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Abstract. Let P be a finite set of points in the 3-dimensional Euclidean
space IR3 in general position. For x0, x1, x2, x3 ∈ P , let H+(x0; x1, x2, x3)
(resp. H−(x0, x1, x2, x3)) denote the open half space containing x0 (resp. not
containing x0) and bounded by the plane containing x1, x2, x3. Further let

P (x0; x1, x2, x3) := P ∩ H+(x1; x0, x2, x3)
∩ H+(x2; x0, x1, x3)
∩ H+(x3; x0, x1, x3).

In this paper, we show the following statement: if |P | ≥ 4, and if k1, k2, k3, k4

are integers with k1 + k2 + k3 + k4 = |P | − 4 ,0 ≤ k1, k2, k3, k4 ≤ |P |−2
2

and

k1 + k2 ≤ |P |−2
2

, then for any p1, p2 ∈ P (p1 6= p2), there exist q1, q2 ∈ P such
that the convex hull of {p1, p2, q1, q2} is a 3-simplex (tetrahedron) containing
no point of P in its interior and such that

|P (p1; p2, q1, q2)| ≤ k1 ≤ P ∩ H−(p1; p2, q1, q2)|,
|P (p2; p1, q1, q2)| ≤ k2 ≤ P ∩ H−(p2; p1, q1, q2)|,
|P (q1; q2, p1, p2)| ≤ k3 ≤ P ∩ H−(q1; q2, p1, p2)|,
|P (q2; q1, p1, p2)| ≤ k4 ≤ P ∩ H−(q2; q1, p1, p2)|.
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§1. Introduction.

For a subset V of the d-dimensional Euclidean space IRd, let conv(V ) denote
the convex hull of V , and let aff(V ) denote the affine flat spanned by V . For
d + 1 points x0, x2, · · · , xd not lying in the same (affine) (d − 1)-flat in IRd,
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let H+(x0;x1, · · · , xd) (resp. H−(x0; x1, · · · , xd)) denote the open half-space
which is bounded by aff({x1, · · · , xd}) and contains x (resp. does not contain
x). Now let P be a fixed set of points in IRd. We say that P is in general
position if no d + 1 points of P lie in the same (d − 1)-flat. For d + 1 points
x0, x1, · · · , xd not lying in the same (d − 1)-flat, let

P (x0; x1, · · · , xd) := P ∩
∩

1≤i≤d

H+(xi; x0, x1, · · · , xi−1, xi+1, · · · , xd).

If a subset V of IR3 contains no point of P in its interior, V is said to be
vacuum. Further, following Kupitz[2], we call a polyhedron D cellular if D
is vacuum and all vertices of D are points of P . In this paper, we show the
following theorem as a 3-dimensional version of Lemma3 in [1]:

Theorem 1. Let P be a finite set of points in IR3 in general position. Sup-
pose that |P | ≥ 4, and let k1, k2, k3, k4 be integers such that k1+k2+k3+k4 =
|P | − 4, 0 ≤ k1, k2, k3, k4 ≤ |P |−2

2 and k1 + k2 ≤ |P |−2
2 . Further let p1, p2 be

specified points of P with p1 6= p2. Then there exist two points q1, q2 of P such
that conv({p1, p2, q1, q2}) is a cellular 3-simplex and the following inequalities
hold:

|P (p1; p2, q1, q2)| ≤ k1 ≤ |P ∩ H−(p1; p2, q1, q2)|,(1.1)
|P (p2; p1, q1, q2)| ≤ k2 ≤ |P ∩ H−(p2; p1, q1, q2)|,(1.2)
|P (q1; q2, p1, p2)| ≤ k3 ≤ |P ∩ H−(q1; q2, p1, p2)|,(1.3)
|P (q2; q1, p1, p2)| ≤ k4 ≤ |P ∩ H−(q2; q1, p1, p2)|.(1.4)

§2. Proof of Theorem 1.

Let P, k1, k2, k3, k4, p1, p2 be as in Theorem1. Let π : IR3 → IR2 be the or-
thogonal projection in the direction of −−→p1p2. We use the following result in the
plane case (a slight modification of Claim 1 in [1]):

Proposition 1. Let P ′ be a finite set of points in IR2, and let r′0 be a specified
point of P ′. Suppose that P ′ ≥ 3 and any line passing through r′0 contains
at most one point of P ′ other than r′0. Let k′

1, k
′
2, k

′
3 be integers satisfying

0 ≤ k′
1, k

′
2, k

′
3 ≤ |P ′|−1

2 and k′
1+k′

2+k′
3 = |P ′|−3. Then there exist x′ ∈ IR2−P

and r′1, r
′
2 ∈ P ′ − {r′0} such that

P ′ = {r′0, r′1, r′2} ∪ P ′(r′0; x
′, r′1) ∪ P ′(r′0; r

′
1, r

′
2) ∪ P ′(r′0; r

′
2, x

′)

and
|P ′(r′0; x

′, r′1)| = k′
1, |P ′(r′0; r

′
1, r

′
2)| = k′

2, |P ′(r′0; r
′
2, x

′)| = k′
3.
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Proposition 1 is essentially the same as Claim 1 in [1], so we omit the proof.
Since k1 + k2 ≤ |P |−2

2 , we can apply Proposition 1 to π(P ) = {π(p) | p ∈ P}
with r′0 = π(p1) = π(p2) and k′

1 = k3, k′
2 = k1 + k2, k′

3 = k4. Let x′, r′1, r
′
2

be as in the conclusion of the Proposition 1. We use the same technique as in
the proof of Lemma3 in [1]. Let l0 be a line passing through r′0 and x′. Take
s′1, s

′
2 ∈ P ′(r′0; r

′
1, r

′
2) ∪ {r′1, r′2} so that for i = 1, 2, s′i lies in the same side of

l0 as r′i, and

the line segment s′1s
′
2 is an edge of conv(P ′(r′0; r

′
1, r

′
2) ∪ {r′1, r′2})

satisfying conv({r′0, s′1, s′2}) ∩ H−(r′0; s
′
1, s

′
2) = ∅.(2.5)

Now we return to IR3. Let x, ri, si (i = 1, 2) be the points of P such that x,
π(ri) = r′i, π(si) = s′i, respectively. Let

K1 := H+(x; r1, p1, p2) ∩ H+(r1;x, p1, p2),
K2 := H+(r1; r2, p1, p2) ∩ H+(r2; r1, p1, p2),
K3 := H+(r2; x, p1, p2) ∩ H+(x; r2, p1, p2).

Then the conclusion of Proposition 1 implies that Ki ∩ Kj = ∅ if i 6= j, and

|P ∩ K1| = k′
1 = k3,(2.6)

|P ∩ K2| = k′
2 = k1 + k2,(2.7)

|P ∩ K3| = k′
3 = k4.(2.8)

Let H0 := π−1(l0) and let S = (P ∩ K2) ∪ {r1, r2}. By(2.5),

∆ := H+(r′1; r
′
0, r

′
2) ∩ H+(r′2; r

′
0, r

′
1) ∩ H+(r′0; r

′
1, r

′
2)

is vacuum. Since K2 ∩ H+(p1; p2, s1, s2) ∩ H+(p2; p1, s1, s2) ⊂ π−1(∆), this
implies that S ∩ H+(p1; p2, s1, s2) ∩ H+(p2; p1, s1, s2) = ∅. Thus by (2.7),
|S ∩ H+(p2; p1, s1, s2)| ≤ k1 + 2 or |S ∩ H+(p1; p2, s1, s2)| ≤ k2 + 2 holds. By
symmetry, we may assume

|S ∩ H+(p2; p1, s1, s2)| ≤ k1 + 2.(2.9)

For a plane H and a point x /∈ H, let H+(x) (resp. H̄+(x)) denote the open
(resp. closed) half-space which is bounded by H and contains x, and let H−(x)
(resp. H̄−(x)) denote the open (resp. closed) half-space which is bounded by
H and does not contain x. Let H1 be a plane containing p1 such that

|S ∩ H̄1
+(p2)| = k1 + 2,(2.10)

S ∩ H̄1
+(p2) ∩ H+

0 (ri) 6= ∅ for i = 1, 2.(2.11)
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Note that by (2.9), there exists a plane satisfying (2.10) and (2.11). We choose
H1 so that the angle between H0 ∩ H1 ∩ K2 and −−→p1p2 is as small as possible.
Take q1, q2 so that

q1 ∈ S ∩ H̄1
+(p2) ∩ H+

0 (r1),(2.12)

q2 ∈ S ∩ H̄1
+(p2) ∩ H+

0 (r2),(2.13)

and
4p2q1q2 is a facet of conv

(
(S ∪ {p2}) ∩ H̄1

+(p2)
)

satisfying
conv({p1, p2, q1, q2}) ∩ H−(p1; p2, q1, q2) = ∅.

(2.14)

By (2.14), conv({p1, p2, q1, q2}) is vacuum. We now proceed to verify the
inequalities in the conclusion of Theorem1. By (2.12) and (2.13),

P (q1; q2, p1, p2) ⊆ P ∩ K1 ⊆ P ∩ H−(q1; q2, p1, p2) and
P (q2; q1, p1, p2) ⊆ P ∩ K3 ⊆ P ∩ H−(q2; q1, p1, p2)

hold, and hence (2.6), (2.8) imply (1.3),(1.4), respectively. Similarly by (2.14),

P (p1; p2, q1, q2) ⊆ S ∩ H̄1
+(p2) − {q1, q2} ⊆ P ∩ H−(p1; p2, q1, q2)

holds, and hence (2.10) implies (1.1). Further, it also follows from the choice
of q1, q2 that

P (p2; p1, q1, q2) ⊆ S ∩ H−
1 (p2).

Since
|S ∩ H−

1 (p2)| = (k1 + k2 + 2) − (k1 + 2) = k2

by (2.7) and (2.10), this immediately implies the first inequality in (1.2).
We are now left with the verification of the second inequality in (1.2).

Suppose
|P ∩ H−(p2; p1, q1, q2)| < k2.

Then clearly
|S ∩ H−(p2; p1, q1, q2)| < k2.(2.15)

On the other hand, by (2.7) and (2.9),

|S ∩ H−(p2; p1, s1, s2)| ≥ (k1 + k2 + 2) − (k1 + 2) = k2(2.16)

holds. Let y, z be the intersection points of the line passing through s1, s2 and
aff({p1, p2, r1}), aff({p1, p2, r2}), respectively. Then (2.15) and (2.16) imply
that S ∩H−(p2; p1, s1, s2) 6⊆ S ∩H−(p2; p1, q1, q2), which implies that at least
one of y, z belongs to H+(p2; p1, q1, q2). We may assume

y ∈ H+(p2; p1, q1, q2)(2.17)

without loss of generality. We now show the existence of a plane containing
p0 which gives rise to a contradiction to the choice of H1. Toward this end,
we divide the situation into two cases according to the location of q2.
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Case 1 q2 = s2 or q2 ∈ H+(p2; p1, s1, s2)
In this case,

S ∩ H−(p2; p1, y, q2) ⊇ S ∩ H−(p2; p1, s1, s2)

holds and hence by (2.16),

|S ∩ H−(p2; p1, y, q2)| ≥ |S ∩ H−(p2; p1, s1, s2)| ≥ k2.(2.18)

Let l1 be the line passing through p1, q2, and let H be a (movable) plane
containing l1. If we gradually rotate H with l1 as the axis, the value of |S ∩
H−(p2)| changes by one at each moment when H hits a point of P . Therefore
by (2.15) and (2.18), there exists H2 ∈ l1∪H+(p2, p1, q1, q2)∪H+(p2, p1, y, q2)
such that l1 ∈ H2 and |S∩H−

2 (p2)| = k2, or equivalently, |S∩H̄2
+(p2)| = k1+2.

Now to get a contradiction, we let K ′
2 := H+(q1; q2, p1, p2) ∩H+(q2; q1, p1, p2)

(note that by (2.12) and (2.13), H0 intersects with K ′
2). Then by (2.17), it is

easy to see that

H0 ∩ K ′
2 ∩ H+

2 (p2) ⊂ H0 ∩ K ′
2 ∩ H+(p2; p1, q1, q2)

⊆ H0 ∩ K ′
2 ∩ H+

1 (p2),

which yields a contradiction to the minimality of the angle between H0∩H1∩
K2 and −−→p1p2.

Case 2 q2 ∈ H−(p2; p1, s1, s2)
If (2.18) holds, a contradiction can be derived in the same way as in Case 2.
Thus we may assume

|S ∩ H−(p2; p1, y, q2)| < k2.(2.19)

Let l2 be the line passing through p1, y. Then again as in Case 1, (2.16)
and (2.19) imply that we can find a plane H3 ∈ l2 ∪ H+(p2, p1, y, q2) ∪
H+(p2, p1, s1, s2) such that l2 ∈ H3 and |S ∩ H̄3

+(p2)| = k1 + 2 by consid-
ering the rotation of a plane containing l2 with l2 as the axis. Thus again it
is easy to see that

H0 ∩ K ′
2 ∩ H+

3 (p2) ⊂ H0 ∩ K ′
2 ∩ H+(p2; p1, q1, q2)

⊆ H0 ∩ K ′
2 ∩ H+

1 (p2),

which yields a contradiction. 2
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