5.8) Rhijk + Rhkji = Thijk − 4H(JjiJjk + ghjgik + JhkJji,

where

Thijk = (Rhqpk + Rhkpq)J
p

i J q
j + (Rhqpi + Rhipq)J

p
k J q

j

+ (Rjqpk + Rjkpq)J
p

k J q
h + (Rjqpi + RjipqJ

p
k J h

i

− (Rspqr + Rsrqp)J
p

h J q
i J r

j J s
k .(5.9)

Interchange of h and i in (5.8) yields

(5.10) Rihjk + Rikjh = Tihjk − 4H(JihJjk + gijghk + JikJjh).

Subtracting (5.10) from (5.8) and using (2.1) and (5.5) we easily have

(5.11) 3Rhijk = Thijk − Tihjk + 4H Ghijk.

On the other hand, from (5.9), (2.1), (5.3), (5.4) it follows that

Thijk − Tihjk = −3RhipqJ
p

j J q
k − 3RpqrsJ

p
h J q

i J r
j J s

k

+ Phijk + Qhijk.(5.12)

Substitution of (5.12) in (5.11) gives immediately (5.2).
Multiplying (5.2) by ghk and using (2.1), (3.4) we can obtain (5.6). More-

over, (5.7) follows similarly by multiplying (5.6) by gij .

The following theorem is a consequence of Theorem 5.2.

Theorem 5.3. A necessary condition for an AH3 2n-manifold M2n to be of
constant holomorphic sectional curvature H at each point is that the Riemann
curvature tensor Rhijk of M2n satisfies

Rhijk =
2
3
(RpqkjJ

p
h J q

i + RpkqiJ
p

h J q
j + RpjiqJ

p
h J q

k )

− 1
3
(RpqjkJ p

h J q
i + RpiqkJ p

h J q
j + RpijqJ

p
h J q

k )

+
2
3
HGhijk.(5.13)
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Furthermore, the Ricci tensor and scalar curvature of such a manifold are
given respectively by

(5.14) Rij = 3RpiqrJ
pqJ r

j + 2(n + 1)Hgij ,

(5.15) R = 3RpsrqJ
pqJrs + 4n(n + 1)H.

Proof. Multiplying the defining equation (1.3) of an AH3-manifold by J h
a J i

b

and J i
a J k

b , we obtain respectively

(5.16) RrsjkJ r
h J s

i = RhirsJ
r

j J s
k ,

(5.17) RhrskJ r
i J s

j = RirsjJ
r

h J s
k

Moreover, multiplying (5.17) by ghk and gik gives respectively

(5.18) RrsJ
r

i J s
j = Rij ,

(5.19) RpiqrJ
pqJ r

j = RpjqrJ
pqJ r

i .

Using (5.17) and (2.1), we can reduce (5.3) and (5.4) respectively to

(5.20) Phijk = 2(RhpqkJ q
i − RipqkJ q

h )J p
j − RhipqJ

p
j J q

k ,

(5.21) Qhijk = −2RhipqJ
p

j J q
k + 2(RhkpqJ

p
i − RikpqJ

p
h )J q

j .

Substitution of (1.3), (5.20), (5.21), (5.16) in (5.2) yields

3Rhijk = − 3RpqjkJ p
h J q

i + RhpqkJ p
j J q

i − RipqkJ p
j J q

h

+ RhkpqJ
p

i J q
j − RikpqJ

p
h J q

j + 2HGhijk.(5.22)

By means of (5.16), (5.17), (2.1) the first five terms on the right-hand side of
(5.22) can be reduced to

− 3RpqjkJ p
h J q

i + RpjiqJ
p

h J q
k − RipqkJ p

j J q
h

+ (−RipqjJ
p

h J q
k + RipqjJ

p
k J q

h )

− (−RipqkJ p
h J q

j + RipqkJ p
j J q

h ).(5.23)

Substituting (5.23) in (5.22), we readily arrive at (5.13).
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(5.14) can be obtained by multiplying (5.13) by ghk and using (2.1), (5.19)
or by applying (5.18), (5.19) to (5.6). Equation (5.15) follows immediately by
multiplying (5.14) by gij ¤

Now suppose that M2n is an AH3 Einstein manifold of constant holomor-
phic sectional curvature H. Since M2n is an Einstein manifold, we have

(5.24) Rij =
R

2n
Gij ,

which together with (5.14) implies

(5.25) Rij = 3RpiqrJ
pqJ r

j + 2(n + 1)Hgij =
R

2n
gij ,

so that Rij = αRpiqrJ
pqJ r

j = βHgij , and therefore R = αRpiqrJ
pqJ ir =

2nβH. On an AH1 manifold of constant holomorphic sectional curvature
H, β = n+1

2 [1], that is

(5.26) H =
R

n(n + 1)

holds. We investigate an AH3 manifold satisfying (5.26)

Lemma 5.4. If M2n is an AH3 Einstein 2n-manifold of constant nonzero
holomorphic sectional curvature H with H = R

n(n+1) , then

(5.27) Rij =
n + 1

2
Hgij ,

(5.28) Rij = −RpiqrJ
pqJ r

j ,

(5.29) Q := R + RpiqrJ
pqJ ir = 0.

Proof. Equation (5.27) follows from (5.24) and (5.26). Substituting (5.26) in
the right-hand side of (5.25), we obtain

(5.30) (n + 1)Hgij = −2RpiqrJ
pqJ r

j .

Substitution of (5.30) in the left part of (5.25) gives (5.28) immediately. (5.29)
is obtained by multiplying (5.28) by gij . ¤
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Corollary 5.5. On a compact AH3 Einstein 2n-manifold of constant positive
holomorphic sectional curvature H satisfying (5.26), the

first Betti number of M2n is zero.

Proof. The result follows from (5.27) because the Ricci curvature tensor is
positive definite [4].

It is known (see, for instance, [1]) that Q ≤ 0 on an almost Kählerian
manifold, and Q ≥ 0 on a nearly Kählerian manifold. Furthermore, Q = 0 if
and only if the manifold is Kählerian. Thus the following corollary is obvious
due to (5.29).

Corollary 5.6. An almost Kählerian or a nearly Kählelrian Einstein 2n-
manifold of constant nonzero holomorphic sectional curvature H satisfying
(5.26) is Kählerian.

In the following, we shall discuss Theorem 5.3 for three special AH3 mani-
folds.

Theorem 5.7. A necessary condition for an AH2 2n-manifold M2n to be of
constant holomorphic sectional curvature H at each point is that the Riemann
curvature tensor Rhijk satisfies

Rhijk =
1
2
(RpqkjJ

p
h J q

i + RpkqiJ
p

h J q
j + RpjiqJ

p
h J q

k )

+
1
2
HGhijk.(5.31)

Furthermore, The Ricci tensor and scalar curvature of such a manifold are
given respectively by

(5.32) Rij = 3RpiqrJ
pqJ r

j + 2(n + 1)Hgij ,

(5.33) R = 3RpsrqJ
pqJrs + 4n(n + 1)H.

Proof. Substituting the defining equation (1.2) of an AH2 manifold in the
second term on the right-hand side of (5.13) we obtain (5.31) immediately.
Multiplying (5.31) by ghk and using (5.19), (5.23) is deduced. Furthermore,
(5.33) follows by multiplying (5.32) by gij . ¤
Lemma 5.8. An almost Kählerian or a nearly Kählerian AHC manifold M2n

is Kählerian.

Proof. The defining equation (1.4) of an AHC manifold is equivalent to

(5.34) Rhijk = RqhjpJ
p

i J q
k + RhqkpJ

p
i J q

j .

Multiplying (5.34) by ghkgij and using (2.1), we can easily obtain (5.29). Thus
the lemma is proved in the same way as Corollary 5.6 was proved. ¤



HOLOMORPHIC SECTIONAL AND BISECTIONAL CURVATURES 145

Theorem 5.9. [3]. A necessary condition for an AHC 2n-manifo ld M2n to
be of constant holomorphic sectional curvature H at each point is that the
curvature tensor Rhijk satisfies

(5.35) Rhijk = RpqkjJ
p

h J q
i +

1
2
HGhijk.

Furthermore, the Ricci tensor and scalar curvature of such a manifold are
given respectively by

(5.36) Rij =
n + 1

2
Hgij ,

(5.37) R = n(n + 1)H.

As a consequence of (5.36), M2n is an Einstein manifold. Furthermore, if M2n

is compact and H is positive, then the first Betti number of M2n is zero.

Proof. Since an AHC manifold is AH3, the curvature tensor Rhijk satisfies
(5.13), which can be rewritten as

Rhijk =
1
3
[4RpqkjJ

p
h J q

i + RpqjkJ p
j J q

i + (RpikqJ
p

h J q
i + RpkqiJ

p
h J q

j )

+ (RpiqjJ
p

h J q
k + RpjiqJ

p
h J q

j )(RpkqiJ
p

h J q
j + RpjiqJ

p
h J q

k )

+ HGhijk].
(5.38)

By (3.17), (5.38) is reduced to

Rhijk =
1
3
[4RpqkjJ

p
h J q

i + (RpqjkJ p
h J q

i + RpqkiJ
p

h J q
j + RpqijJ

p
h J q

k )

+ (RpkqiJ
p

h J q
j + RpjiqJ

p
h J q

k ) + 2HGhijk],
(5.39)

which together with (3.21) and (5.34) gives (5.35).

By multiplying (5.34) by Ghk and using (5.18) we can easily obtain

(5.40) Rij =
1
2
RqhjpJ

hqJ p
i .

On the other hand, from (3.8) it follows that

(5.41) RpqkjJ
p

h J q
i = −RpkjqJ

q
i J p

h + RpjkqJ
q

i J p
h .

Multiplying (5.41) by ghk, we have

(5.42) RpqkjJ
kpJ q

i = −1
2
RpkjqJ

kpJ q
i .

Multiplying (5.35) by ghk using (5.42) and (5.40), we thus arrive at (5.36).
Equation (5.37) is obvious, and the last part of this theorem follows from

the same argument as in the proof of Corollary 5.5. ¤
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Theorem 5.10 [1]. A necessary and sufficient condition for an AH1 2n-
manifold M2n to be of constant holomorphic sectional curvature H at each
points is that the curvature tensor Rhijk satisfies

(5.43) Rhijk =
1
4
HGhijk.

Furthermore, the Ricci tensor and scalar curvature of such a manifold are
respectively given by (5.36), (5.37). As a consequence of (5.36), M2n is an
Einstein manifold. Furthermore, if M2n is compact and H is positive, then
the first Betti number of M2n is zero.

Proof. (5.43) is a consequence of (5.35), (1.1), (1.5).

For the sufficiency of the theorem, we notice that from (3.11) it follows that
M2n has constant holomorphic sectional curvature H is and only if

(5.44) RriskJ r
h uhJ s

j ujuk = −Hghiu
huigjkujuk

holds for any tangent vector ui of M2n. If (5.43) holds, then by substituting
(5.43) in the left-hand side of (5.44), we can easily show that the left-hand
side of (5.44) becomes automatically the right-hand side of (5.44).

The other part of the theorem follows from the same argument as in the
proof of Theorem 5.5. ¤

§6. Holomorphic bisectional curvatures

This section is devoted to a study of the holomorphic bisectional curvatures
of AH manifolds. At first we have

Theorem 6.1. A necessary and sufficient condition for an AH 2n-manifold
M2n to be of constant holomorphic bisectional curvature B at each point is
that the Riemann curvature tensor Rhijk satisfies

RhpjqJ
p

i J q
k + RipjqJ

p
h J q

k + RhpkqJ
p

i J q
j

+ RipkqJ
p

h J q
j = −4Bghigjk.(6.1)

Proof. To prove the necessity of condition (6.1) we assume that M2n is of
constant holomorphic bisectional curvature B. Then, from (3.7) it follows
that

(6.2) RhpiqJ
p

i J q
k uhuivjvk = −Bghigjkuhuivjvk

for any tangent vectors u and v of M2n. By collecting all the coefficients of
a general term uhuivjvk on the left-hand side of (6.2) by interchanging the
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indices h, i, j, k in all possible cases, i.e., interchanging h, i and keeping j, k,
interchanging j, k and keeping h, i and interchanging h, i and interchanging
j, k at the same time, we can easily obtain the left-hand side of (6.1). In the
same way we can show that all the coefficients of the general term uhuivjvk

on the right-hand side of (6.2) is the right-hand side of (6.1).

To prove the sufficiency of condition (6.1) we suppose that (6.1) holds. Mul-
tiplying both sides of (6.1) by uhuivjvk for any tangent vectors u and v of
M2n and summing for h, i, j, k we can see that all the terms on the left-hand
side of the resulting equation are equal to each other. Thus (6.2) holds for
any tangent vectors u and v of M2n, that is, M2n is of constant holomor-
phic bisectional curvature at each point. Hence the proof of this theorem is
complete.

Theorem 6.2. A necessary and sufficient condition for an AH 2n-manifold
M2n to be of constant holomorphic bisectional curvature B with respect to
gij at each point is that the Riemann curvature tensor Rhijk satisfies

−Rhijk = RpqrsJ
p

h J q
i J r

j J s
k + RpqjkJ p

h J q
i

+ RhipqJ
p

j J q
k + 4BJhiJjk.(6.3)

Furthermore the Ricci tensor and the scalar curvature of such a manifold are
given respectively by

(6.4) Rij = RpjqrJ
r

i Jpq + RpiqrJ
r

j Jpq − RpqJ
p

i J q
j + 4Bgij ,

(6.5) R = RprqsJ
pqJrs + 4nB.

Proof. To prove the necessity of condition (6.3), we suppose that M2n is of
constant holomorphic bisectional curvature B. Then, by Theorem 6.1, we
have (6.1). Multiplying (6.1) by J i

r J k
s , (6.3) is immediately deduced. Also,

we obtain (6.4) by multiplying (6.3) by ghk, and obtain (6.5) by multiplying
(6.4) by gij .

To prove the sufficiency of condition (6.3) we suppose that (6.3) holds.
Multiplying (6.3) by J i

a J k
b , (6.1) is readily obtained. Thus M2n is of constant

holomorphic bisectional curvature at each point by Theorem 6.1. ¤
The following corollary is an obvious consequence of (6.1) and (6.3).

Corollary 6.3. A necessary and sufficient condition for an AH 2n-manifold
M2n to be of zero holomorphic bisectional curvature at each point is that the
Riemann curvature tensor Rhijk satisfies

RhpjqJ
p

i J q
k + RipjqJ

p
h J q

k + RhpkqJ
p

i J q
j

+ RipkqJ
p

h J q
j = 0,(6.6)
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or

−Rhijk = RpqrsJ
p

h J q
i J r

j J s
k + RpqjkJ p

h J q
i

+ RhipqJ
p

j J q
k .(6.7)

Remark. From (1.9) and (6.7) it follows immediately that an AH ′
1 manifold

has zero holomorphic bisectional curvature at each point.

Theorem 6.4. A necessary and sufficient condition for an AH3 2n-manifold
M2n to be of constant holomorphic bisectional curvature B at each point is
that the Riemann curvature tensor Rhijk satisfies

(6.8) −Rhijk = RhipqJ
p

j J q
k + 2BJhiJjk.

Furthermore, the Ricci curvature and the scalar curvature of such a manifold
are given, respectively, by

(6.9) Rij = RhiqpJ
p

j Jhq + 2Bgij ,

(6.10) R = RhiqpJ
ipJhq + 4nB.

Proof. By means of (1.3), we can see that on the right-hand side of (6.3) the
first term is Rhijk, and the second and third terms are the same, so that (6.3)
becomes (6.8). Multiplying (6.8) by ghk, (6.9) is deduced and, furthermore,
(6.10) is obtained by multiplying (6.9) by gij . ¤
Corollary 6.5. A necessary and sufficient condition for an AH3 manifold
M2n to be of zero holomorphic bisectional curvature is that M2n is an AH ′

1

manifold.

Proof. This follows immediately from (6.8) and (1.9) ¤
Theorem 6.6. A necessary and sufficient condition for an AH2 2n-manifold
M2n to be of constant holomorphic bisectional curvature B at each point is
that the Riemann curvature tensor Rhijk satisfies

(6.11) Rhijk = RpiqkJ p
h J q

j + B(ghigjk − JhiJjk).

Furthermore, the Ricci curvature and the scalar curvature of such a manifold
are given, respectively, by

(6.12) Rij = RpiqkJpqJ k
j + 2Bgij ,

(6.13) R = RpiqkJpqJ ik + 4nB.
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Proof. Since M2n is an AH3 manifold by (1.9), (6.8) holds. By multiplying
(6.8) by J k

` , we obtain

Rp`hiJ
p

j − RjphiJ
p

` = 2BJhigj`,

which becomes, after some changes of indices,

(6.14) RpijkJ p
h − RhpjkJ p

i = 2BJjkghi.

Similarly, we have

(6.15) RpkhiJ
p

j − RjphiJ
p

k = 2BJhigik.

Subtracting (6.14) and (6.15) from (3.10), which holds for an AH2 manifold,
we have

(6.16) RhpjkJ p
i + RjphiJ

p
k = −B(Jikghi + Jhigjk).

By multiplying (6.16) by J i
q , we arrive at (6.11).

Multiplying (6.11) by ghk, (6.12) is deduced, and, furthermore, (6.13) is
obtained by multiplying (6.12) by gij . ¤
Theorem 6.7. If an AHC 2n-manifold M2n is of constant holomorphic bi-
sectional curvature B, then B must be zero and M2n is an AH ′

1 manifold.

Proof. Since M2n is an AH3 manifold by (1.9), (6.14) holds. By changing the
subscripts i, j, k cyclically from (6.14), we obtain two more equations. On the
left-hand side of these three equations, the sum of the three first terms is zero
by (2.1), and the sum of the three second terms is zero by (3.12), so that we
obtain

2B(Jikghi + Jkighj + Jijghk) = 0,

which implies B = 0, and hence M2n is an AH ′
1 by Corollary 6.5. ¤

§7. The relationship among the three types
of sectional curvatures

In this section we shall assume, unless stated otherwise, that M is an almost
Hermitian 2n-manifold with an almost Hermitian structure J and an almost
Hermitian metric g whose respective components are J j

i and gij . Moreover,
let u and v be two unit tangent vectors of M at a point p, and let φ, θ, θ′ be
the angles between u and v, Ju and v, u and Jv, respectively. Then, from
(2.4) and (3.13) it follows that the sectional curvature of M with respect to
the two- dimensional plane (u, v) determined by two linearly independent unit
tangent vectors u and v at p is given by

(7.1) K(u, v) = −R(u, v, u, v) sin−2 φ.
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Theorem 7.1. If M is an AH1 manifold, then the sectional curvature K(u, v)
and the holomorphic bisectional curvature B(u, v) satisfy

B(u, v) = K(u, v) sin2 φ + K(u, Jv) sin2 θ.

Proof. From (1.1), (2.1), (3.8) and (7.1) we obtain

B(u, v) = −RhijkuhJ i
p upvjJ k

q vq

= (Rhjki + Rhkij)uhJ i
p upvjJ k

q vq

= −RhjikuhvjJ i
p upJ k

q vq

+ Rhkiju
hJ k

q vqJ i
p upvj

= −(RhjpqJ
p

i J q
k )uhvjuivk

− (RhkpqJ
p

i J q
j )uhJ k

r vruiJ j
s vs

= −Rhjikuhvjuivk − Rhkiju
hJ k

r vruiJ j
s vs

= K(u, v) sin2 φ + K(u, Jv) sin2 θ.(7.3)

Corollary 7.2. Assume that M is an AH1-manifold. If the two holomorphic
planes Π = (u, Ju) and Π′ = (u, Jv) are orthogonal, then

(7.4) B(u, v) = K(u, v) + K(u, Jv).

Proof. This result is immediately deduced from the previous theorem and
(3.10). ¤

For a Kählerian manifold, Goldberg and Kobayashi obtained (7.4) in [2],
but missed the orthogonality condition of the two holomorphic planes (u, Ju)
and (v, Jv).

Corollary 7.3. If M is an AH ′
1 manifold, then the sectional curvature K(u, v)

and the holomorphic bisectional curvature B(u, v) satisfy

(7.5) −B(u, v) = K(u, v) sin2 φ + K(u, Jv) sin2 θ.

In particular, if (u, Ju) and (v, Jv) are orthogonal, then

(7.6) −B(u, v) = K(u, v) + K(u, Jv).

Proof. This corollary is deduced by imitating the proof of Theorem 7.1. ¤
If an almost Hermitian manifold M has constant general sectional curva-

ture, then from the definition M must also have constant holomorphic sectional
curvature, but the following theorem shows that M does not necessarily have
constant holomorphic bisectional curvature.
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Theorem 7.4. If an almost Hermitian manifold M has nonzero constant gen-
eral sectional curvature K, then the holomorphic bisectional curvature B(u, v)
of M satisfies

(7.7) B(u, v) = K(cos2 φ + cos2 θ) = K cos〈Π,Π′〉,

where 〈Π, Π′〉 is the angle between the two planes Π := (u, Ju) and Π′ :=
(v, Jv) defined by (2.12).

Proof. By (3.7) and (2.7), we have

B(u, v) = −K(ghkgij − ghjgik)uhJ i
p upvjJ k

q vq.

Substitution of (3.8) and (3.10) in the above equation gives immediately (7.7).
¤

The following two corollaries are immediate consequences of Theorem 7.4
and (3.11).

Corollary 7.5. For an almost Hermitian manifold M with nonzero constant
general sectional curvature K, the holomorphic bisectional curvature B(u, v)
has the same sign as K and

0 ≤ B(u, v) ≤ K for K > 0,

K ≤ B(u, v) ≤ 0 for K < 0.(7.8)

Moreover, the absolute value |B(u, v)| reaches zero, the minimum, when the
two holomorphic planes Π = (u, Ju) and Π′ = (v, Jv) are orthogonal, and
reaches |K| when Π and Π′ coincide.

Corollary 7.5. A necessary and sufficient condition for two holomorphic
planes Π = (u, Ju) and Π′ = (v, Jv) of an almost Hermitian manifold M
with nonzero constant general sectional curvature to be orthogonal is that the
holomorphic bisectional curvature of M determined by Π and Π′ is zero.

Theorem 7.7. Let M be an AH1 manifold with nonzero constant holomor-
phic sectional curvature H. Then the general sectional curvature K(u, v) and
the holomorphic bisectional curvature B(u, v) are

(7.9) K(u, v) =
H

4

(
1 +

3 cos2 θ

sin2 φ

)
,

(7.10) B(u, v) = H cos2
〈Π, Π′〉

2
,
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respectively.

Proof. By (7.1), (5.43), (5.5) and (3.8) we obtain

−K(u, v) sin2 φ = Rhijkuhviujvk

=
1
4
HGhijkuhviujvk

= −H

4
(sin2 φ + 3 cos2 θ),(7.11)

which implies (7.9).
Similarly, we have, in consequence of (3.7) and (3.10),

−B(u, v) = RhijkuhJ i
p upvjJ k

q vq

= −1
4
HGhijkuhJ i

p upvjJ k
q vq

= H cos2
〈Π,Π′〉

2
,(7.12)

which implies (7.10). ¤
The following corollary is an immediate consequence of (7.9).

Corollary 7.8. Using the same notation as in Theorem 7.7 for orthogonal
vectors u and v we have

H

4
≤ K ≤ H for H > 0,

H

4
≥ K ≥ H for H < 0.(7.13)

In Corollary 7.8, H
4 = K occurs when Ju and v are orthogonal, and H = K

occurs when Ju and v coincide.
Since a Kählerian manifold is an AH1 manifold, the following corollary is

obvious.

Corollary 7.9. Both Theorem 7.7 and Corollary 7.8 are true for a Kählerian
manifold.

For (7.9) and Corollary 7.8 for a Kählerian manifold see Kon and Yano [5,
pp. 76–77].

Corollary 7.10. Any AH1 or Kählerian 2n-manifold M for n ≥ 2 of constant
holomorphic bisectional curvature is locally flat.

Proof. Since M is of constant holomorphic bisectional curvature B, every holo-
morphic sectional curvature H(u, v) is constant. Suppose H 6= 0. Then from
(7.12), cos2(〈Π, Π′〉/2) is constant, which is impossible for n ≥ 2. Thus H = 0
which implies that Rhijk = 0 by (5.43). Hence M is locally flat. ¤

For AHC manifolds, which are more general than AH1 manifolds, of nonzero
constant holomorphic sectional curvature, we have the following theorem.
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Theorem 7.11. If M is an AHC manifold of nonzero constant holomorphic
sectional curvature H, then the general sectional curvature K and the holo-
morphic bisectional curvature B of M satisfy

(7.14) K(u, v) sin2 φ + K(u, Jv) sin2 θ = H cos2
〈Π, Π′〉

2
,

(7.15) B(u, v) = H cos2
〈Π, Π′〉

2
.

Proof. It is known [3] that the Riemann curvature tensor Rhijk of M satisfies

(7.16) Rhijk = RhpqjJ
p

i J q
k − 1

2
H(ghjgik + ghigjk + JhjJik + JhiJjk).

Substituting (7.14) in (7.11) and using (3.8), (3.10) and (7.11) for K(u, Jv),
we obtain

K(u, v) sin2 φ = RhrjsJ
r

i J s
k uhviujvk

+
1
2
H(ghjgik + ghigjk + JhjJik + JhiJjk)uhviujvk

= RhijkuhJ i
p vpujJ k

q vq

+
1
2
H(1 + cos2 φ + cos2 θ)

= −K(u, Jv) sin2 θ +
1
2
H(1 + cos〈Π,Π′〉),

which implies (7.14). Similarly, from (7.3) it follows that

B(u, v) = J r
i J s

k Rhrjsu
hJ i

p upvjJ k
q vq

+
1
2
H(ghjgik + ghigjk + JhjJik + JhiJjk)uhJ i

p upvjJ k
q vq

= Rhrjsu
hurvjvs +

1
2
H(1 + cos2 φ + cos2 θ)

=
1
2
H(1 + cos〈Π, Π′〉),

which implies (7.15) ¤
Corollary 7.12. If an AHC manifold M is of constant holomorphic sectional
curvature H, then the sectional curvature K and the holomorphic bisectional
curvature B satisfy

(7.17) B(u, v) = K(u, v) sin2 φ + K(u, Jv) sin2 θ.

Proof. The corollary follows immediately from (7.14) and (7.15). ¤
Remark. Theorem 7.1 shows that (7.17) also holds for an AH1 manifold M ,
but there is no constant holomorphic sectional curvature condition on M .
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Corollary 7.13. If M is an AHC manifold of nonzero constant holomorphic
sectional curvature H, then the holomorphic bisectional curvature B of M
satisfies

H

2
≤ B(u, v) ≤ H, for H > 0,

H ≤ B(u, v) ≤ H

2
, for H < 0.

In Corollary 7.13, H
2 = B(u, v) occurs when Π = (u, Ju) and Π′(v, Jv) are

orthogonal, and H = B(u, v) occurs when Π and Π′ coincide.
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