On certain simple cycles of the Collatz conjecture

Tomoaki Mimuro

(Received July 3, 2001; Revised October 20, 2001)

Abstract

The Collatz conjecture is that there exists a positive integer n which satisfies $f^{n}(m)=1$ for any integer $m \geq 3$, where f is the function on the rational number field defined by $f(m)=m / 2$ if the numerator of m is even and $f(m)=(3 m+1) / 2$ if the numerator of m is odd. Let m be a rational number such that $f^{n}(m)=m>1$. Then we show that, if m has some simple sequences, then the total number of positive integer m is finite, by estimating $f(m)-m$.

AMS 1991 Mathematics Subject Classification. 10L10, 10A40.
Key words and phrases. $3 x+1$ problem, Collatz conjecture, Syracuse-Algorithm, Diophantine equation.

§1. Introduction

We define a function f on the set of the positive integers by

$$
f(m)=\left\{\begin{array}{cl}
\frac{m}{2} & \text { if } m \text { is even } \\
\frac{3 m+1}{2} & \text { if } m \text { is odd }
\end{array}\right.
$$

The Collatz conjecture is that there exists a positive integer n which satisfies $f^{n}(m)=(f \circ \cdots \circ f)(m)=1$ for any integer $m \geq 3$. We call m the "startingnumber" and the smallest n the "total-sequence".

This conjecture is equivalent to the next two conditions for every odd integer m :
(1) $f^{n}(m) \neq m$ for any $n \geq 1$. (If $f^{n}(m)=m$ holds, then we call m a "cyclenumber".)
(2) m has total-sequence. $\left(f^{n}(m)\right.$ dose not diverge.)

We consider (1) and assume that m is odd, since even number is mapped to an odd number by iterating f. We know only one integral cycle-number: $m=1$. We call one the "trivial-cycle".
Let m be a cycle-number. We define the numbers $l_{i}(i \geq 0)$ and $m_{i}(i \geq 1)$ by the following rules:
(i) We put $l_{0}=0$ and $m_{1}=m$.
(ii) For $i \geq 1, l_{i}$ is the least positive integer such that $f^{l_{i}}\left(m_{i}\right)$ is odd.
(iii) We put $m_{i+1}=f^{l_{i}}\left(m_{i}\right)$.

If $m=m_{1}=m_{k+1}$, then we call k "odd-cycle-sequence". We write

$$
m_{1}=\left\langle l_{1}, l_{2}, \cdots, l_{k}\right\rangle .
$$

We can easily see that

$$
\begin{equation*}
m_{i}=\left\langle l_{i}, l_{i+1}, \cdots, l_{k}, l_{1}, \cdots, l_{i-1}\right\rangle . \quad(i=1, \cdots, k) \tag{1.1}
\end{equation*}
$$

We can write trivial-cycle

$$
1=\langle 2\rangle .
$$

If m is a cycle-number, and $f^{n}(m)=m$, then we call n a "cycle-sequence". We can easily see that

$$
n=\sum_{i=1}^{k} l_{i} .
$$

Theorem 1.1. Let $m=\left\langle l_{1}, l_{2}, \cdots, l_{k}\right\rangle$ and $l_{0}=0$. Then we have

$$
\begin{equation*}
m=\frac{\sum_{i=1}^{k} 3^{k-i} \cdot 2^{\sum_{j=0}^{i-1} l_{j}}}{2^{n}-3^{k}} \tag{1.2}
\end{equation*}
$$

Theorem 1.1 was proved in [1]. The theorem shows that every cycle-number has a rational expression. So we can generalize the Collatz conjecture to rational numbers. That is, we define a function

$$
f\left(\frac{a}{b}\right)=\left\{\begin{array}{cl}
\frac{a}{2 b} & \text { if } a \text { is even } \\
\frac{3 a+b}{2 b} & \text { if } a \text { is odd }
\end{array}\right.
$$

for a / b, where a, b are positive integers such that $(a, b)=1$. Then the rational version of the Collatz conjecture is that there exists a positive integer n which satisfies $f^{n}(a / b)=1$. Except for the trivial-cycle, we know by Theorem 1.1 that there are many cycle-numbers for the rational version of the Collatz
conjecture. The cycle-numbers for the original Collatz conjecture are integral cycle-numbers for the rational version of the Collatz conjecture. Therefore, the Collatz conjecture can be reduced to a problem of an exponential indeterminate equation on positive integers.

To consider the integral case, we must know when (1.2) becomes an integer. If we consider the case $2^{n}-3^{k}=1$ for example, we have the following:

Theorem 1.2. The exponential indeterminate equation $2^{n}-3^{k}=1$ has only one positive integral solution $(n, k)=(2,1)$.

Proof. Let $n \geq 3$, then $2^{n}-3^{k} \equiv-3^{k} \equiv-3$ or $-1 \not \equiv 1$ (mod. 8).
This solution $(n, k)=(2,1)$ corresponds to $1=\langle 2\rangle$. And, the following theorem is a result in the special case, too:

Theorem 1.3. Suppose $m=\left\langle 1,1,1, \cdots, 1, l_{k}\right\rangle$ is an integral cycle-number, then $m=1=\langle 2\rangle$.

Theorem 1.3 was proved in [2]. We shall prove the next two theorem in Section 3 , and 4.

Theorem 1.4. Let m be a cycle-number, n the cycle-sequence, and k the odd-cycle-sequence. If $3 / 4 \geq 3^{k} / 2^{n}$, then $m_{1}=\langle 1, \cdots, 1, l, \cdots, l\rangle$ is not a positive integer.

Theorem 1.5. Let m be a cycle-number, n the cycle-sequence, and k the odd-cycle-sequence. If $1>3^{k} / 2^{n}>3 / 4$, then the total number of positive integer of $m_{1}=\langle 1, \cdots, 1, l, \cdots, l\rangle$ is finite.

Combining Theorem 1.4 and Theorem 1.5, we have
Theorem 1.6. The total number of positive integer of $m_{1}=\langle 1, \cdots, 1, l, \cdots, l\rangle$ is finite.

This theorem is a generalization of Theorem 1.3.

§2. Some lemmas

Lemma 2.1. Let $\left\langle l_{1}, l_{2}, \cdots, l_{k}\right\rangle=m_{1}$. If $m_{i}=\min \left\{m_{1}, \cdots, m_{k}\right\}>1$, then $l_{i}=1$.

Proof. We express m_{i+1} using m_{i}. If $i=k$, then let $m_{i+1}=m_{1}$. Then, by definition, we have

$$
m_{i+1}=f^{l_{i}}\left(m_{i}\right)=\frac{3 m_{i}+1}{2^{l_{i}}}
$$

Most right side,

$$
\frac{3 m_{i}+1}{2^{l_{i}}}<\frac{4 m_{i}}{2^{l_{i}}}=\frac{m_{i}}{2^{l_{i}-2}}
$$

for $m_{i}>1$. Let $l_{i} \geq 2$. Then we have

$$
m_{i+1}=\frac{3 m_{i}+1}{2^{l_{i}}}<\frac{m_{i}}{2^{l_{i}-2}} \leq m_{i} .
$$

It is a contradiction to the assumption that m_{i} is the smallest. Therefore $l_{i}=1$.

Lemma 2.2. $m=\langle 1, l, l, \cdots, l\rangle$ is not a positive integer.
Proof. Let m be a positive integer, k be the odd-cycle-sequence. If $l=1$, then the result is clear from Theorem 1.3. Assume that $l>1$. We make $m=m_{1}, \cdots, m_{k}$ in a way similar to that of (1.1) and let $k \geq 2$. Then m_{1} is the smallest. Because, if $l_{i}>1$, then $m_{i} \neq \min \left\{m_{1}, \cdots, m_{k}\right\}$ from contraposition of Lemma 2.1. That means $\min \left\{m_{i} \mid l_{i}=1\right\}=\min \left\{m_{1}, \cdots, m_{k}\right\}=m_{1}$.

We express m_{3} using m_{1}. If $k=2$, put $m_{1}=m_{3}$. Then, by definition, we have

$$
m_{3}=f^{1+l}\left(m_{1}\right)=\frac{9 m_{1}+5}{2^{l+1}}
$$

Let $l \geq 3$. Then,

$$
\frac{9 m_{1}+5}{2^{l+1}} \leq \frac{9 m_{1}+5}{16}
$$

If $x>5 / 7$, then $(9 x+5) / 16<x$. Hence we have

$$
m_{3}=\frac{9 m_{1}+5}{2^{l+1}} \leq \frac{9 m_{1}+5}{16}<m_{1}
$$

since m_{1} is a positive integer. This contradicts the assumption that m_{1} is the smallest.

Next, let $k \geq 3, l=2$. And, we express m_{4} using m_{1}. If $k=3$, put $m_{1}=m_{4}$. Then, we have

$$
m_{4}=f^{1+l+l}\left(m_{1}\right)=f^{5}\left(m_{1}\right)=\frac{27 m_{1}+23}{32}
$$

If $m>23 / 5$ then $(27 m+23) / 32<m$, therefore for $m \geq 5$,

$$
m_{3}=\frac{27 m+23}{32}<m .
$$

It is a contradiction. We know only one positive integral cycle-number if $m=5$, i.e., $m=1$.

Lastly, let $k=2, l=2$. Then, $m=\langle 1,2\rangle$ and

$$
m=\langle 1,2\rangle=\frac{3+2}{2^{3}-3^{2}}=-5<0
$$

It is not a positive integer.
Now, we see the case where $m_{2}-m_{1}$ that is an integer. Because, if m_{1} is an integer, then $f^{l_{1}}\left(m_{1}\right)-m_{1}=m_{2}-m_{1}$ is integral, too.

Let $m_{1}=\langle 1, \cdots, 1, l, \cdots, l\rangle, m_{2}=\langle 1, \cdots, 1, l, \cdots, l, 1\rangle$ be positive integral cycles, x be the number of one's, n be the cycle-sequence and $k \geq 2$ be the odd-cycle-sequence. Note that the number of l is $k-x$, and we get the relation $n=x+l(k-x)$. And, let $l \geq 2$, then $x \geq 2$ from Theorem 1.3 and Lemma 2.2.

By Theorem 1.1,

$$
m_{1}=\frac{3^{k-1}+\cdots+2^{x-1} \cdot 3^{k-x}+2^{x} \cdot 3^{k-x-1}+2^{x+l} \cdot 3^{k-x-2}+\cdots+2^{x+l(k-x-1)}}{2^{n}-3^{k}}
$$

and
$m_{2}=\frac{3^{k-1}+\cdots+2^{x-1} \cdot 3^{k-x}+2^{x-1+l} \cdot 3^{k-x-1}+2^{x-1+2 l} \cdot 3^{k-x-2}+\cdots+2^{x-1+l(k-x)}}{2^{n}-3^{k}}$.
Since $m_{2}>m_{1}$,

$$
\begin{align*}
0<m_{2}-m_{1} & =\frac{\left(2^{x-1+l}-2^{x}\right) \cdot 3^{k-x-1}+\cdots+\left(2^{x-1+l(k-x)}-2^{x+l(k-x-1)}\right)}{2^{n}-3^{k}} \\
& =\frac{2^{x}\left(2^{l-1}-1\right)\left(2^{l(k-x)}-3^{k-x}\right)}{\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)} \\
& =\frac{2^{x}\left(2^{l-1}-1\right)\left(2^{n-x}-3^{k-x}\right)}{\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)} . \tag{2.1}
\end{align*}
$$

Now, $m_{2}-m_{1}$ is integral, $2^{n}-3^{k}>1$ and $2^{l}-3 \geq 1$ are odd integers. It follows that

$$
\begin{equation*}
\left(2^{n}-3^{k}\right)\left(2^{l}-3\right) \mid\left(2^{l-1}-1\right)\left(2^{n-x}-3^{k-x}\right) \tag{2.2}
\end{equation*}
$$

We consider the function

$$
g(x)=2^{n-x}-3^{k-x} .
$$

We have,

$$
g^{\prime}(x)=-2^{n-x} \log 2+3^{k-x} \log 3 .
$$

The equation $g^{\prime}(x)=0$ has only one solution

$$
x=\frac{\log \frac{3^{k}}{2^{n}}+\log \frac{\log 3}{\log 2}}{\log \frac{3}{2}}=a .
$$

Since $3^{k} / 2^{n}<1$,

$$
a<\frac{0.461}{0.405}<1.139 .
$$

Therefore, If $g(x)$ has the maximum on $x \geq 0$, then $x<1.139$. Now, since $k \geq 2$ and $n-k>1$,

$$
g^{\prime}(k)=-2^{n-k} \log 2+\log 3<-2 \log 2+\log 3=-\log 4+\log 3<0 .
$$

So, if $a<b$, then $g(x)$ is monotone decreasing at b.
Lemma 2.3. Let $x \geq 0$. then $g(0) \geq g(x)$ if and only if

$$
\frac{6^{x}-3^{x}}{6^{x}-2^{x}} \geq \frac{3^{k}}{2^{n}}
$$

Proof. By the definition of $g(x)$ and, $g(0) \geq g(x)$,

$$
2^{n}-3^{k} \geq 2^{n-x}-3^{k-x}
$$

Thus,

$$
\frac{6^{x}-3^{x}}{6^{x}-2^{x}} \geq \frac{3^{k}}{2^{n}}
$$

Lemma 2.4. $3 / 4 \geq 3^{k} / 2^{n}$ if and only if $g(b) \geq g(a)$ for any integer a, b such that $a \geq b \geq 0$.

Proof. $g(0) \geq g(1)$ if and only if $3 / 4 \geq 3^{k} / 2^{n}$ by Lemma 2.3. And in this case, the equation $g^{\prime}(x)=0$ has only one solution

$$
\frac{\log \frac{3^{k}}{2^{n}}+\log \frac{\log 3}{\log 2}}{\log \frac{3}{2}}<\frac{0.173}{0.405}<1 .
$$

Therefore, if $1 \leq b$, then $g(x)$ is monotone decreasing at b.
Corollary 2.5. If $3 / 4 \geq 3^{k} / 2^{n}$ and $a \geq b \geq 1$, then $g(b)>g(a)$.

How is the case $1>3^{k} / 2^{n}>3 / 4$? We have the following.
Lemma 2.6. For any positive integer n, there exists at most one integer k which satisfies $1>3^{k} / 2^{n}>3 / 4$. The number k is given by $k=\left\lfloor n \log _{3} 2\right\rfloor$, if it exists. $\lfloor x\rfloor$ means the greatest integer not exceeding x.

Proof. By assumption $1>3^{k} / 2^{n}>3 / 4$, we have

$$
0>k-n \log _{3} 2>-\log _{3} \frac{4}{3}
$$

This implies that

$$
\begin{equation*}
n \log _{3} 2>k>n \log _{3} 2-\log _{3} \frac{4}{3} . \tag{2.3}
\end{equation*}
$$

Therefore, if there exists a positive integer k, then $k=\left\lfloor n \log _{3} 2\right\rfloor$.

Lemma 2.7. Let $\alpha_{1}, \alpha_{2}>1$ be multiplicatively independent real algebraic numbers, and $D=\left[\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{Q}\right]$. Let A_{1}, A_{2} denote real numbers >1 such that

$$
\log A_{j} \geq \max \left\{h\left(\alpha_{j}\right), \frac{\log \alpha_{j}}{D}, \frac{1}{D}\right\}, \quad j=1,2
$$

where $h(\alpha)$ is absolute logarithmic height of α. Let b_{1}, b_{2} are positive integers, and put

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2} .
$$

Then

$$
\log |\Lambda| \geq-32.31 D^{4}\left(\max \left\{\log B+0.18, \frac{10}{D}, \frac{1}{2}\right\}\right)^{2}\left(\log A_{1}\right)\left(\log A_{2}\right)
$$

where

$$
B=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}} .
$$

Lemma 2.7 was proved in [8]. Now, using this lemma over rational integers we have.

Corollary 2.8. Let $\alpha_{1}, \alpha_{2}>1$ be relatively prime rational integers. Let A_{1}, A_{2} denote real numbers >1 such that

$$
\log A_{j} \geq \max \left\{\log \alpha_{j}, 1\right\}, \quad j=1,2
$$

Let b_{1}, b_{2} are positive integers, and put

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2} .
$$

Then

$$
\log |\Lambda| \geq-32.31(\max \{\log B+0.18,10\})^{2}\left(\log A_{1}\right)\left(\log A_{2}\right)
$$

where

$$
B=\frac{b_{1}}{\log A_{2}}+\frac{b_{2}}{\log A_{1}} .
$$

§3. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. Let m_{i} be as in (1.1), and consider the equation (2.1). We compare $\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)$ with $\left(2^{l-1}-1\right)\left(2^{n-x}-3^{k-x}\right)$. First, we consider $2^{l}-3$ and $2^{l-1}-1$. We have

$$
2^{l}-3-\left(2^{l-1}-1\right)=2\left(2^{l-2}-1\right) \geq 0
$$

for $l \geq 2$. Thus,

$$
\begin{equation*}
2^{l}-3 \geq 2^{l-1}-1 \tag{3.1}
\end{equation*}
$$

Next, we consider $2^{n}-3^{k}$ and $2^{n-x}-3^{k-x}$. We have

$$
2^{n}-3^{k}=g(0)>g(x)=2^{n-x}-3^{k-x}
$$

for $3 / 4 \geq 3^{k} / 2^{n}$, by Corollary 2.5 and $x \geq 2$. Therefore,

$$
\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)>\left(2^{l-1}-1\right)\left(2^{n-x}-3^{k-x}\right) .
$$

It follows that

$$
1>\frac{\left(2^{l-1}-1\right)\left(2^{n-x}-3^{k-x}\right)}{\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)}>0 .
$$

This means that $m_{2}-m_{1}$ in (2.1) is not an integer, since the denominator $\left(2^{n}-3^{k}\right)\left(2^{l}-3\right)$ is an odd integer. But m_{1} and m_{2} are distinct positive integers for $k \geq 2$, and so $m_{2}-m_{1}$ is a positive integer too. This is a contradiction.

§4. Proof of Theorem 1.5

In this section we shall prove Theorem 1.5. Let $1>3^{k} / 2^{n}>3 / 4, l \geq 2$. Then k can be expressed as

$$
k=\left\lfloor n \log _{3} 2\right\rfloor=n \log _{3} 2+c_{1}
$$

for $\log _{3} \frac{3}{4}<c_{1}<0$ by Lemma 2.3 and (2.3), if k exists. We estimate the size of x,

$$
x=n \frac{l \log _{3} 2-1}{l-1}+c_{2} \quad\left(c_{2}=\frac{l}{l-1} c_{1}\right),
$$

by (2.3) and $n=x+l(k-x)$. Hence we have

$$
2^{n-x}-3^{k-x}=2^{n\left(1-\frac{l \log _{3} 2-1}{l-1}\right)-c_{2}}-3^{n\left(\log _{3} 2-\frac{l \log _{3} 2-1}{l-1}\right)+c_{1}-c_{2}} .
$$

Since the second term on the right hand is much smaller than the first term, we get,

$$
\left|2^{n-x}-3^{k-x}\right|<2^{n\left(1-\frac{l \log _{3} 2-1}{l-1}\right)-c_{2}} \leq 2^{n \log _{3} \frac{9}{4}-c_{2}},
$$

for $l \geq 2$. Then, it is easy to see

$$
\begin{equation*}
\left|2^{n-x}-3^{k-x}\right|<2^{n \log _{3} \frac{9}{4}+\log _{3} \frac{16}{9}} \tag{4.1}
\end{equation*}
$$

On the other hand, we consider the following linear form in two logarithm:

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}=n \log 2-k \log 3,
$$

by putting $\alpha_{1}=2, \alpha_{2}=3, b_{1}=n, b_{2}=k$. Using the inequality

$$
\frac{|\log x|}{2}<1-x
$$

for $1>x>3 / 4$, we have

$$
\frac{|\Lambda|}{2}=\frac{1}{2}|k \log 3-n \log 2|=\frac{1}{2}\left|\log \frac{3^{k}}{2^{n}}\right|<1-\frac{3^{k}}{2^{n}} .
$$

And, it follows from Corollary 2.8 that

$$
\log |\Lambda| \geq-32.31 H^{2} \log 3
$$

Hence we have

$$
\begin{equation*}
\left|2^{n}-3^{k}\right|>2^{-32.31 H^{2} \log _{2} 3+n-1} \tag{4.2}
\end{equation*}
$$

where $H=\max \{\log B+0.18,10\}$, and

$$
B=\frac{n}{\log 3}+k=\frac{n}{\log 3}+n \log _{3} 2+c_{1}=n \frac{1+\log 2}{\log 3}+c_{1} .
$$

First, we assume $H=10$. Then $9.82>\log B$. The inequality

$$
9.82>\log B=\log \left(n \frac{1+\log 2}{\log 3}+c_{1}\right)>\log \left(n \frac{1+\log 2}{\log 3}+\log _{3} \frac{3}{4}\right)
$$

says

$$
\begin{equation*}
n<11938 . \tag{4.3}
\end{equation*}
$$

Next, we assume $H=\log B+0.18$. We note that $\left|2^{n}-3^{k}\right|<\left|2^{n-x}-3^{k-x}\right|$ by (2.2), and (3.1). Hence we have

$$
2^{-32.31\left(\log \left(n \frac{1+\log 2}{\log 3}+\log _{3} \frac{3}{4}\right)+0.18\right)^{2}\left(\log _{2} 3\right)+n-1}<2^{n \log _{3} \frac{9}{4}+\log _{3} \frac{16}{9}}
$$

by (4.1), (4.2). It means

$$
\begin{equation*}
n<22033 \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4), we have the necessary condition

$$
n<22033
$$

Since

$$
22033>n>k=\left\lfloor n \log _{3} 2\right\rfloor>x=\left\lfloor n \frac{l \log _{3} 2-1}{l-1}\right\rfloor
$$

the number of (n, k, x, l) is finite.

Acknowledgment

It is a pleasure to express my sincere gratitude to Dr. H. Chinen. I am also grateful to anonymous referee for several useful suggestions.

References

[1] C. Bohm and G. Sontacchi, On the existence of cycles of given length in integer sequence like $x_{n+1}=x_{n} / 2$ if x_{n} even, and $x_{n+1}=3 x_{n}+1$ otherwise, Atti Accad. Naz Lincei Rend. Sci. Fis. Mat. Natur. (8) 64 (1978), 260-264.
[2] R. P. Steiner, A Thorem on the Syracuse Ploblem, Proc. 7th Manitoba Conf. Numerical Mathematics and Computing 1977 Winnipeg(1978), 553-559.
[3] R. E. Crandall, On the $3 x+1$ problem, Math. Comput.32(1978), 1281-1292.
[4] C. J. Everett, Iteration of the number-theoretic function $f(2 n)=n, f(2 n+1)=$ $3 n+2$, Advances in Math. 25(1977), 42-45.
[5] L. A. Garner, On the Collatz $3 n+1$ algorithm, Proc. Amer. Math. Soc. 82(1981), 19-22.
[6] J. C. Lagarias, The $3 n+1$ conjecture and its generalizations, Am. Math. Monthly 92(1985), 3-23.
[7] G. J. Wirsching, The Dynamical System Generated by the $3 n+1$ Function, Lecture Notes in Mathematics 1681, Springer-Verlag(1998).
[8] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéairies en deux logarithmes et déterminante d'interpolation, J. Number Theory 55(1995), 258-321.

Tomoaki Mimuro
Department of System Engineering, Hosei University
Kajino 3-7-2, Koganei, Tokyo, 184-8584, Japan
E-mail: mimuro@cc9.ne.jp

