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Abstract. Recently, it has been revealed that the semigroups satisfying Gaus-
sian estimates inherit some of the nice properties enjoyed by the Gaussian semi-
group itself. Arendt [1] gives a result in this direction, by proving the invariance
of the spectrum of the generators of consistent C0-semigroups with Gaussian
estimates. In this paper, we generalize this result to the semigroups estimated
by the one generated by the fractional power −(I − ∆)α (1/2 < α ≤ 1).
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§1. Introduction

Let Ω ⊂ RN be an open set, and suppose that a C0-semigroup Tp = {Tp(t)}t≥0

on Lp(Ω) with generator Ap is given for each 1 ≤ p < ∞. Assume further that
Tp’s are consistent in the sense that Tp(t) = Tq(t) on Lp(Ω)∩Lq(Ω) for all t ≥ 0.
Then it is natural to expect that the spectrum σ(Ap) of Ap is independent of
p. Unfortunately, this is not always true. Some simple but subtle examples are
given in Arendt [1, Section 3]. However, concerning a Schrödinger operator
as the generator of consistent semigroups, the following result was proved by
Hempel and Voigt: Let V be a real-valued measurable function such that V +

is admissible and V − ∈ K̂N with cN (V −) < 1. Then σ(Hp,V ) is independent
of p ∈ [1,∞). Here, Hp,V = −∆ + V denotes a Schrödinger operator acting
in Lp(RN ) with suitable domain that generates consistent C0-semigroups on
Lp(RN ) ([5, Theorem]). On the other hand, Arendt [1] proved the following
result: Assume that T2 satisfies an upper Gaussian estimate. Then ρ∞(Ap)
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is independent of p ∈ [1,∞). If, in addition, A2 is self-adjoint, then σ(Ap)
is independent of p ∈ [1,∞). Here, ρ(Ap) := C\σ(Ap) and ρ∞(Ap) is the
connected component of ρ(Ap) which contains a right half-plane {λ ∈ C :
Reλ > w} for some w ∈ R ([1, Theorem 4.2, Corollary 4.3]). It is well known
that if V + is admissible and V − ∈ K̂N with cN (V −) = 0 then the form sum
of −∆ and V generates a (positive) C0-semigroup on L2(RN ) satisfying an
upper Gaussian estimate. Therefore, the result of Arendt partly contains [5,
Theorem].

One of the key to the proof of Arendt [1] is the estimate of the integral
kernel of T2(t) by a (modified) heat kernel. So, one is naturally led to the
question whether an estimate by a certain well-behaved kernel also guarantees
the p-independence of σ(Ap). The purpose of this paper is to partly answer this
question affirmatively by showing that the estimate by the integral kernel of
e−t(I−∆)α

for 1/2 < α ≤ 1 does imply the p-independence of σ(Ap) (Theorem
2.7, Corollary 2.8). In the case where α = 1, the assertions of Arendt is
equivalent to that of ours (cf. Remark 2.2 below). As to the reason why we
consider (I − ∆)α instead of (−∆)α, see the remark following the statement
of Theorem 2.7.

The paper consists of two parts. In section 2, we prove the main theorem.
In section 3, we apply the results in section 2 to some examples.

In this paper, ξ denotes a vector in CN and ξ1, · · · , ξN ∈ C denote the
components of ξ: ξ = (ξ1, · · · , ξN ). ξ ∈ CN is also written as ξ = η + iζ
(η, ζ ∈ RN ). ξ2 ∈ C is the number defined by

∑N
j=1 ξ2

j , and |ξ|2 denotes the
length of the vector ξ, defined by |ξ|2 =

∑N
j=1 |ξj |2 = |η|2 + |ζ|2. In the case

of ξ ∈ RN , ξ2 coincides with |ξ|2. We also use the symbol Re ξj or Im ξj to
denote the real and imaginary part of ξj , respectively (Re ξj = ηj , Im ξj = ζj).

In the following, constants “C” may vary from place to place.

§2. The main results

Throughout this paper, let Ω ⊂ RN denote an open set and let T = {T (t)}t≥0

[resp. S = {S(t)}t≥0] be a C0-semigroup on L2(Ω) [resp. L2(RN )] with
generator A [resp. B]. Assume that S(t) (t ≥ 0) is positive, i.e., S(t)f ≥ 0 for
f ≥ 0 (Nagel (ed.) [9] is a standard reference book for the theory of positive
semigroups). We identify L2(Ω) with a subspace of L2(RN ) by considering
the elements of L2(Ω) to have value 0 on RN\Ω.

To make things clear, we introduce the notion of essential domination of
semigroups as a generalization of that of domination (see [9, p. 269]) and
upper Gaussian estimate ([1]).



INTERPOLATION OF THE SPECTRUM 163

Definition 2.1. We say that T = {T (t)}t≥0 is essentially dominated by
S = {S(t)}t≥0 if there exist M > 0, ω ∈ R and b > 0 such that

|T (t)f | ≤ MeωtS(bt)|f |(2.1)

holds for all t ≥ 0 and f ∈ L2(Ω).

Remark 2.2. (1) In the case where S(t) = et∆, T is essentially dominated
by S iff T satisfies an upper Gaussian estimate (see [1, Definition 4.1], for
definition). For the proof, see [1, p. 1160].
(2) For every ε > 0, T is essentially dominated by S(t) = etB iff T is essentially
dominated by e−t(ε−B).

Next we collect the basic facts concerning the semigroup generated by the
fractional power (I−∆)α. Here, ∆ denotes the usual Laplacian in L2(RN ) with
domain H2(RN ). For every real number α, (I −∆)α is a positive definite self-
adjoint operator in L2(RN ), and hence Sα(t) := e−t(I−∆)α

is a C0-semigroup
on L2(RN ). Especially in the case of 0 < α ≤ 1, Sα(t) possesses the following
nice properties.

Proposition 2.3. Let 0 < α ≤ 1. Then the following hold.
(1) Sα(t) ≥ 0 (t ≥ 0).
(2) For each t > 0, there exists 0 ≤ Kα(t, ·) ∈ L1(RN ) such that

Sα(t)f = Kα(t, ·) ∗ f (f ∈ L2(RN )),(2.2)

where u ∗ v is the convolution of u and v.
(3) For each 1 ≤ p < ∞, t > 0, a bounded linear operator Sα,p(t) on Lp(RN )
is defined by the following formula:

Sα,p(t)f := Kα(t, ·) ∗ f (f ∈ Lp(RN )).(2.3)

Then Sα,p are consistent positive C0-semigroups of contractions on Lp(RN )
such that Sα,2 = Sα. (Note that Kα(·, ·) is independent of p ∈ [1,∞).)

Proof. Since the assertions are well known for α = 1, we assume 0 < α < 1.
(1) It is well known that the following equality holds for λ ≥ 0 (cf. [11, p.
37]):

[λ + (I − ∆)α]−1 =
sinπα

π

∫ ∞

0

µα(µ + 1 − ∆)−1

µ2α + 2λµα cos πα + λ2
dµ.

Because of the positivity of et∆ ≥ 0, (µ + 1 − ∆)−1 ≥ 0 for µ ≥ 0, and so
0 ≤ Sα(t) (t ≥ 0).
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(2) Since

F
[
e−t(I−∆)α

f
]
(ξ) = e−t(1+ξ2)α

f̂(ξ) (f ∈ S(RN
x ))

and e−t(1+ξ2)α ∈ S(RN
ξ ) for each t > 0,(

e−t(I−∆)α
f
)

(x) =
(
F−1

[
e−t(1+ξ2)α

]
∗ f

)
(x) (f ∈ S(RN

x )).

Here, F [u](ξ) :=
∫
RN

e−ixξu(x) dx is the Fourier transform of u ∈ S(RN ) and

S(RN ) is the Schwartz space. Put

Kα(t, x) := F−1
[
e−t(1+ξ2)α

]
(x) =

1
(2π)N

∫
RN

eixξe−t(1+ξ2)α
dξ.(2.4)

Then, (1) implies 0 ≤ Kα(t, ·) ∈ S(RN ) ⊂ L1(RN ) and

‖Kα(t, ·)‖1 =
∫
RN

Kα(t, x)dx = F [Kα(t, ·)] (0) = e−t < 1.(2.5)

Moreover, (2.2) holds since Kα(t, ·) ∈ L1(RN ) and S(RN ) is a dense subset
of L2(RN ).
(3) The assertion readily follows from (1), (2.2) and (2.5) (cf. [3, Theorem
1.4.1]). 2

The following two estimates for Kα(·, ·) defined in (2.4) are crucial to our
main result.

Proposition 2.4. Let 0 < α ≤ 1 and 0 < δ < 1. Then there exists a
constant Cα,δ > 0 such that

0 ≤ Kα(t, x) ≤ Cα,δ
e−δ|x|

tN/2α
(0 < ∀t < ∞).(2.6)

Proposition 2.5. Let 1
2 < α ≤ 1 and 0 < δ < 1. Then there exists a

constant Cα,δ > 0 such that

0 ≤ Kα(t, x) ≤ Cα,δ
e−δ|x|

|x|N+1
t1/2α (0 < ∀t ≤ 1).(2.7)

For the proof of these two estimates, we need the following lemma.
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Lemma 2.6. Let 0 < α ≤ 1, 0 < δ < 1, and let ξ = (ξ1, · · · , ξN ) = η + iζ ∈
CN (η, ζ ∈ RN ) with |ζ| ≤ δ. Then we obtain

(1) 1 ≤ 1 + |ξ|2

1 + |η|2
≤ 2,

(2) |arg(1 + ξ2)| ≤ θ0 := arctan(δ/
√

1 − δ2) ∈ (0, π/2) and
(3) Re

[
(1 + ξ2)α

]
≥ cos αθ0 · |η|2α.

Proof. (1) This is clear.
(2) Let X := Re (1 + ξ2) and Y := Im (1 + ξ2). Then we have

X = 1 − |ζ|2 + |η|2 ≥ 1 − |ζ|2 +
(

Y

2|ζ|

)2

≥ 1 − δ2 +
Y 2

4δ2
.

Therefore, we have |arg(1 + ξ2)| ≤ θ0 := arctan(δ/
√

1 − δ2) ∈ (0, π/2) since
0 < δ < 1.
(3) Using (2), we have

Re
[
(1 + ξ2)α

]
= |(1 + ξ2)|α cos[α arg(1 + ξ2)]

≥
[
Re (1 + ξ2)

]α
cos αθ0 ≥ cos αθ0 · |η|2α.

So, the proof is complete. 2

Proof of Proposition 2.4. Hereafter, ξ denotes a vector in CN and ξj ∈ C
(j = 1, · · · , N) denotes the component of ξ. We shall obtain the desired
estimate by shifting the integration area RN in the formula (2.4) to complex
region. Let us now fix 0 < α ≤ 1 and 0 < δ < 1. Then for each fixed
x ∈ RN and t > 0, the function F (ξ, x, t) : ξ ∈ CN 7−→ eixξe−t(1+ξ2)α ∈ C
is a well-defined analytic function in a neighborhood of Ωδ := {ξ ∈ CN : ξ =
η + iζ, η, ζ ∈ RN with |ζ| ≤ δ}. First, note that for each ζ ∈ RN with |ζ| ≤ δ,
F (η + iζ, x, t) is absolutely integrable with respect to η on RN . Hence we can

calculate
∫
RN

F (η + iζ, x, t)dη as an successive integration with respect to

η1, · · · , ηN (η = (η1, · · · , ηN )) in any order. Now fix a ζ0 = (ζ0
1 , · · · , ζ0

N ) ∈ RN

with |ζ0| ≤ δ. Set Dζ0
1 ,R ⊂ C as

{ξ1 ∈ C : 0 ≤ Im ξ1 ≤ ζ0
1 , |Re ξ1| ≤ R}

or
{ξ1 ∈ C : 0 ≥ Im ξ1 ≥ ζ0

1 , |Re ξ1| ≤ R}

according as ζ0
1 ≥ 0 or ζ0

1 < 0. For each fixed ξ2, · · · , ξN ∈ R (even for
ξj with |Im ξj | ≤ |ζ0

j | (2 ≤ j ≤ N)), F (ξ, x, t) is an analytic function of
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ξ1 in a neighborhood of Dζ0
1 ,R. Moreover, Lemma 2.6 implies |F (ξ, x, t)| ≤

e|ζ
0
1 ||x|e−t cos αθ0·|η|2 for ξ1 ∈ Dζ0

1 ,R with |Re ξ1| = R. Therefore, the path on

the “vertical” edges of ∂Dζ0
1 ,R of the integral 0 =

∮
∂D

ζ0
1

,R

F (ξ, x, t)dξ1 tends to

0 as R → 0, and hence∫
R

F (ξ, x, t)dξ1 =
∫
R+iζ0

1

F (ξ, x, t)dξ1 =
∫
R

F ((η1 + iζ0
1 , ξ2, · · · , ξN ), x, t)dη1.

This means that we can shift the integration path for ξ1 ∈ R in (2.4) to the
path R + iζ0

1 in the complex region:

Kα(t, x) =
1

(2π)N

∫
RN−1

dξ2 · · · dξN

(∫
R+iζ0

1

F (ξ, x, t)dξ1

)
.

Change of the order of integration yields

Kα(t, x) =
1

(2π)N

∫
R+iζ0

1

dξ1

∫
RN−2

dξ3 · · · dξN

(∫
R

F (ξ, x, t)dξ2

)
.

By applying a similar argument as above, we see that∫
R

F (ξ, x, t)dξ2 =
∫
R+iζ0

2

F (ξ, x, t)dξ2

for all ξ ∈ R + iζ0
1 , ξj ∈ R (j 6= 1, 2). Hence we obtain

Kα(t, x) =
1

(2π)N

∫
R+iζ0

1

dξ1

∫
RN−2

dξ3 · · · dξN

(∫
R+iζ0

2

F (ξ, x, t)dξ2

)
.

We can further rewrite Kα(t, x) as

Kα(t, x) =
1

(2π)N

∫
R+iζ0

1

dξ1

∫
R+iζ0

2

dξ2

∫
RN−3

dξ4 · · · dξN

(∫
R

F (ξ, x, t)dξ3

)
,

and shift the integration path for ξ3 from R to R + iζ0
3 . Continuing a process

like this, we finally reach the equality

Kα(t, x) =
1

(2π)N

∫
R+iζ0

1

dξ1 · · ·
∫
R+iζ0

N

dξNF (ξ, x, t)(2.8)

=
1

(2π)N

∫
RN

F (η + iζ0, x, t)dη

=
e−xζ0

(2π)N

∫
RN

eixηe−t(1+ξ2)α
dη (ξ = η + iζ0).
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From the estimate in Lemma 2.6, we obtain a constant C such that∣∣∣∣∫
RN

eixηe−t(1+ξ2)α
dη

∣∣∣∣ ≤ ∫
RN

e−t cos αθ0·|η|2α
dη =

C

tN/2α

for every ζ0 with |ζ0| ≤ δ. Thus we get

Kα(t, x) ≤ inf
|ζ0|≤δ

e−xζ0 C

tN/2α
= C

e−δ|x|

tN/2α
.

So, the proof is complete 2

Proof of Proposition 2.5. Let 1
2 < α ≤ 1, 0 < δ < 1 and j = 1, · · · , N . Then

we obtain from (2.8) and the integration by parts,

xN+1
j Kα(t, x) =

iN+1

(2π)N
e−xζ

∫
RN

eixη ∂N+1

∂ηN+1
j

e−t(1+ξ2)α
dη,(2.9)

where ξ = η + iζ with η, ζ ∈ RN and |ζ| ≤ δ. By induction with respect
to n, it is easy to show that the following equation holds for every infinitely
differentiable function f of η, ζ (ξ = η + iζ):

∂n

∂ηn
j

e−tf(ξ) =
∑

(kl)l∈Dn

C(kl)l
tΣ

n
l=1kl

n∏
l=1

[
∂l

∂ηl
j

f(ξ)

]kl

e−tf(ξ),(2.10)

where Dn := {(kl)l ∈ Zn
+ :

∑n
l=1 lkl = n} and C(kl)l

denotes a constant
depending on (kl)l ∈ Dn. On the other hand, by the analyticity of (1 + ξ2)α

and induction with respect to l, we obtain

∂l

∂ηl
j

(1 + ξ2)α =
∂l

∂ξl
j

(1 + ξ2)α = (1 + ξ2)α−lpl(ξ),(2.11)

where pl(ξ) is a polynomial of ξ of degree l. For a (kl)l ∈ DN+1, put
∑N+1

l=1 kl =
m. Note that m ∈ {1, · · · , N + 1}. With the aid of Lemma 2.6 (1), we obtain
the following estimate:∣∣∣∣∣

N+1∏
l=1

[
(1 + ξ2)α−lpl(ξ)

]kl

∣∣∣∣∣ =

∣∣∣∣∣
∏N+1

l=1 pl(ξ)kl∏N+1
l=1 [(1 + ξ2)l−α]kl

∣∣∣∣∣(2.12)

≤ C

∣∣∣∣∣∣
∏N+1

l=1 (1 + |ξ|2)
lkl
2

(1 + ξ2)N+1−αm

∣∣∣∣∣∣
≤ C

(1 + |ξ|2)
N+1

2

[Re (1 + ξ2)]N+1−αm

≤ C/(1 + |η|2)
N+1

2
−αm.
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Hence, (2.9), (2.10), (2.11) and (2.12) imply

|xj |N+1Kα(t, x)

≤ 1
(2π)N

inf
|ζ|≤δ

e−xζ
∫
RN

∣∣∣∣∣ ∂N+1

∂ηN+1
j

e−t(1+ξ2)α

∣∣∣∣∣ dη

≤ Ce−δ|x|
N+1∑
m=1

tm
∫
RN

1
(1 + |η|2)(N+1)/2−αm

e−t cos αθ0·|η|2α
dη

= Ce−δ|x|
N+1∑
m=1

tm
(∫ 1

0
+

∫ ∞

1

)
rN−1

(1 + r2)(N+1)/2−αm
e−t cos αθ0·r2α

dr

≤ Ce−δ|x|
N+1∑
m=1

tm
(∫ 1

0

rN−1

(1 + r2)(N+1)/2−αm
dr

+
∫ ∞

1

rN−1

rN+1−2αm

(
r2

1 + r2

)N+1
2

−αm

e−t cos αθ0·r2α
dr


≤ Ce−δ|x|

N+1∑
m=1

(
tm + tm

∫ ∞

1
r2αm−2e−t cos αθ0·r2α

dr

)

≤ Ce−δ|x|
N+1∑
m=1

(
tm + t1/2α

∫ ∞

0
r2αm−2e−r2α

dr

)
,

where the last integral is finite because 2αm − 2 > −1. It follows from 1
2α <

1 ≤ m that tm ≤ t1/2α for 0 < t ≤ 1, so

|xj |N+1Kα(t, x) ≤ Ce−δ|x|
(

N+1∑
m=1

tm + t1/2α

)
≤ Ce−δ|x|t1/2α(2.13)

holds for 0 < t ≤ 1. Therefore,

Kα(t, x) ≤ C
e−δ|x|

|x|N+1
t1/2α (0 < ∀t ≤ 1),

since the constant C of the right hand side of (2.13) depends only on α, δ. 2

Now our main results reads as follows:

Theorem 2.7. Assume that a C0-semigroup T on L2(Ω) (Ω ⊂ RN ) is es-
sentially dominated by Sα = {e−t(I−∆)α}t≥0 (on L2(RN )) for some α ∈ (1

2 , 1].
Then there exist consistent C0-semigroups Tp on Lp(Ω) (1 ≤ p < ∞) such that
T2 = T and ρ∞(Ap) is independent of p ∈ [1,∞), where Ap is the generator of
Tp.
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Corollary 2.8. Assume that the generator A of T is self-adjoint and that T
is essentially dominated by Sα for some α ∈ (1

2 , 1]. Then there exist consistent
C0-semigroups Tp on Lp(Ω) (1 ≤ p < ∞) such that T2 = T and σ(Ap) is
independent of p ∈ [1,∞), where Ap is the generator of Tp.

Remark 2.9. By an inspection of the proof of our main theorem, we can
easily see that the essential domination by e−t(ε−∆)α

for an ε > 0 and 1/2 <
α ≤ 1 implies the same conclusion as in our main theorem. So, it may be
conjectured that the assumption of essential domination by e−t(I−∆)α

can be
relaxed to that by e−t(−∆)α

. Note that 0 ≤ e−t(ε−∆)α ≤ e−t(−∆)α
holds for all

t ≥ 0. At present, the authors are not able to prove or disprove this conjecture.
However, we would like to note that the Fourier multiplier theory yields the
p-independence of the spectrum of (−∆)α in Lp(RN ) with a suitable domain
([10, p. 96]).

In the following, we state a full proof of our main theorem for the reader’s
convenience. However, the authors would like to emphasize that we owe the
method of the proof to Arendt [1]. Our own contribution mainly lies in the
estimate of the integral kernel of Sα(t), which makes Arendt’s method work.

Proof of Theorem 2.7 From Proposition 2.3 and (2.1), it follows that there
exist consistent C0-semigroups Tp on Lp(Ω) (1 ≤ p < ∞) such that T = T2

and
|Tp(t)f | ≤ MeωtSα,p(bt)|f | (f ∈ Lp(Ω), t ≥ 0)(2.14)

(cf. [1, p. 1160]).

To continue the proof, we need the idea of Arendt [1] to use the following
auxiliary spaces.

For each vector ε, x ∈ RN , we let εx :=
∑N

j=1 εjxj . Let Lp := Lp(Ω),
Lp

ε := Lp(Ω, e−pεxdx), for 1 ≤ p < ∞, ε ∈ RN . Then (Uε,pf)(x) := e−εxf(x)
defines an isometric isomorphism of Lp

ε onto Lp. Hence T̃ε,p(t) := U−1
ε,p Tp(t)Uε,p

defines a C0-semigroup T̃ε,p on Lp
ε.

Since Sα,p(t) is an integral operator for t > 0 (see Proposition 2.3), it follows
from (2.14) and a well-known fact (cf. [1, Proposition 6.2]) that for t > 0 there
exists a measurable function K(t, ·, ·) on Ω × Ω such that

(Tp(t)f) (x) =
∫
Ω

K(t, x, y)f(y)dy

holds for all f ∈ Lp. We write such a relation of Tp(t) and the integral kernel

K(t, ·, ·) as Tp(t)
dx∼ K(t, ·, ·). Note that K(·, ·, ·) is independent of p ∈ [1,∞).

Consequently, T̃ε,p(t)
dx∼ Kε(t, ·, ·) where

Kε(t, x, y) = eε(x−y)K(t, x, y).(2.15)
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We use the following notation. Let 1 ≤ p, q, r ≤ ∞, Q ∈ L(Lp). Then we
set

‖Q‖q,r := sup {‖Qf‖r : f ∈ Lp ∩ Lq, ‖f‖q ≤ 1} .

Concerning S̃α,ε,p, we obtain the following lemma.

Lemma 2.10. Let 0 < ε0 < 1, ε ∈ RN with |ε| ≤ ε0 and 1 ≤ p < ∞. Then
there exists a C0-semigroup Sα,ε,p on Lp satisfying

Sα,ε,p(t)f = S̃α,ε,p(t)f (f ∈ Lp ∩ Lp
ε)(2.16)

and
sup
|ε|≤ε0
0≤t≤1

‖Sα,ε,p(t)‖p,p ≤ C < ∞.(2.17)

Moreover, for q1, q2 ∈ [1,∞] with q1 ≤ q2 and t > 0

sup
|ε|≤ε0

‖Sα,ε,p(t)‖q1,q2 ≤ Ct < ∞(2.18)

holds for all 1 ≤ p < ∞ (Ct is a constant depending on t > 0).

Proof. Let 0 < ε0 < 1, ε ∈ RN with |ε| ≤ ε0, 1 ≤ p < ∞, and ε0 < δ < 1.
Then for t > 0 and f ∈ Lp ∩ Lp

ε,

|S̃α,ε,p(t)f | ≤ S̃α,ε,p(t)|f | = (eε·Kα(t, ·)) ∗ |f |.(2.19)

From Proposition 2.4 and Proposition 2.5, we have

sup
|ε|≤ε0
0<t≤1

‖eε·Kα(t, ·)‖1

= sup
|ε|≤ε0
0<t≤1

(∫
|x|≥t1/2α

+
∫
|x|≤t1/2α

)
eεxKα(t, x)dx

≤ C sup
|ε|≤ε0
0<t≤1

(∫
|x|≥t1/2α

eεx e−δ|x|

|x|N+1
t1/2αdx +

∫
|x|≤t1/2α

eεx e−δ|x|

tN/2α
dx

)

≤ C sup
|ε|≤ε0
0<t≤1

(
t1/2α

∫ ∞

t1/2α

1
rN+1

rN−1dr + t−N/2α
∫ t1/2α

0
rN−1dr

)

= C sup
|ε|≤ε0
0<t≤1

t1/2α
[
−1

r

]∞
t1/2α

+ t−N/2α

[
rN

N

]t1/2α

0


= C sup

|ε|≤ε0
0<t≤1

(
t1/2α · t−1/2α + t−N/2α · tN/2α

N

)
=

N + 1
N

C < ∞.
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Thus, by (2.19), there exists a semigroup Sα,ε,p on Lp such that (2.16) and
(2.17) hold for all 1 ≤ p < ∞. It remains to show that Sα,ε,p(t)f → f (t ↓ 0)
in Lp for all f ∈ Lp. By (2.17), it suffices to consider functions with compact
support. Let f ∈ Lp such that f(x) = 0 for |x| ≥ r, where r > 0. Then

lim sup
t↓0

‖Sα,ε,p(t)f − f‖p
p ≤ lim sup

t↓0

∫
|x|≥r+1

[(eε·Kα(t, ·)) ∗ |f |(x)]p dx

(cf. [1, p. 1165]). If |x| ≥ r + 1 then∫
RN

e−(δ−ε0)|x−y|

|x − y|N+1
|f(y)|dy =

∫
|y|≤r

e−(δ−ε0)|x−y|

|x − y|N+1
|f(y)|dy

≤
∫
|x−y|≥1

e−(δ−ε0)|x−y|

|x − y|N+1
|f(y)|dy

≤
(
e−(δ−ε0)|·| ∗ |f |

)
(x),

so ∫
|x|≥r+1

(∫
RN

e−(δ−ε0)|x−y|

|x − y|N+1
|f(y)|dy

)p

dx

≤
∫
RN

[(
e−(δ−ε0)|·| ∗ |f |

)
(x)

]p
dx

≤ ‖f‖p
p

∫
RN

e−(δ−ε0)|x|dx < ∞.

Thus, by Proposition 2.5,

lim sup
t↓0

∫
|x|≥r+1

[(eε·Kα(t, ·)) ∗ |f |(x)]p dx

≤ lim
t↓0

Ctp/2α
∫
|x|≥r+1

(∫
RN

e−(δ−ε0)|x−y|

|x − y|N+1
|f(y)|dy

)p

dx = 0.

This implies lim
t↓0

‖Sα,ε,p(t)f − f‖p
p = 0.

Moreover, let q1, q2 ∈ [1,∞] with q1 ≤ q2 and t > 0. Then by Proposition
2.4,

|Sα,ε,p(t)f | ≤ (eε·Kα(t, ·)) ∗ |f | ≤ C

tN/2α
e−(δ−ε0)|·| ∗ |f | (f ∈ Lp ∩ Lq1).

Since e−(δ−ε)|·| ∈ Lr (1
r = 1 + 1

q2
− 1

q1
), Young’s inequality implies that

sup
|ε|≤ε0

‖Sα,ε,p(t)‖q1,q2 ≤ C

tN/2α

∥∥∥e−(δ−ε0)|·|
∥∥∥

r
< ∞

holds for all 1 ≤ p < ∞. 2

By virtue of Lemma 2.10, we obtain
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Proposition 2.11. Let 0 < ε0 < 1, ε ∈ RN with |ε| ≤ ε0 and 1 ≤ p < ∞.
Then the following assertions hold:
(1) There exists a C0-semigroup Tε,p on Lp such that

Tε,p(t)f = T̃ε,p(t)f (f ∈ Lp ∩ Lp
ε, t ≥ 0).(2.20)

(2) There exist M1 > 0 and ω1 ∈ R such that

‖Tε,p(t)‖p,p ≤ M1e
ω1t (t ≥ 0)

for all |ε| ≤ ε0, 1 ≤ p < ∞.
(3) For λ > ω1

lim
|ε|↓0

‖R(λ, Aε,p) − R(λ,Ap)‖p,p = 0,

where Aε,p denotes the generator of Tε,p on Lp (1 ≤ p < ∞).

Proof. Let 0 < ε0 < 1, ε ∈ RN with |ε| ≤ ε0, 1 ≤ p < ∞ and ε0 < δ < 1.
(1) It follows from (2.14) that

|T̃ε,p(t)f | ≤ MeωtS̃α,ε,p(bt)|f | (t ≥ 0, f ∈ Lp ∩ Lp
ε).(2.21)

Thus, by (2.16) and (2.17), there exists a semigroup Tε,p on Lp such that (2.20)
holds. In order to prove (1) it remains to show that Tε,p(t)f → f (t ↓ 0) in
Lp for all f ∈ Lp. By (2.17) and (2.21), it suffices to consider functions with
compact support. Let f ∈ Lp such that f(x) = 0 for |x| ≥ r, where r > 0.
Then, by a calculation similar to [1, p. 1165] and the strong continuity of Sε,p

lim sup
t↓0

‖Tε,p(t)f − f‖p
p ≤ lim

t↓0
Mp‖eωtSε,p(bt)|f | − |f |‖p

p = 0.

(2) By (2.16), (2.17) and (2.21),

M1 := sup
0≤t≤1

‖Tε,p(t)‖p,p < ∞

holds for all |ε| ≤ ε0, 1 ≤ p < ∞. Thus, by the semigroup property, (2) follows
(ω1 := log M1).
(3) First, we show that for 0 < a < 1

lim
|ε|↓0

sup
a≤t≤1/a

‖Tε,p(t) − Tp(t)‖p,p = 0.(2.22)

In fact, since Tε,p(t) − Tp(t)
dx∼ K(t, x, y)(eε(x−y) − 1) (see (2.15)) and, by

Proposition 2.4,

|K(t, x, y)(eε(x−y) − 1)| ≤ Ceωt e−δ|x−y|

(bt)N/2α
|eε(x−y) − 1|,
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we have for a ≤ t ≤ 1/a, |(Tε,p(t) − Tp(t))f | ≤ Cgε ∗ |f |, where gε(x) :=
e−δ|x||eεx − 1|. Since |gε(x)| ≤ e−(δ−ε0)|x| + e−δ|x| ∈ L1 and gε(x) → 0 a.e. x
as |ε| ↓ 0, (2.22) follows by the dominated convergence theorem.

Now let λ > ω1. Then for 0 < a < 1

lim sup
|ε|↓0

‖R(λ,Aε,p) − R(λ,Ap)‖p,p ≤ lim sup
|ε|↓0

∫ ∞

0
e−λt‖Tε,p(t) − Tp(t)‖p,pdt

≤ 2M1

(∫ a

0
+

∫ ∞

1/a

)
e−(λ−ω1)tdt

≤ 2M1

(
a +

1
λ − ω1

e−(λ−ω1)/a
)

.

Since 0 < a < 1 is arbitrary, the assertion follows. 2

It is clear from the construction that the semigroups Tε,p on Lp and T̃ε,p

on Lp
ε are consistent. Consequently, R(λ,Aε,p) and R(λ, Ãε,p) are consistent

for λ ∈ C if Re λ is sufficiently large. Thus, we obtain from [1, Proposition
2.2] the following assertion: R(λ,Aε,p) and R(λ, Ãε,p) are consistent for all
λ ∈ [ρ(Aε,p) ∩ ρ(Ãε,p)]∞. Here, for open subset O of C, we let O∞ be the
connected component of O which contains a right half-plane {λ ∈ C : Re λ >
w} for some w ∈ R.

Note that by construction ρ(Ãε,p) = ρ(Ap) and

R(λ, Ãε,p)f = eεx (
R(λ,Ap)(e−ε·f)

)
(f ∈ Lp

ε)

for all λ ∈ ρ(Ap). Therefore, if f, e−ε·f ∈ Lp and λ ∈ [ρ(Aε,p)∩ ρ(Ap)]∞, then
the following holds:

R(λ,Aε,p)f = eεx (
R(λ,Ap)(e−ε·f)

)
.(2.23)

Now we can continue the proof of Theorem 2.7.

Proof of Theorem 2.7 (continued). (cf. [1, Proof of Theorem 4.4]) Let
1 ≤ p, q < ∞, µ ∈ ρ∞(Ap). First, we have to show that µ ∈ ρ(Aq). By [1,
Proposition 2.3], it suffices to show that ‖R(µ,Ap)‖q,q < ∞. Since

R(µ,Ap) =
∫ 1

0
e−µtTp(t)dt + e−µTp(1)R(µ,Ap),

it is enough to show that

‖Tp(1)R(µ,Ap)‖q,q < ∞.(2.24)
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Let K be the image of a continuous path in ρ(Ap) connecting µ with a point
in {λ ∈ C : Re λ > ω1}. By Proposition 2.11 (3) and [1, Proposition 6.6],
there exists 0 < ε0 < 1 such that K ⊂ ρ(Aε,p) for all ε ∈ RN with |ε| ≤ ε0.
Consequently, µ ∈ [ρ(Aε,p)∩ρ(Ap)]∞. It follows from (2.16), (2.18) and (2.21)
that

sup
|ε|≤ε0

‖Tε,p(1
2)‖1,p < ∞ and sup

|ε|≤ε0

‖Tε,p(1
2)‖p,∞ < ∞.

Since Tε,p(1)R(µ,Aε,p) = Tε,p(1
2)R(µ,Aε,p)Tε,p(1

2), it follows that

C0 := sup
|ε|≤ε0

‖Tε,p(1)R(µ, Aε,p)‖1,∞ < ∞.(2.25)

Therefore, the operator Tε,p(1)R(µ,Aε,p) is given by a kernel Kε(·, ·) such
that |Kε(x, y)| ≤ C0 (a.e. x, y ∈ Ω) (cf. [1, Proposition 6.1]). In particular,
K0(·, ·)

dx∼ Tp(1)R(µ,Ap). (2.23) implies that

Tε,p(1)R(µ,Aε,p)f = eεxTp(1)
[
e−εy (

eεyR(µ,Ap)(e−ε·f)
)]

= eεx [Tp(1)R(µ,Ap)] (e−ε·f)

whenever f, e−ε·f ∈ Lp, hence

Kε(x, y) = eε(x−y)K0(x, y) (a.e. x, y ∈ Ω).

So, by (2.25), |K0(x, y)| ≤ C0e
−ε0|x−y| (a.e. x, y ∈ Ω), which yields (2.24).

Thus we obtain ρ∞(Ap) ⊂ ρ(Aq), hence ρ∞(Ap) ⊂ ρ∞(Aq). 2

§3. Applications

In this section, we apply the results in the section 2 to some examples. Let
Ω ⊂ RN , T , S, A and B be as in first paragraph of section 2, and let Sα(t) =
e−t(I−∆)α

for 0 < α ≤ 1.

(I) The fractional power of the Schrödinger operators : First, we show the
following proposition.

Proposition 3.1. If T (t) = etA is dominated by S(t) = etB in the sense that
|T (t)f | ≤ S(t)|f | for f ∈ L2(Ω), and suppose that S(t) is uniformly bounded,
then e−t(−A)α

is dominated by e−t(−B)α
.
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Proof. Let λ > 0 and 0 ≤ f ∈ L2(Ω). Then

∣∣∣[λ + (−A)α]−1 f
∣∣∣ =

∣∣∣∣∣sinπα

π

∫ ∞

0

µα(µ − A)−1f

µ2α + 2λµα cos πα + λ2
dµ

∣∣∣∣∣
≤ sinπα

π

∫ ∞

0

µα|(µ − A)−1f |
µ2α + 2λµα cos πα + λ2

dµ

≤ sinπα

π

∫ ∞

0

µα(µ − B)−1f

µ2α + 2λµα cos πα + λ2
dµ

= [λ + (−B)α]−1 f,

hence we conclude the proof (see [9, Proposition 4.1]). 2

Proposition 3.1 implies that if etA is dominated by et∆, then e−t(I−A)α

is essentially dominated by e−t(I−∆)α
. Therefore, we can obtain many C0-

semigroups essentially dominated by e−t(I−∆)α
. For example, if −A is the form

sum of either the negative Dirichlet Laplacian −∆D or the negative Neumann
Laplacian −∆N (in the latter case Ω is assumed to be bounded and to have the
extension property) and 0 ≤ V ∈ L1

loc, then A is self-adjoint and generates a
positive C0-semigroup T on L2 which is dominated by et∆. Proposition 3.1 im-
plies that e−t(I−A)α

is dominated by Sα. Therefore, Corollary 2.8 implies that
there exist consistent positive C0-semigroups on Lp generated by −(I − A)α

p

(1 ≤ p < ∞) such that −(I − A)α
2 = −(I − A)α and σ(−(I − A)α

p) is in-
dependent of p ∈ [1,∞). Especially, σ(−(I − ∆D)α

p) and σ(−(I − ∆N )α
p) is

independent of p ∈ [1,∞).

(II) The generator of absorption semigroups: For the theory of absorption
semigroups, see [12], [13] and [7].

Let 0 < α ≤ 1, Bα the generator of Sα and V (n) := V ∧ n. Then
s- lim

n→∞
et(Bα−V (n)) exists for all t ≥ 0 if 0 ≤ V is measurable. We denote

this limit by Sα,V (t). If, in addition, V is Sα(·)-admissible (see [12], for defi-
nition), then Sα,V := {Sα,V (t)}t≥0 is a C0-semigroup on L2. It is clear that

0 ≤ Sα,V (t) ≤ Sα(t) (t ≥ 0)

and the generator Bα,V of Sα,V is self-adjoint. Therefore, if α ∈ (1
2 , 1] then

there exist consistent positive C0-semigroups Sα,p,V on Lp with generator
Bα,p,V (1 ≤ p < ∞) such that Bα,2,V = Bα,V and σ(Bα,p,V ) is independent of
p ∈ [1,∞) (Corollary 2.8).
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