On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups

M.R. Darafsheh and N.S. Poursalavati

(Received February 28, 2000; Revised January 10, 2001)

Abstract

We discuss the existence of an orthogonal basis consisting of decomposable vectors for some symmetry classes of tensors associated with certain subgroups of the full symmetric group. The dimensions of these symmetry classes of tensors are also computed.

AMS 1991 Mathematics Subject Classification. 20C30; 15A69.
Key words and phrases. Symmetry classes, tensors, orthogonal basis.

§1. Introduction

Denote by S_{n} the symmetric group on $\{1,2, \ldots, n\}$. Let V be a unitary complex vector space of dimension m. Suppose n is an integer ≥ 2. Let ${ }^{n} V$ be the n-th tensor power of V, and write $v:=\begin{array}{lllll}v_{1} & v_{2} & \cdots & v_{n}\end{array}$ for the tensor product of the indicated vectors.

For $\sigma \in S_{n}$, there is a (unique) linear operator $P\left(\sigma^{-1}\right)$ on ${ }^{n} V$ which has the effect $P\left(\sigma^{-1}\right)\left(v_{1} \quad v_{2} \quad \cdots \quad v_{n}\right):=v_{\sigma(1)} \quad v_{\sigma(2)} \quad \cdots \quad v_{\sigma(n)}$, for all $v_{1}, v_{2}, \ldots, v_{n} \in V$. Let G be a subgroup of S_{n} and λ be an irreducible complex character of G. We define $T(G, \lambda)$ as a linear operator on ${ }^{n} V$ with the following definition

$$
\begin{equation*}
T(G, \lambda):=\frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma) . \tag{1.1}
\end{equation*}
$$

With respect to the induced inner product in ${ }^{n} V, T(G, \lambda)$ is an orthogonal projection onto its range $V_{\lambda}^{n}(G)$, (see [3], [8]). Let $I(G)$ be the set of all the irreducible complex characters of G. It follows from the orthogonality relations
for characters that $\{T(G, \lambda) \mid \lambda \in I(G)\}$ is a set of annihilating idempotents which sum to the identity.

The image of $v \quad:=v_{1} \quad v_{2} \quad \cdots \quad v_{n}$ under $T(G, \lambda)$ is denoted by $v^{\lambda}:=$ $v_{1} * v_{2} * \cdots * v_{n}$ and it is called a decomposable tensor. $V_{\lambda}^{n}(G)$ is called the symmetry class of tensors associated with G and λ, and the dimension of $V_{\lambda}^{n}(G)$ is

$$
\begin{equation*}
\operatorname{dim} V_{\lambda}^{n}(G)=\frac{\lambda(1)}{|G|} \sum_{\sigma \in G} \lambda(\sigma) m^{c(\sigma)} \tag{1.2}
\end{equation*}
$$

where $c(\sigma)$ is the number of cycles, including cycles of length one, in the disjoint cycle decomposition of σ, (see [7]). With respect to the induced inner product in ${ }^{n} V$, and the orthogonal relations for characters we have

$$
\begin{equation*}
{ }^{n} V=\bigoplus_{\chi \in I(G)} V_{\chi}^{n}(G) \tag{1.3}
\end{equation*}
$$

which is an orthogonal direct sum.
Let Γ_{m}^{n} be the set of all sequences $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), 1 \cdot \alpha_{i} \cdot m$, so α is a mapping from a set of n elements into a set of m elements. Then the group G acts on Γ_{m}^{n} by $\sigma \cdot \alpha:=\alpha \circ \sigma^{-1}, \sigma \in G$, which is a composition of two functions. Let $G_{\alpha}:=\{\sigma \in G \mid \sigma \cdot \alpha=\alpha\}$ be the stabilizer of α, and $O(\alpha)=\{\sigma \cdot \alpha \mid \sigma \in G\}$ be the orbit with representative α. In this setting we have $G_{\sigma \cdot \alpha}=\sigma G_{\alpha} \sigma^{-1}$, for all $\sigma \in G$.

Let Δ be a system of distinct representatives of the orbits of G acting on Γ_{m}^{n} and define

$$
\begin{equation*}
\bar{\Delta}=\left\{\alpha \in \Delta \mid \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) \neq 0\right\} . \tag{1.4}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an orthonormal basis of V. With respect to the induced inner product, one easily obtains the condition $e_{\gamma}^{\lambda}:=e_{\gamma_{1}} * e_{\gamma_{2}} \cdots * e_{\gamma_{n}} \neq 0$ if and only if $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in \bar{\Delta}$. Moreover we have:

$$
\left\langle e_{\alpha}^{\lambda} \mid e_{\beta}^{\lambda}\right\rangle= \begin{cases}\frac{\lambda(1)}{|G|} \sum_{\sigma \in G_{\beta}} \lambda\left(\sigma \tau^{-1}\right), & \text { if } \alpha=\tau \cdot \beta \text { for some } \tau \in \mathrm{G}, \tag{1.5}\\ 0, & \text { if } \mathrm{O}(\alpha) \neq \mathrm{O}(\beta) .\end{cases}
$$

For $\gamma \in \bar{\Delta}, V_{\gamma}^{\lambda}=\left\langle e_{\sigma \cdot \gamma}^{\lambda} \mid \sigma \in G\right\rangle$ is called the orbital subspace of $V_{\lambda}^{n}(G)$. In [3], Freese proved that

$$
\begin{equation*}
\operatorname{dim} V_{\gamma}^{\lambda}=\frac{\lambda(1)}{\left|G_{\gamma}\right|} \sum_{\sigma \in G_{\gamma}} \lambda(\sigma) \tag{1.6}
\end{equation*}
$$

In particular, if λ is a linear character of G, then $\operatorname{dim} V_{\gamma}^{\lambda}=1$ for all $\gamma \in \bar{\Delta}$. By the definition of V_{γ}^{λ}, it follows that

$$
\begin{equation*}
V_{\lambda}^{n}(G)=\bigoplus_{\gamma \in \bar{\Delta}} V_{\gamma}^{\lambda} \tag{1.7}
\end{equation*}
$$

is an orthogonal direct sum.
If $\alpha=\sigma \cdot \gamma$ and $\beta=\tau \cdot \gamma$, then $\sigma \tau^{-1} \cdot \beta=\alpha$, therefore using formula (1.5), we have:

$$
\begin{equation*}
<e_{\sigma \cdot \gamma}^{\lambda} \left\lvert\, e_{\tau \cdot \gamma}^{\lambda}>=\frac{\lambda(1)}{|G|} \sum_{\pi \in \tau G_{\gamma} \sigma^{-1}} \lambda(\pi) .\right. \tag{1.8}
\end{equation*}
$$

An orthogonal basis of the form $\left\{e_{\gamma}^{\lambda} \mid \gamma \in S\right\}$, where S is a subset of Γ_{m}^{n}, is called an orthogonal basis of decomposable symmetrized tensor for $V_{\lambda}^{n}(G)$, in this case we say that $V_{\lambda}^{n}(G)$ has an O-basis. By (1.7) $V_{\lambda}^{n}(G)$ has an O-basis if an only if V_{γ}^{λ} has an O-basis for all $\gamma \in \bar{\Delta}$. In particular, if λ is a linear character, since $\operatorname{dim} V_{\gamma}^{\lambda}=1$, for all $\gamma \in \Phi$, then V_{γ}^{λ} has an O-basis which implies that $V_{\lambda}^{n}(G)$ has an O-basis.

Several papers are devoted in investigation of the existence of an O-basis for $V_{\lambda}^{n}(G)$, for example [9]. In [5] a necessary and sufficient condition for the existence of an O-basis for $V_{\lambda}^{n}(G)$ is given, where G is a cyclic or a dihedral group. Also in [1] a necessary and sufficient condition for the existence of an O-basis for $V_{\lambda}^{n}(G)$ is given, where G is the dicyclic group, i.e. a group generated by two elements a and b such that $a^{2 n}=1, b^{2}=a^{n}, b^{-1} a b=a^{-1}$ and denoted by $T_{4 n}$ in [6]; and in [2] a necessary and sufficient condition for the existence of an O-basis for the symmetry classes of tensors associated with the direct and central product of some permutation groups is given. In this paper we study the symmetry classes of tensors associated with the groups $U_{6 n}$ and $V_{8 n}$, which are defined by generators and relations in [6]. We investigate the problem of finding necessary and sufficient conditions for the existence of an O-basis for the above mentioned groups. We also find the dimensions of the symmetry classes of tensors associated with them.

§2. The Group $U_{6 n}$

The group $U_{6 n}, n \geq 1$, is defined in [6] as a group generated by the elements a and b such that $a^{2 n}=b^{3}=1, a^{-1} b a=b^{-1}$, i.e., $U_{6 n}:=\langle a, b| a^{2 n}=b^{3}=1$, $\left.a^{-1} b a=b^{-1}\right\rangle$. It is obvious that $\langle b\rangle$ is a normal subgroup of $U_{6 n}$ and $U_{6 n}=$ $\langle b\rangle:\langle a\rangle \cong \mathbb{Z}_{3}: \mathbb{Z}_{2 n}$, which is isomorphism to the semi-direct product of a cyclic group of order 3 by a cyclic group of order $2 n$. This group is of order
$6 n$, and its elements are of the form $U_{6 n}=\left\{a^{r}, a^{r} b, a^{r} b^{2} \mid 0 \cdot r<2 n\right\}$. It is not hard to see that $U_{6 n}$ has $3 n$ conjugacy classes which are

$$
\left\{a^{2 r}\right\},\left\{a^{2 r} b, a^{2 r} b^{2}\right\},\left\{a^{2 r+1}, a^{2 r+1} b, a^{2 r+1} b^{2}\right\}, r=0,1, \ldots, n-1,
$$

and the character table of $U_{6 n}$ is:
Table I
The character table of $U_{6 n}$

$\left\|C_{U_{6 n}}(\sigma)\right\|$	$6 n$	$6 n$	$3 n$	$3 n$	$2 n$	$2 n$
σ	1	$a^{2 r}$	b	$a^{2 r} b$	a	$a^{2 r+1}$
χ_{j}	1	$\omega^{2 r j}$	1	$\omega^{2 r j}$	ω^{j}	$\omega^{(2 r+1) j}$
ψ_{k}	2	$2 \omega^{2 r k}$	-1	$-\omega^{2 r k}$	0	0

$$
\omega=\exp \left(\frac{2 \pi i}{2 n}\right), 1 \cdot r \cdot n-1,0 \cdot j \cdot 2 n-1,0 \cdot k \cdot n-1 .
$$

From the above table we see that $U_{6 n}$ has $2 n$ linear characters $\chi_{j}, 0$. $j \cdot 2 n-1$, and n non-linear irreducible characters $\psi_{k}, 0 \cdot k \cdot n-1$ of degree 2. Now we will embed this group in a suitable symmetric group. If $(12 \cdots 2 n)(2 n+12 n+2)$ and ($2 n+12 n+22 n+3$) are permutations in $S_{2 n+3}$, then it can be verified that the mapping $a \mapsto\left(\begin{array}{llll}1 & 2 & \cdots & 2 n\end{array}\right)(2 n+12 n+2)$, $b \mapsto(2 n+12 n+2 \quad 2 n+3)$, embeds $U_{6 n}$ in $S_{2 n+3}$. Now considering $U_{6 n}$ as a subgroup of $S_{2 n+3}$ we find the dimensions of the symmetry classes of tensors associated with the group $U_{6 n}$.

Theorem 1. Let $G=U_{6 n}, n \geq 1$ and let V be an m-dimensional inner product space. Then considering G as a subgroup of $S_{2 n+3}$ as above, we have the following formulae for the dimensions of the symmetry classes of tensors associated with $U_{6 n}$.

$$
\begin{aligned}
& \operatorname{dim} V_{\chi_{j}}^{2 n+3}(G)=\frac{m}{6 n}\left[\left(m^{2}+2\right) \sum_{l=0}^{n-1} \omega^{2 l j} m^{(2 l, 2 n)}+3 m \sum_{l=0}^{n-1} \omega^{(2 l+1) j} m^{(2 l+1,2 n)}\right], \\
& \operatorname{dim} V_{\psi_{k}}^{2 n+3}(G)=\frac{2 m\left(m^{2}-1\right)}{3 n} \sum_{l=0}^{n-1} \omega^{2 l k} m^{2(l, n)}, \\
& 0 \cdot j \cdot 2 n-1,0 \cdot k \cdot n-1,
\end{aligned}
$$

where $(0, n):=n$, and (k, n) denotes the greatest common divisor of k and n, and $\omega=\exp \left(\frac{2 \pi \mathrm{i}}{2 \mathrm{i}}\right)$.
Proof. Recall that for a permutation τ we let $c(\tau)$ denote the number of cycles in the cycle structure of τ including cycles of length one. Note that if τ is a cycle of length s and $(t, s)=d$, then τ^{t} has d cycles of length s / d and therefore $c\left(\tau^{t}\right)=d+c(\tau)-1$ so $c(1)=2 n+3, c\left(a^{2 r}\right)=(2 r, 2 n)+3$,
$c\left(a^{2 r} b\right)=(2 r, 2 n)+1$ and $c\left(a^{2 r+1}\right)=(2 r+1,2 n)+2$. Now using the character table of $U_{6 n}$ and the formula (1.2), the theorem holds.

Now we discuss the existence of an O-basis associated with the group $U_{6 n}$. Let V be an m-dimensional unitary space over the complex field, if $m=1$, then $\operatorname{dim}{ }^{2 n+3} V=1$, so $\operatorname{dim} V_{\lambda}^{2 n+3}\left(U_{6 n}\right)=0$ or 1 , therefore it is trivial that in the case of $\operatorname{dim} V=1$ an O-basis for every $\lambda \in I\left(U_{6 n}\right)$ exists. Therefore we assume that $m \geq 2$. As before, if χ is a linear character of G, since the orbital subspaces have dimension • 1, then the symmetry class of tensors associated with G and χ has an O-basis. Therefore we will consider non-linear irreducible complex characters of $U_{6 n}$, i.e. the characters $\psi_{k} 0 \cdot k \cdot n-1$.

Note that if $n=1$, then $U_{6} \cong S$ where $-=\{3,4,5\}$ and $S=\left\langle a_{1}=\right.$ $\left.\left(\begin{array}{ll}3 & 4\end{array}\right), b_{1}=\left(\begin{array}{lll}3 & 4 & 5\end{array}\right)\right\rangle$. In this case, we can consider ψ given by $\psi\left(a_{1}^{r} b_{1}^{s}\right):=$ $\psi_{0}\left(a^{r} b^{s}\right)$ as a nonlinear irreducible character of S. we have

$$
V_{\psi_{0}}^{5}\left(U_{6}\right)=V \quad V \quad V_{\psi}^{3}(S)
$$

Since S is 2-transitive by [4], $V_{\psi}^{3}(S)$ does not have an O-basis, therefore $V_{\psi_{0}}^{5}\left(U_{6}\right)$ does not have an O-basis.

Theorem 2. Let $G=U_{6 n}, \quad n \geq 1$, and $\psi=\psi_{k}, \quad 0 \cdot k \cdot n-1$ and let $m=\operatorname{dim} V \geq 2$. Then $V_{\psi}^{2 n+3}(G)$ is non zero and does not have an O-basis.

Proof. Take $\gamma:=(1, \overbrace{2,2, \ldots, 2}^{(2 n+1)-\text { times }}, 1) \in \Gamma_{m}^{2 n+3}$. Since G is generated by the permutations $a=(12 \cdots 2 n)(2 n+12 n+2)$ and $b=(2 n+12 n+22 n+3)$ we can conclude that $G_{\gamma}=1$, and by equation (1.6),

$$
\operatorname{dim} V_{\gamma}^{\psi}=\frac{2}{1} \cdot 2=4
$$

Therefore $V_{\psi}^{2 n+3}(G)$ is non zero. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an orthogonal basis of V. Now, by the equation (1.8), we have:

$$
<e_{\mu \cdot \gamma}^{\psi} \left\lvert\, e_{\tau \cdot \gamma}^{\psi}>=\frac{2}{6 n} \psi\left(\tau \mu^{-1}\right)\right.
$$

Since $\tau, \mu \in U_{6 n}$, we have $\tau=a^{j} b^{s}$ and $\mu=a^{k} b^{t}$, for some j, k, s and t in \mathbb{Z}, then using the formula (1.8), we obtain:

$$
<e_{\mu \cdot \gamma}^{\psi} \mid e_{\tau \cdot \gamma}^{\psi}>=0 \Leftrightarrow j+k \text { is odd and } s \equiv t(\bmod 3)
$$

Therefore from the set $\left\{e_{\sigma \cdot \gamma}^{\psi} \mid \sigma \in G\right\}$ we can choose at most two orthogonal vector, but $\operatorname{dim} V_{\gamma}^{\psi}=4$, hence V_{γ}^{ψ} does not have an O-basis. Whence $V_{\psi}^{2 n+3}\left(U_{6 n}\right)$ does have an O-basis.

§3. The Group $V_{8 n}$

In this section we define the group $V_{8 n}$, and we will study the existence of an O-basis for the symmetry classes of tensors associated with this group and irreducible characters of $V_{8 n}$. The dimensions of these symmetrized tensor spaces are also given.

Let n be a positive integer. The group $V_{8 n}$ is defined in [6] for n odd. But one can define it for arbitrary n as follows

$$
V_{8 n}:=\left\langle a, b \mid a^{2 n}=b^{4}=1, a b a=b^{-1}, a b^{-1} a=b\right\rangle .
$$

This group has order $8 n$ and in the following we will discuss its conjugacy classes and irreducible complex characters of $V_{8 n}$. Since our discuss in the cases of n even or odd differs, therefore first we will assume that n is odd. To describe the conjugacy classes and the irreducible characters of $V_{8 n}$ from [6] we see that $V_{8 n}$ has $2 n+3$ conjugacy classes which are

$$
\begin{aligned}
& \{1\},\left\{b^{2}\right\},\left\{a^{2 r+1}, a^{-2 r-1} b^{2}\right\}, \quad r=0, \ldots, n-1 \\
& \left\{a^{2 s}, a^{-2 s}\right\},\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}, \quad s=1, \ldots, \frac{n-1}{2} \\
& \left\{a^{j} b^{k}: j \text { even, } \mathrm{k}=1 \text { or } 3\right\}, \quad \text { and } \\
& \left\{a^{j} b^{k}: j \text { odd, } \mathrm{k}=1 \text { or } 3\right\} .
\end{aligned}
$$

The irreducible complex character table of $V_{8 n}$ has four linear characters $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$, and n characters $\psi_{j}, 0 \cdot j \cdot n-1$, of degree 2 , and a further $n-1$ characters $\phi_{j}, 1 \cdot j \cdot n-1$, of degree 2 as follows:

Table II
The character table of $V_{8 n} n$ odd

$\left\|C_{V_{8 n}}(\sigma)\right\|$	$8 n$	$8 n$	$4 n$	$4 n$	$4 n$	4	4
σ	1	b^{2}	$a^{2 r+1}$	$a^{2 s}$	$a^{2 s} b^{2}$	b	$a b$
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1	-1
χ_{3}	1	1	-1	1	1	1	-1
χ_{4}	1	1	-1	1	1	-1	1
	2	-2	$\omega^{2(2 r+1) j}-\omega^{-2(2 r+1) j}$	$\omega^{4 s j}+\omega^{-4 s j}$	$-\omega^{4 s j}-\omega^{-4 s j}$	0	0
1. ${ }^{j} \phi_{j}{ }^{\text {a }}$, $n-1$	2	2	$\omega^{(2 r+1) j}+\omega^{-(2 r+1) j}$	$\omega^{2 s j}+\omega^{-2 s j}$	$\omega^{2 s j}+\omega^{-2 s j}$	0	0
$\omega=\exp \left(\frac{2 \pi \mathrm{i}}{2 \mathrm{n}}\right), 0 \cdot \mathrm{r} \cdot \mathrm{n}-1, \quad 1 \cdot \mathrm{~s} \cdot \frac{\mathrm{n}-1}{2}$							

Now we embed $V_{8 n}$ in a suitable symmetric group. It is easy to see that
$a \longmapsto\left(\begin{array}{llll}1 & 2 & \cdots & 2 n\end{array}\right)(2 n+1 \quad 2 n+2 \cdots \quad 4 n)$ and
$b \longmapsto(1 \quad 2 \quad 2 n+1 \quad 2 n+2) \prod_{k=2}^{\frac{n+1}{2}}[(2 k-1 \quad 2(n-k)+4 \quad 2(n+k)-1 \quad 2(2 n-k)+4)$
$(2 k 2(2 n-k)+32(n+k) 2(n-k)+3)]$
gives an embedding of $V_{8 n}$ in $S_{4 n}$ so we assume that $V_{8 n}$ is a subgroup of $S_{4 n}$. We need the following observation for the proof of the next theorem. Suppose that t is an odd positive number and consider the disjoint sets $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$. Let $x=\left(a_{1} a_{2} \cdots a_{t}\right)$ and $y=$ $\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{t}\end{array}\right)$ be two cycles permuting elements of A and B respectively, and let $z=\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \cdots\left(a_{t} b_{t}\right)$ be a permutation on $A \cup B$. Then the permutation $x y z$ is a cycle of length $2 t$, and

$$
x y z=\left(\begin{array}{lllllllll}
a_{1} & b_{2} & a_{3} & \cdots & a_{t} & b_{1} & a_{2} & b_{3} & \cdots
\end{array} b_{t}\right)
$$

In the following theorem we find the dimensions of the symmetry classes of tensors associated with the group $V_{8 n}$.

Theorem 3. Let $G=V_{8 n}$, n odd, and let V be an m-dimensional inner product space. Then considering G as a subgroup of $S_{4 n}$, we have the following:

$$
\begin{aligned}
\operatorname{dim} V_{\chi 1}^{4 n}\left(V_{8 n}\right)=\frac{1}{4 n}\left[\sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}\right. & +\sum_{k=0}^{\frac{n-1}{2}}\left(m^{2(2 k, 2 n)}+m^{(2 k, 2 n)}\right) \\
& \left.+n m^{n}+n m^{2 n+1}-\frac{m^{4 n}+m^{2 n}}{2}\right]
\end{aligned}
$$

$$
\operatorname{dim} V_{\chi_{2}}^{4 n}\left(V_{8 n}\right)=\frac{1}{4 n}\left[\sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}+\sum_{k=0}^{\frac{n-1}{2}}\left(m^{2(2 k, 2 n)}+m^{(2 k, 2 n)}\right)\right.
$$

$$
\left.-n m^{n}-n m^{2 n+1}-\frac{m^{4 n}+m^{2 n}}{2}\right]
$$

$$
\operatorname{dim} V_{\chi_{3}}^{4 n}\left(V_{8 n}\right)=\frac{1}{4 n}\left[\sum_{k=0}^{n-1}-m^{2(2 k+1,2 n)}+\sum_{k=0}^{\frac{n-1}{2}}\left(m^{2(2 k, 2 n)}+m^{(2 k, 2 n)}\right)\right.
$$

$$
\left.+n m^{n}-n m^{2 n+1}-\frac{m^{4 n}+m^{2 n}}{2}\right]
$$

$\operatorname{dim} V_{\chi 4}^{4 n}\left(V_{8 n}\right)=\frac{1}{4 n}\left[\sum_{k=0}^{n-1}-m^{2(2 k+1,2 n)}+\sum_{k=0}^{\frac{n-1}{2}}\left(m^{2(2 k, 2 n)}+m^{(2 k, 2 n)}\right)\right.$ $\left.-n m^{n}+n m^{2 n+1}-\frac{m^{4 n}+m^{2 n}}{2}\right]$,
$\operatorname{dim} V_{\psi_{j}}^{4 n}\left(V_{8 n}\right)=\frac{1}{n}\left[\frac{m^{2 n}\left(m^{2 n}-1\right)}{2}+\sum_{k=1}^{\frac{n-1}{2}} m^{(2 k, 2 n)}\left(m^{(2 k, 2 n)}-1\right) \cos \frac{4 k \pi j}{n}\right]$,
$0 \cdot j \cdot n-1$.
$\operatorname{dim} V_{\phi_{j}}^{4 n}\left(V_{8 n}\right)=\frac{1}{n}\left[\frac{m^{2 n}\left(m^{2 n}+1\right)}{2}+\sum_{k=0}^{n-1} m^{2(2 k+1,2 n)} \cos \left(\frac{(2 k+1) \pi j}{n}\right)\right.$

$$
\left.+\sum_{k=1}^{\frac{n-1}{2}}\left(m^{2(2 k, 2 n)}+m^{(2 k, 2 n)}\right) \cos \left(\frac{2 k \pi j}{n}\right)\right]
$$

1. $j \cdot n-1$.

Here, $(0, n):=n$, and (k, n) denotes the greatest common divisor k and n.
Proof. As before, we know that if τ is a cycle of length s, then τ^{t} has (t, s) cycles and therefore $c\left(\tau^{t}\right)=(t, s)+c(\tau)-1$, where $c(\tau)$ denotes the number of cycles in the cycle structure of τ including cycles of length one. So $c(1)=4 n, c\left(b^{2}\right)=2 n, c\left(a^{2 k+1}\right)=2(2 k+1,2 n), c\left(a^{2 k}\right)=2(2 k, 2 n)$ and $c(b)=n$. Since the order of $a b$ is 2 by calculation we obtain the only fixed points of $a b$ are $n+1$ and $3 n+1$, hence $c(a b)=\frac{4 n-2}{2}+2=2 n+1$. Also we have $b^{2}=(12 n+1)(22 n+2) \cdots(2 n 4 n)$ and the permutation a is a product of two disjoint cycles $(12 \cdots 2 n)$ and $(2 n+12 n+2 \cdots 4 n)$. Since n is odd, by previous observation, one can show that $c\left(a^{2 k} b^{2}\right)=\frac{1}{2} c\left(a^{2 k}\right)=(2 k, 2 n)$. Using the character table of $V_{8 n}$, and the formula (1.2) the theorem follows.

Now we discuss the existence of an O-basis associated with the group $V_{8 n} n$ odd. As before, let V be an m-dimensional unitary space and $m \geq 2$. If $n=1, V_{8} \cong D_{8}$, the dihedral group, and by [5] the symmetry classes of tensor associated V_{8} has an O-basis.

Theorem 4. Let $G=V_{8 n}, n$ odd, $n \neq 1, \phi=\phi_{j}, 1 \cdot j \cdot n-1$. Assume that $m=\operatorname{dim} V \geq 2$. Then $V_{\phi}^{4 n}(G)$ is non-zero and does not have an O-basis. Proof. Take $\gamma:=(\overbrace{1,2,2,2, \ldots, 2}^{2 n \text {-times }}, \overbrace{1,1,2,2, \ldots, 2}^{2 n \text {-times }})=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{4 n}\right) \in \Gamma_{m}^{4 n}$, by the structure of permutations a and b in G, i.e., $a=\left(\begin{array}{ll}1 & \cdots\end{array}\right)(2 n+$ $12 n+2 \cdots 4 n)$ and

$$
\left.\left.\begin{array}{rl}
b= & \left(\begin{array}{cccc}
1 & 2 & 2 n+1 & 2 n+2 \\
3 & 2 n & 2 n+3 & 4 n
\end{array}\right) \\
& \left(\begin{array}{ccc}
& \left(\begin{array}{c}
4 n-1
\end{array}\right. & 2 n+4 \\
2 n-1
\end{array}\right) \\
& \left(\begin{array}{ccc}
& 2 n-2 & 2 n+5
\end{array} 4 n-2\right.
\end{array}\right)\right)
$$

one can conclude that $\langle a\rangle \cap G_{\gamma}=1$. Since $n \neq 1$, therefore $\langle b\rangle \cap G_{\gamma}=1$. Since $\left(a^{r} b\right)^{-1}(1) \neq 1,2 n+1,2 n+2$ for $r=1,2, \ldots, 2 n-2$ and $\left(a^{-1} b\right)^{-1}(2 n+$ $2)=2 n \neq 1,2 n+1,2 n+2$, hence $a^{r} b \notin G_{\gamma} \forall r \in \mathbb{Z}$. Since $\left(a^{r} b^{-1}\right)^{-1}(1) \neq$ $1,2 n+1,2 n+2$ for $r=1,2, \ldots, 2 n-2$ and $\left(a^{-1} b^{-1}\right)^{-1}(2 n+2)=b a(2 n+2)=$ $b(2 n+3)=4 n \neq 1,2 n+1,2 n+2$, hence $a^{r} b^{-1} \notin G_{\gamma} \forall r \in \mathbb{Z}$.
Also $\left(a^{r} b^{2}\right)^{-1}(1) \neq 1,2 n+1,2 n+2$ for $r=1,2, \ldots, 2 n-2$ and $\left(a^{-1} b^{2}\right)^{-1}(2 n+$ 1) $=b^{2} a(2 n+1)=b^{2}(2 n+2)=2 \neq 1,2 n+1,2 n+2$, hence $a^{r} b^{2} \notin G_{\gamma} \forall r \in \mathbb{Z}$. Conclude that $G_{\gamma}=1$. Therefore $\operatorname{dim} V_{\gamma}^{\phi}=4$. Hence $V_{\phi}^{4 n}(G)$ is non zero.

Now we let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be an orthonormal basis of V and calculate the inner product $\left\langle e_{\mu \cdot \gamma}^{\phi} \mid e_{\tau \cdot \gamma}^{\phi}\right\rangle$ for all $\mu, \tau \in V_{8 n}$. Let $\mu=a^{k} b^{s}$ and $\tau=a^{r} b^{t}$, then we have

$$
<e_{\mu \cdot \gamma}^{\phi} \left\lvert\, e_{\tau \cdot \gamma}^{\phi}>=\frac{2}{8 n} \phi\left(\tau \mu^{-1}\right)=\frac{1}{4 n} \phi\left(a^{k} b^{s-t} a^{-r}\right)\right.
$$

therefore from table II we get $\left\langle e_{\mu \cdot \gamma}^{\phi} \mid e_{\tau \cdot \gamma}^{\phi}\right\rangle=0 \Leftrightarrow|s-t|$ is odd. Hence we can choose at most two orthogonal vector from the set $\left\{e_{\sigma \cdot \gamma}^{\phi} \mid \sigma \in G\right\}$, therefore V_{γ}^{ϕ} does not have an O-basis. Hence $V_{\phi}^{4 n}\left(V_{8 n}\right)$ does not have an O-basis.

Theorem 5. Let $G=V_{8 n}, \quad n$ odd, and let $\psi=\psi_{j} 0 \cdot j \cdot n-1$. Assume that $m=\operatorname{dimV} \geq 2$, then $V_{\psi}^{4 n}(G)$ has an O-basis.
Proof. Let H be a subgroup of $G, \psi=\psi_{j} 0 \cdot j \cdot n-1$. Since $\psi_{j}(1)=2$, we have $<\psi \downarrow_{H}\left|1_{H}\right\rangle=0,1$ or 2 . If $\left\langle\psi \downarrow_{H} \mid 1_{H}\right\rangle=1$, then there is a linear non identity character χ of H such that $\chi=\psi \downarrow_{H}-1$. Since χ is a linear character, $|\chi(h)|=1$, for all $h \in H$. First we find the general form of the elements of H using only the condition $|\chi(h)|=|\psi(h)-1|=1$.

Since $\psi\left(b^{2}\right)-1=-2-1=-3$, we have $b^{2} \notin H$, i.e. $H \cap\langle b\rangle=1$. As before (n, j) denotes the greatest common divisor of n and j. Let $(n, j)=d$, one can conclude that the elements of H can only be chosen from the set:

$$
\left\{a^{t n / d}, a^{(2 t+1) n / d} b^{2}, a^{t} b, a^{t} b^{-1} \mid t \in \mathbb{Z}\right\} .
$$

Because from table II we see that $\psi\left(a^{(2 t+1) n / d}\right)=\psi\left(a^{(2 t+1) n / d} b^{2}\right)=\psi\left(a^{t} b^{ \pm 1}\right)=$ 0 and $\psi\left(a^{2 t n / d}\right)=2$. Since $\sum_{\sigma \in H} \psi(\sigma)=|H|$, therefore half of elements of H must be of the form $a^{2 t n / d}$, where $t \in \mathbb{Z}$. Hence the group H is a subgroup of $\left\langle a^{n / d}\right\rangle$ or $\left\langle a^{2 n / d}, a^{(2 k+1)} b^{ \pm 1}\right\rangle$, for some $k \in \mathbb{Z}$.

Now instead of H we consider G_{γ} as a subgroup of G. If $<\psi \downarrow_{G_{\gamma}} \mid 1_{G_{\gamma}}>=$ 1, we have $\operatorname{dim} V_{\gamma}^{\psi}=2$ and by the above remark $G_{\gamma} \cdot\left\langle a^{n / d}\right\rangle$, then $\left\{e_{\gamma}, e_{b \cdot \gamma}\right\}$ is an O-basis for V_{γ}^{ψ}. If $G_{\gamma} \cdot\left\langle a^{2 n / d}, a^{(2 k+1)} b\right\rangle$ or $G_{\gamma} \cdot\left\langle a^{2 n / d}, a^{(2 k+1)} b^{-1}\right\rangle$, then $\left\{e_{\gamma}, e_{a \cdot \gamma}\right\}$ is an O-basis for V_{γ}^{ψ}.

If $\left\langle\psi \downarrow_{H} \mid 1_{H}\right\rangle=2$, then H is a subgroup of ker ψ. Note that $\cos \left(\frac{\pi}{n} 4 s j\right)$ $= \pm 1$ if and only if $\frac{\pi}{n} 4 s j=k \pi$ for some $k \in \mathbb{Z}$, if and only if $\left.\frac{n}{d} \right\rvert\, 4 s$, therefore ker $\psi \cdot\left\langle a^{4 n / d}\right\rangle$. In this case $\operatorname{dimV}_{\gamma}^{\psi}=4$ and the set $\left\{e_{\gamma}, e_{a^{n / d} \cdot \gamma}, e_{b \cdot \gamma}, e_{a^{n / d} b \cdot \gamma}\right\}$
is an O-basis of V_{γ}^{ψ}. The theorem now follows. Note that the order of $a^{\frac{2 n}{d}}$ is d and $\psi\left(a^{2 r+1}\right)=-\psi\left(a^{-(2 r+1)}\right), \quad r \in \mathbb{Z}$.

Now we assume that n is even. In this case the group $G=V_{8 n}$ has $2 n+6$ conjugacy classes which are:

$$
\begin{array}{ll}
\{1\},\left\{b^{2}\right\},\left\{a^{n}\right\},\left\{a^{n} b^{2}\right\}, & \\
\left\{a^{2 r+1}, a^{-(2 r+1)} b^{2}\right\}, & s=0,1, \ldots, n-1 \\
\left\{a^{2 s}, a^{-2 s}\right\},\left\{a^{2 s} b^{2}, a^{-2 s} b^{2}\right\}, & s=1, \ldots, n / 2-1 \\
\left\{a^{2 k} b^{(-1)^{k}} \mid 0 \cdot k \cdot n-1\right\}, & \\
\left\{a^{2 k} b^{\left.(-1)^{k+1} \mid 0 \cdot k \cdot n-1\right\},}\right. & \\
\left\{a^{2 k+1} b^{(-1)^{k}} \mid 0 \cdot k \cdot n-1\right\}, & \\
\left\{a^{2 k+1} b^{(-1)^{k+1}} \mid 0 \cdot k \cdot n-1\right\} . &
\end{array}
$$

The derived subgroup of G is $\left\langle a^{2} b^{2}\right\rangle$, hence G has eight linear characters $\chi_{1}, \chi_{2}, \ldots, \chi_{8}$. Since $H=\left\langle b^{2}\right\rangle$ is a normal subgroup of G and $G / H \cong D_{4 n}$, we obtained $n-1$ irreducible characters $\psi_{j} 1 \cdot j \cdot n-1$, of degree 2 . Since b^{2} is not in the derived subgroup and $\left(b^{2}\right)^{2}=1$, there exists a linear character χ_{2} such that $\chi_{2}\left(b^{2}\right)=-1$. The product of the linear character χ_{2} with ψ_{j}, gives further $n-1$ irreducible characters $\psi_{j} \cdot \chi_{2}, 1 \cdot j \cdot n-1$, of degree 2 . Since character values in cases $n \equiv 0(\bmod 4)$ and $n \equiv 2(\bmod 4)$ differ, therefore we distinguish these cases and give the character table of $V_{8 n}$ in Table III and Table IV respectively.

The embedding of G in $S_{4 n}, \quad n=$ even, is different from the case $n=o d d$. In this case if we take the following permutations in $S_{4 n}$,
$a \mapsto(12 \cdots 2 n)(2 n+12 n+2 \cdots 4 n)$, and
$b \mapsto\left(\begin{array}{llll}1 & 2 & 2 n+1 & 2 n+2\end{array}\right)\left[\prod_{k=2}^{n / 2}(2 k-1 \quad 2(n-k)+4 \quad 2(n+k)-1 \quad 2(2 n-k)+4)\right.$
$(2 k 2(2 n-k)+32(n+k) 2(n-k)+3)](n+1 n+23 n+13 n+2)$, then we see that we have a monomorphism of G into $S_{4 n}$. So we assume that G is a subgroup of $S_{4 n}$. Take - $=\{\{1,2 n+1\},\{2,2 n+2\}, \ldots,\{2 n, 4 n\}\}$. The group G / H acts on - by $\sigma H \cdot\{i, 2 n+i\}:=\{\sigma(i), \sigma(2 n+i)\}$ and this action is faithful. We put $i:=\{i, 2 n+i\}, 1 \cdot i \cdot 2 n$, and consider G / H as a subgroup of $S_{2 n}$, therefore the cycle structure of $a H$ and $b H$ on - are as follows:
$a H:=\left(\begin{array}{lll}1 & 2 & \cdots\end{array}\right)$ and $b H:=(12)(32 n)(42 n-1) \cdots(n n+3)(n+1 n+2)$.
Therefore we consider $D_{4 n}:=\langle a H, b H\rangle$ as a subgroup of $S_{2 n}$.
Let $G=V_{8 n}, n$ even, and $H=\left\{1, b^{2}\right\}, \psi=\psi_{j}, 1 \cdot j \cdot n-1$. Since H. ker ψ the character $\bar{\psi}(\sigma H)=\psi(\sigma)$ is an irreducible character of $G / H=D_{4 n}$. Let W be a p-dimensional inner product space, $p \geq 2$. Let $\gamma=(1,1,2,2, \ldots, 2)$ be in $\Gamma_{p}^{2 n}$ and note that $b H \in\left(D_{4 n}\right)_{\gamma}$ special one can conclude that $\left(D_{4 n}\right)_{\gamma}=$
$\{1, b H\}$. Similar to the proof of (Theorem 3.1, [5]), if $W_{\gamma}^{\overline{\psi_{j}}}\left(D_{4 n}\right)$ has an O basis, then $\bar{\psi}_{j}\left(a^{k}\right)=2 \cos \frac{2 \pi j k}{2 n}=0$ for some k in \mathbb{Z}. In other words $\frac{2 \pi j k}{2 n}=$ $(2 l+1) \frac{\pi}{2}$ for some integer l. This implies $2 j_{2}$ divide n, where $j=j_{2} j_{2^{\prime}}, j_{2^{\prime}}$ odd and j_{2} a power of 2 , i.e.,

$$
\begin{equation*}
W_{\gamma}^{\overline{\psi_{j}}}\left(D_{4 n}\right) \text { has an } O \text {-basis } \Rightarrow 2 n \equiv 0\left(\bmod 4 j_{2}\right) \tag{3.1}
\end{equation*}
$$

Theorem 6. Let $G=V_{8 n}$ and assume that $\operatorname{dim} \mathrm{V} \geq 2$. Then ${ }^{4 n} V$ has an O-basis if and only if n is a power of 2.
Proof. For $\psi=\psi_{j}, 1 \cdot j \cdot n-1$ and $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, \beta_{1}, \beta_{2}, \ldots, \beta_{2 n}\right) \in \Gamma_{m}^{4 n}$, we may assume that $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 n}\right)$ are elements of $\Gamma_{m}^{2 n}$ and therefore we will set $(\alpha, \beta):=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, \beta_{1}, \beta_{2}, \ldots, \beta_{2 n}\right)$. In this setting we have:

$$
\begin{aligned}
& e_{(\alpha, \beta)}^{\psi}=\frac{\psi(1)}{|G|} \sum_{\sigma \in G} \psi(\sigma) e_{\sigma \cdot(\alpha, \beta)} \\
& =\frac{\psi(1) \frac{1}{|G|}}{\mid T)^{2}}\left[\sum_{\sigma \in G} \psi(\sigma) e_{\sigma \cdot(\alpha, \beta)}+\sum_{\sigma \in G} \psi\left(\sigma b^{2}\right) e_{\sigma b^{2} \cdot(\alpha, \beta)}\right] \\
& =\frac{\left.\psi(1) \frac{1}{|G|} \sum_{\sigma \in G} \psi(\sigma)\left[\begin{array}{lll}
e_{\sigma \cdot \alpha} & e_{\sigma \cdot \beta}+e_{\sigma \cdot \beta} & e_{\sigma \cdot \alpha}
\end{array}\right], ~\right]}{} \\
& =\frac{\psi(1)}{|G| \frac{1}{2}} \sum_{\bar{\sigma} \in G / H} 2 \psi(\bar{\sigma})\left[\begin{array}{lll}
e_{\bar{\sigma} \cdot \alpha} & e_{\bar{\sigma} \cdot \beta}+e_{\bar{\sigma} \cdot \beta} & e_{\bar{\sigma} \cdot \alpha}
\end{array}\right] \\
& =\frac{\bar{\psi}(1)}{|G / H|} \sum_{\bar{\sigma} \in G / H} \psi(\bar{\sigma}) \frac{1}{2}\left[\begin{array}{lll}
e_{\bar{\sigma} \cdot \alpha} & e_{\bar{\sigma} \cdot \beta}+e_{\bar{\sigma} \cdot \beta} & e_{\bar{\sigma} \cdot \alpha}
\end{array}\right]
\end{aligned}
$$

specially, when $\alpha=\beta$, we have

$$
e_{(\alpha, \alpha)}^{\psi}=\frac{\bar{\psi}(1)}{|G / H|_{\bar{\sigma} \in G / H}} \sum \psi(\bar{\sigma}) e_{\bar{\sigma} \cdot \alpha} \quad e_{\bar{\sigma} \cdot \alpha} .
$$

Hence $\left\langle e_{(\alpha, \alpha)}^{\psi}\right| e_{(\beta, \beta)}^{\psi}>=0$ if and only if $\left\langle e_{\alpha}^{\bar{\psi}} \mid e_{\beta}^{\bar{\psi}}\right\rangle=0$, moreover

$$
\operatorname{dim} V_{(\alpha, \alpha)}^{\psi}=\frac{\psi(1)}{\left|G_{(\alpha, \alpha)}\right|} \sum_{\sigma \in G_{(\alpha, \alpha)}} \psi(\sigma)=\frac{\bar{\psi}(H)}{\left|(G / H)_{\alpha}\right|} \sum_{\bar{\sigma} \in(G / H)_{\alpha}} \bar{\psi}(\sigma)=\operatorname{dim} V_{\alpha}^{\bar{\psi}}
$$

Therefore $V_{\alpha}^{\bar{\psi}}$ has an O-basis if and only if $V_{(\alpha, \alpha)}^{\psi}$ has an O-basis. Note that $b^{2} \in G_{(\alpha, \alpha)}$ and the stabilizer of α under $G /\left\langle b^{2}\right\rangle$ is $G_{(\alpha, \alpha)} /\left\langle b^{2}\right\rangle$.

If $V_{\psi}^{4 n}(G)$ has an O-basis, then for every $\gamma \in \Gamma_{m}^{2 n}, \quad V_{(\gamma, \gamma)}^{4 n}$ has an O-basis. Hence by the above remark we obtain an O-basis for $V_{\gamma}^{\bar{\psi}}$. So $V_{\bar{\psi}}^{2 n}(G / H)$ has
an O-basis. If $\psi=\psi_{j}$ and $j=j_{2} j_{2^{\prime}}$ where $j_{2^{\prime}}$ is the odd part of j and j_{2} is a power of 2 , then by formula (3.1) we have $2 n \equiv 0\left(\bmod 4 j_{2}\right)$, which holds all j from $1,2, \ldots, n-1$. This implies that n is a power of 2 .

Conversely, assume that n is a power of 2 , and $\psi=\psi_{j}\left(\right.$ or $\left.\psi_{j} \cdot \chi_{2}\right)$. Let $\gamma=(\alpha, \beta) \in \bar{\Delta}$, where $\alpha, \beta \in \Gamma_{m}^{2 n}$. If $\alpha=\beta$, by the above remark $V_{\gamma}^{\psi_{j}}$ has an O-basis and

$$
\begin{aligned}
e_{(\alpha, \alpha)}^{\psi \cdot \chi_{2}} & =\frac{\psi(1) \cdot \chi_{2}(1)}{G \mid} \sum_{\sigma \in G} \psi(\sigma) \chi_{2}(\sigma) e_{\sigma \cdot(\alpha, \alpha)} \\
& =\frac{\psi(1)}{|G|} \frac{1}{2}\left[\sum_{\sigma \in G} \psi(\sigma) \chi_{2}(\sigma) e_{\sigma \cdot(\alpha, \alpha)}+\sum_{\sigma \in G} \psi\left(\sigma b^{2}\right) \chi_{2}\left(\sigma b^{2}\right) e_{\sigma b^{2} \cdot(\alpha, \alpha)}\right. \\
& =\frac{\psi(1)}{|G|} \frac{1}{2} \sum_{\sigma \in G} \psi(\sigma) \chi_{2}(\sigma)\left[\begin{array}{lll}
e_{\sigma \cdot \alpha} & e_{\sigma \cdot \alpha}-e_{\sigma \cdot \alpha} & e_{\sigma \cdot \alpha}
\end{array}\right]=0,
\end{aligned}
$$

hence $V_{\gamma}^{\psi_{j} \cdot \chi_{2}}=0$.
If $\alpha \neq \beta$, then $b^{2} \in G_{\gamma}$ which implies that $\langle b\rangle \bigcap G_{\gamma}=1$. As in the proof of Theorem $5,<\psi \downarrow_{G_{\gamma}} \mid 1_{G_{\gamma}}>=0,1$ or 2 .

If $<\psi \downarrow_{G_{\gamma}} \mid 1_{G_{\gamma}}>=2$, then $G_{\gamma} \cdot k e r \psi$ and by the formula (1.6), $\operatorname{dim} V_{\gamma}^{\psi}=4$. Using the character table of $V_{8 n}$, Tables III and IV, we obtain $G \cdot\left\langle a^{\frac{2 n}{j_{2}}}\right\rangle$. In this case, using formula (1.8) and Tables III and IV one can show that the set $\left\{e_{\gamma}, e_{b \cdot \gamma}, e_{a^{2} \frac{n}{\bar{\eta}_{2}} \cdot \gamma}, e_{a^{\frac{n}{2_{2}}} b^{-1} \cdot \gamma}\right\}$ is an orthogonal basis for $V_{\gamma}^{\psi}(G)$. Hence $V_{\gamma}^{\psi}(G)$ has an O-basis.

If $<\psi \downarrow_{G_{\gamma}} \mid 1_{G_{\gamma}}>=1$, then $\psi \downarrow_{G_{\gamma}}-1$ is a non-identity linear character of G_{γ}, and the norm $|\psi(x)-1|=1$, i.e. $\psi(x)=0$ or 2 for all $x \in G_{\gamma}$. By formula (1.6), $\operatorname{dim} V_{\gamma}^{\psi}=2$. From here on we must deal with the cases $\psi=\psi_{j}$ and $\psi_{j} \cdot \chi_{2}$ separately. First assume that $\psi=\psi_{j}, 1 \cdot j \cdot n-1$. The elements of G_{γ} are of the form $\left\{a^{(2 t+1) \frac{n}{2 j_{2}}}, a^{(2 t+1) \frac{n}{2 j_{2}}} b^{2}, a^{t} b^{ \pm 1} \mid t \in \mathbb{Z}\right\}$ on which the value of ψ is zero, and $\left\{a^{2 t \frac{n}{j_{2}}}, \left.a^{2 t \frac{n}{\bar{j}_{2}}} b^{2} \right\rvert\, t \in \mathbb{Z}\right\}$ on which the value of ψ is 2 . The equality $\sum_{\sigma \in G_{\gamma}} \psi(\sigma)=\left|G_{\gamma}\right|$ implies that the values of ψ on exactly half of elements of G_{γ} must be zero. If $a^{t} b^{ \pm 1} \in G_{\gamma}$, then $\left(a^{t} b^{ \pm 1}\right)^{2}=1$ or b^{2}, and since $b^{2} \notin G_{\gamma}$ therefore t must be odd. Therefore $G_{\gamma} \cdot\left\langle a^{\frac{2 n}{j_{2}}}\right\rangle \cdot K$ or $\left\langle a^{\frac{2 n}{j_{2}}} b^{2}\right\rangle \cdot K$, where $K=\left\langle a^{\frac{n}{2 j_{2}}}\right\rangle$ or $\left\langle a^{\frac{n}{2 j_{2}}} b^{2}\right\rangle$ or $\left\langle a^{(2 t+1)} b^{ \pm 1}\right\rangle$. In the case $K=\left\langle a^{(2 t+1)} b^{ \pm 1}\right\rangle$, the set $\left\{e_{\gamma}, e_{a^{\frac{n}{z_{2}} \cdot \gamma}}\right\}$ and in other cases $\left\{e_{\gamma}, e_{b \cdot \gamma}\right\}$ is an orthogonal for V_{γ}^{ψ}. Hence V_{γ}^{ψ} has an O-basis.

If $\psi=\psi_{j} \cdot \chi_{2}$, similar to the previous case, G_{γ} is a subgroup of the form $\left\langle a^{\frac{n}{J_{2}}}\right\rangle \cdot K$ where $K=\left\langle a^{(2 t+1)} b^{ \pm 1}\right\rangle$ or $\left\langle a^{(2 t+1) \frac{n}{2 J_{2}}}\right\rangle$ or $\left\langle a^{(2 t+1) \frac{n}{2 J_{2}}} b^{2}\right\rangle$. If $K=\left\langle a^{(2 t+1)} b^{ \pm 1}\right\rangle$ take the set $\left\{e_{\gamma}, e_{a^{\frac{n}{2 j 2} \cdot \gamma}}\right\}$ and the other cases the set $\left\{e_{\gamma}, e_{b \cdot \gamma}\right\}$ are the orthogonal basis for V_{γ}^{ψ}.

Theorem 7. Let $G=V_{8 n}$, n even. Assume $m=\operatorname{dim} \mathrm{V} \geq 2$. Then the dimensions of symmetry classes of tensors associated with G and the irreducible characters of G are:

$$
\begin{aligned}
& \operatorname{dim} V_{\chi 1}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}+n m^{2 n+2}+(3+n) m^{2 n}+2 n m^{n}\right. \\
& \left.+2 \sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}+4 \sum_{s=1}^{n / 2-1} m^{2(2 s, 2 n)}\right\}, \\
& \operatorname{dim} V_{\chi 2}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}-n m^{2 n+2}+(n-1) m^{2 n}\right\}, \\
& \operatorname{dim} V_{\chi_{3}}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}+n m^{2 n+2}+(3+n) m^{2 n}-2 n m^{n}\right. \\
& \left.+4 \sum_{s=1}^{n / 2-1} m^{2(2 s, 2 n)}-2 \sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}\right\}, \\
& \operatorname{dim} V_{\chi_{4}}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}-n m^{2 n+2}+(n-1) m^{2 n}\right\}, \\
& \operatorname{dim} V_{\chi_{5}}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}-n m^{2 n+2}+(3-n) m^{2 n}-2 n m^{n}\right. \\
& \left.+4 \sum_{s=1}^{n / 2-1} m^{2(2 s, 2 n)}+2 \sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}\right\}, \\
& \operatorname{dim} V_{\chi 6}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}+n m^{2 n+2}-(n+1) m^{2 n}\right\}, \\
& \operatorname{dim} V_{\chi 7}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}-n m^{2 n+2}-(n-3) m^{2 n}+2 n m^{n}\right. \\
& \left.+4 \sum_{s=1}^{n / 2-1} m^{2(2 s, 2 n)}-2 \sum_{k=0}^{n-1} m^{2(2 k+1,2 n)}\right\}, \\
& \operatorname{dim} V_{\chi 8}^{4 n}(G)=\frac{1}{8 n}\left\{m^{4 n}+n m^{2 n+2}-(n+1) m^{2 n}\right\},
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{dim} V_{\psi_{j}}^{4 n}(G)=\frac{1}{4 n}\left\{2 m^{4 n}+2\left(1+2(-1)^{j}\right) m^{2 n}+8 \sum_{s=1}^{n / 2-1} m^{2(2 s, 2 n)} \cos \frac{2 \pi s j}{n}\right. \\
\left.+4 \sum_{k=0}^{n-1} m^{2(2 k+1,2 n)} \cos \frac{\pi j(2 k+1)}{n}\right\},
\end{array}
$$

$$
\operatorname{dim} V_{\psi_{j} \cdot \chi_{2}}^{4 n}(G)=\frac{1}{4 n}\left\{\left(2 m^{4 n}-2 m^{2 n}\right)\right\}
$$

where $1 \cdot j \cdot n-1$.
Proof. Similarly to the proof of the Theorem 3, note that $c(1)=4 n$, $c\left(b^{2}\right)=c\left(a^{n}\right)=c\left(a^{n} b^{2}\right)=2 n, c\left(a^{r}\right)=2(r, 2 n), c\left(a^{4 s} b^{2}\right)=2(4 s, 2 n)$, $c\left(a^{4 t+2} b^{2}\right)=2(4 t+2,2 n), c\left(b^{ \pm 1}\right)=n, c(a b)=2 n$ and $c\left(a b^{-1}\right)=2 n+2$.

Acknowledgement: The authors would like to thank the referee for his valuable comments which improved the present paper.

$\|C l(\sigma)\|$	1	1	1	1	2	2	2	2	2	2	n	n	n	n
σ	1	b^{2}	a^{n}	$a^{n} b^{2}$	$a^{4 k+1}$	$a^{4 k+3}$	$a^{4 s}$	$a^{4 t+2}$	$a^{4 s} b^{2}$	$a^{4 t+2} b^{2}$	b	b^{-1}	$a b$	$a b^{-1}$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	-1	i	-i	1	-1	-1	1	-i	i	1	-1
χ_{3}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1
χ_{4}	1	-1	1	-1	-i	i	1	-1	-1	1	i	-i	1	-1
χ_{5}	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
$\chi 6$	1	-1	1	-1	i	-i	1	-1	-1	1	i	-i	-1	1
χ_{7}	1	1	1	1	-1	-1	1	1	1	1	1	1	-1	-1
χ_{8}	1	-1	1	-1	-i	i	1	-1	-1	1	-i	i	-1	1
ψ_{j}	2	2	$2(-1)^{j}$	$2(-1)^{j}$	$\alpha^{j(4 k+1)}$	$\alpha^{j(4 k+3)}$	$\alpha^{j(4 s)}$	$\alpha^{j(4 t+2)}$	$\alpha^{j(4 s)}$	$\alpha^{j(4 t+2)}$	0	0	0	0
$\psi_{j} \cdot \chi_{2}$	2	-2	$2(-1)^{j}$	$-2(-1)^{j}$	$i \alpha^{j(4 k+1)}$	$-i \alpha^{j(4 k+3)}$	$\alpha^{j(4 s)}$	$-\alpha^{j(4 t+2)}$	$-\alpha^{j(4 s)}$	$\alpha^{j(4 t+2)}$	0	0	0	0

[^0]| Table IV
 The character table of $V_{8 n}, \quad n \equiv 2(\bmod 4)$, | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| \mid \| \mid ll $(\sigma) \mid$ | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | n | n | n | n |
| σ | 1 | b^{2} | a^{n} | $a^{n} b^{2}$ | $a^{4 k+1}$ | $a^{4 k+3}$ | $a^{4 s}$ | $a^{4 t+2}$ | $a^{4 s} b^{2}$ | $a^{4 t+2} b^{2}$ | b | b^{-1} | $a b$ | $a b^{-1}$ |
| $\chi 1$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| χ_{2} | 1 | -1 | -1 | 1 | i | -i | 1 | -1 | -1 | 1 | -i | i | 1 | -1 |
| χ_{3} | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 |
| χ_{4} | 1 | -1 | -1 | 1 | -i | i | 1 | -1 | -1 | 1 | i | -i | 1 | -1 |
| χ_{5} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| $\chi 6$ | 1 | -1 | -1 | 1 | i | -i | 1 | -1 | -1 | 1 | i | -i | -1 | -1 |
| χ_{7} | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 |
| $\chi 8$ | 1 | -1 | -1 | 1 | -i | i | 1 | -1 | -1 | 1 | -i | i | -1 | 1 |
| ψ_{j} | 2 | 2 | $2(-1)^{j}$ | $2(-1)^{j}$ | $\alpha^{j(4 k+1)}$ | $\alpha^{j(4 k+3)}$ | $\alpha^{j(4 s)}$ | $\alpha^{j(4 t+2)}$ | $\alpha^{j(4 s)}$ | $\alpha^{j(4 t+2)}$ | 0 | 0 | 0 | 0 |
| $\psi_{j} \cdot \chi_{2}$ | 2 | -2 | $-2(-1)^{j}$ | $2(-1)^{j}$ | $i_{\alpha^{j(4 k+1)}}$ | $-i \alpha^{j(4 k+3)}$ | $\alpha^{j(4 s)}$ | $-\alpha^{j(4 t+2)}$ | $-\alpha^{j(4 s)}$ | $\alpha^{j(4 t+2)}$ | 0 | 0 | 0 | 0 |

[^1]
References

[1] M.R. Darafsheh, M.R. Pournaki, On the Orthogonal basis of the symmetry classes of tensors associated with the dicyclic group, Linear and Multilinear Algebra, 47 (2000), no.2, 137-149.
[2] M.R. Darafsheh, N.S. Poursalavati, Orthogonal basis of the symmetry classes of tensors associated with the direct product of permutation groups, Pure Mathematics and Applications, 10 (1999), no.3, 241-248.
[3] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl., 7 (1973), 337-345.
[4] R.R. Holmes, Orthogonal bases of symmetrized tensor spaces, Linear and Multilinear Algebra, 39 (1995), 241-243.
[5] R.R. Holmes, T.-Y. Tam, Symmetry classes of tensors associated with certain groups, Linear and Multilinear Algebra, 32 (1992), 21-31.
[6] G. James, M. Liebeck, "Representations and characters of groups", Cambridge University Press, 1993.
[7] M. Marcus, "Finite dimensional multilinear algebra", part I, Marcel Dekker, New York, 1973.
[8] R. Merris, "Multilinear Algebra", Gordon and Breach science publishers, 1997.
[9] B.Y. Wang, M.P. Gonge, The subspace and orthonormal bases of symmetry classes of tensors, Linear and Multilinear Algebra, 30 (1991), 195-204.
M.R. Darafsheh

Department of Mathematics and Computer Science, Faculty of Science,
University of Tehran, Tehran, Iran
E-mail: daraf@khayam.ut.ac.ir
N.S. Poursalavati

Faculty of Mathematics and Computer Science, University of Kerman, Kerman, Iran
E-mail: salavati@arg3.uk.ac.ir

[^0]: $\alpha^{j r}=\omega^{j r}+\omega^{-j r}=2 \cos \left(\frac{\pi j r}{n}\right), \quad \omega=\exp \left(\frac{2 \pi i}{2 n}\right) ;$
 $0 \cdot k \cdot n / 2-1,1 \cdot s \cdot n / 4-1,0 \cdot t \cdot n / 4-1,1 \cdot j \cdot n-1$.

[^1]: $\alpha^{j r}=\omega^{j r}+\omega^{-j r}=2 \cos \left(\frac{\pi j r}{n}\right), \omega=\exp \left(\frac{2 \pi i}{2 n}\right) ;$
 $0 \cdot k \cdot n / 2-1,1 \cdot s \cdot n / 4-1,0 \cdot t \cdot n / 4-1,1 \cdot j \cdot n-1$.

