Singular star-exponential functions

Hideki Omori and Takao Kobayashi

(Received November 12, 2001)

Abstract

The $*$-exponential function $e_{*}^{t i e^{a v} * u}$ is defined in a transcendently extended Weyl algebra. In the Weyl ordering expression, this is given as the real analytic solution in t of $$
\begin{aligned} \partial_{t} F_{t}(u, v) & =i e^{a v}\left\{\left(u+\frac{\hbar i a}{2}\right) F_{t}\left(u+\frac{\hbar i a}{2}, v\right)-\frac{\hbar i}{2} \partial_{v} F_{t}\left(u+\frac{\hbar i a}{2}, v\right)\right\}, \\ F_{0}(u, v) & =1 \end{aligned}
$$

For generic initial functions, this equation can be solved for all t, but the uniqueness holds only for one direction.

AMS 1991 Mathematics Subject Classification. 53D55, 53D35, 35R10.
Key words and phrases. Weyl algebra, star product, differential-difference equation.

§1. Introduction

In this paper, we treat the Weyl algebra W_{\hbar} generated over \mathbb{C} by two elements $u, v . W_{\hbar}$ is the associative algebra with the fundamental relation $u * v-v * u=$ $-\hbar i$ where \hbar is a positive constant.

In the Weyl ordering expression (cf. [9]), the Weyl algebra is understood as the space of polynomials with the Moyal product as follows:

$$
\begin{align*}
f(u, v) * g(u, v) & =f \exp \left\{\frac{\hbar i}{2} \overleftarrow{\partial_{v}} \dot{\wedge} \overrightarrow{\partial_{u}}\right\} g \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\hbar i}{2}\right)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(\partial_{v}^{n-k} \partial_{u}^{k} f\right)\left(\partial_{u}^{n-k} \partial_{v}^{k} g\right) \tag{1.1}
\end{align*}
$$

where $\overleftarrow{\partial_{v}} \wedge \overrightarrow{\partial_{u}}=\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}}-\overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}}$, and the arrow indicates to which side the operator acts. This product formula yields $u * v-v * u=-\hbar i$, and hence
defines the Weyl algebra. The usual commutative product in the polynomial algebra plays only the supplementary role to write elements in a unique way.

Using this concrete product formula (1.1), we can extend the product $*$ as follows: Let $C^{\infty}(U)$ be the space of all C^{∞}-functions on an open subset U of the real 2-plane \mathbb{R}^{2} with the C^{∞}-topology.

- $f * g$ is defined, if one of f, g is a polynomial.
- The associativity $f *(g * h)=(f * g) * h$ holds if two of f, g, h are polynomials.
- If p is a polynomial, then $p *$ and $* p$ are continuous linear mapping of $C^{\infty}(U)$ into itself.

Remark that such extension can be considered also for entire functions $\operatorname{Hol}\left(\mathbb{C}^{2}\right)$ with compact open topology, instead of $C^{\infty}(U)$.

In such an extended system, which will be called a $\mathbb{C}[u, v]$-module, the first task we should do is to fix product formula of several transcendental functions, and to determine exponential functions of several elements with respect to the product $*$. Several results are already given in [10] for the $*$-exponential functions of quadratic forms.

If we change variables u, v by a transformation φ given as follows:

$$
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{v}, \quad a d-b c=1,
$$

then we see $\left[u^{\prime}, v^{\prime}\right]=-\hbar i$ and $\left(\varphi^{*} f\right) *\left(\varphi^{*} g\right)=\varphi^{*}(f * g)$, if the product $f * g$ is defined. This is the most useful property of the Moyal product formula.

We call (f, g) a quantum canonical conjugate pair, if $[f, g]=-\hbar i$ holds. $\left(u^{\prime}, v^{\prime}\right)$ is a quantum canonical conjugate pair which is linearly related to the original (u, v), but there are a lot of quantum canonical conjugate pair (f, g) which relates transcendentally to the original (u, v). For instance, $\left(u^{\prime}, v^{\prime}\right)=$ $\left(\frac{u}{v}, \frac{1}{2} v^{2}\right)$ is a quantum canonical conjugate pair, treated in [12] and [8].

In this paper, we treat a quantum canonical conjugate pair $\left(e^{a v} * u,-\frac{1}{a} e^{-a v}\right)$ for $a>0$. We can easily check $\left[e^{a v} * u,-\frac{1}{a} e^{-a v}\right]=-\hbar i$ by a direct calculation using the Moyal product formula (1.1).

By the Moyal product formula, we see easily that $u * f(u, v)=u f(u, v)-$ $\frac{\hbar i}{2} \partial_{v} f(u, v)$ and

$$
e^{a v} * f(u, v)=e^{a v} \sum_{k} \frac{1}{k!}\left(\frac{\hbar i a}{2}\right)^{k}\left(\partial_{u}\right)^{k} f(u, v) .
$$

Since the above sum is the Taylor expansion of $f\left(u+\frac{\hbar i a}{2}, v\right)$, we extend the *-product by $e^{a v}$ as follows:

$$
e^{a v} * f(u, v)=e^{a v} f\left(u+\frac{\hbar i a}{2}, v\right)
$$

and

$$
f(u, v) * e^{a v}=e^{a v} f\left(u-\frac{\hbar i a}{2}, v\right)
$$

by a similar reasoning. Of course we assume that $e^{a v} * f(u, v)$ is well defined if and only if $f(u, v)$ is a function such that $f\left(u+\frac{\hbar i a}{2}, v\right)$ is well defined.

To define the $*$-exponential function $e_{*}^{t i e^{a v} * u}$, we consider the linear equation

$$
\left\{\begin{array} { r l }
{ \frac { d } { d t } L _ { t } } & { = (i e ^ { a v } * u) * L _ { t } , } \tag{1.2}\\
{ L _ { 0 } } & { = g (u , v) , }
\end{array} \quad \text { resp. } \quad \left\{\begin{array}{rl}
\frac{d}{d t} R_{t} & =R_{t} *\left(i e^{a v} * u\right), \\
R_{0} & =g(u, v)
\end{array}\right.\right.
$$

We call this the left (resp. right) equation.
Remark that if we set $\mu=e^{a v} * u$ and $\nu=-\frac{1}{a} e^{-a v}$, then μ, ν can play the same role as u, v after changing variables by such a transcendental transformation. These also generate the Weyl algebra which is isomorphic to W_{\hbar}. Thus, in a geometrical intuitive mind, $e_{*}^{t i e^{a v} * u}$ is expected to play as if $e_{*}^{t u}$. In the Moyal product formula, we see that $e_{*}^{t u}$ is the ordinary exponential function $e^{t u}$. Hence left-(resp. right-) multiplication $e_{*}^{t u} *$ (resp. $* e_{*}^{t u}$) are invertible linear operator on $C^{\infty}(U)$.

It is remarkable that if we take the Fourier transform, the equation (1.2) turns out to be a simple differential equation.

In this paper, we show that the $*$-exponential function $e_{*}^{t i e^{a v} * u}$ is welldefined for all $t \in \mathbb{R}$ and it is real analytic. By the uniqueness of real analytic solutions, we see that $e_{*}^{t i e^{a v} * u}$ satisfies the exponential law:

$$
e_{*}^{(s+t) i e^{a v} * u}=e_{*}^{s i e^{a v} * u} * e_{*}^{t i e^{a v} * u}
$$

However, $e_{*}^{t i e^{a v^{*}} * u}$ behaves very strangely. We show that there are a lot of non-real analytic solutions and the uniqueness does not hold to the positive direction. In spite of this, the uniqueness holds for the negative direction. As a result, we can show the phenomenon of associativity breaking.

Throughout this paper, we concentrate to obtain the concrete formula of

$$
e_{*}^{t i e^{a v} * u}, \quad e_{*}^{t i e^{a v_{* u}} *} * e^{\frac{2 i}{\hbar} u v} \quad \text { and } \quad e_{*}^{t i e^{a v_{*}} * u} * e^{-\frac{2 i}{\hbar} u v},
$$

because it is known that functions $2 e^{\frac{2 i}{\hbar} u v}$ and $2 e^{-\frac{2 i}{\hbar} u v}$ play important roles in the construction of operator representation of our $\mathbb{C}[u, v]$-module. By the Moyal product formula, we see that

$$
v * 2 e^{\frac{2 i}{\hbar} u v}=0, \quad u * 2 e^{-\frac{2 i}{\hbar} u v}=0
$$

but

$$
2 e^{\frac{2 i}{\hbar} u v} * 2 e^{\frac{2 i}{\hbar} u v}=2 e^{\frac{2 i}{\hbar} u v}, \quad 2 e^{-\frac{2 i}{\hbar} u v} * 2 e^{-\frac{2 i}{\hbar} u v}=2 e^{-\frac{2 i}{\hbar} u v}
$$

and

$$
2 e^{\frac{2 i}{h} u v} * 2 e^{-\frac{2 i}{\hbar} u v}=\text { diverge } .
$$

By the formula $u * e^{-\frac{2 i}{\hbar} u v}=0$, we see that

$$
\left(e^{a v} * u\right) * e^{-\frac{2 i}{\hbar} u v}=0 .
$$

Hence, it is natural to expect that $e_{*}^{i t e e^{a v} * u} * e^{-\frac{2 i}{\hbar} u v}=e^{-\frac{2 i}{\hbar} u v}$. Such an identity is obtained as a bi-product of our proof of the main theorem.

§2. *-exponential function of $e^{a v} * u$

Since $\overline{e^{a v} * u}=u * e^{a v}=e^{a v} *(u-\hbar i a), \quad e^{a v} * u$ is not an hermite element, though u and v are restricted in reals.

Set $L_{t}(g)=F_{t}(u, v)$. Since

$$
i e^{a v} * f(u, v)=i e^{a v} f\left(u+\frac{\hbar i a}{2}, v\right),
$$

we see that (1.2) turns out to be

$$
\partial_{t} F_{t}(u, v)=i e^{a v}\left\{\left(u+\frac{\hbar i a}{2}\right) F_{t}\left(u+\frac{\hbar i a}{2}, v\right)-\frac{\hbar i}{2} \partial_{v} F_{t}\left(u+\frac{\hbar i a}{2}, v\right)\right\},
$$

with initial condition $F_{0}=g(u, v)$. If we set $F_{t}(u, v)=G_{t}(u, v) e^{-\frac{2 i}{\hbar} u v}$, then we have

$$
\begin{equation*}
\partial_{t} G_{t}(u, v)=\frac{\hbar}{2} e^{2 a v} \partial_{v} G_{t}\left(u+\frac{\hbar i a}{2}, v\right) \tag{2.1}
\end{equation*}
$$

with the initial condition $G_{0}=g(u, v) e^{\frac{2 i}{\hbar} u v}$. This is not a differential equation, but an evolution equation of a differential-difference operator.

Real analytic solutions, if they exist, are unique with respect to initial functions. The solution, if exists, might be written as the $*$-exponential function
$e_{*}^{t i e^{a v} * u} * g$, where g is the initial function, and $e_{*}^{t i e^{a v} * u}$ is the real analytic solution with initial function 1.

For the sake of self-containedness, we repeat here the definition of real analyticity. Remark first that $C^{\infty}(U)$ is a Fréchet space whose topology is given by countable seminorms. Let \mathbb{E} be a Fréchet space whose topology is given by countable seminorms $\left\|\|_{k}\right.$. A smooth mapping $f: \mathbb{R} \rightarrow \mathbb{E}$ is real analytic, if for every $\left\|\|_{k}\right.$, and for every $t_{0} \in \mathbb{R}$, the Taylor series at every t_{0} converges in $\left\|\|_{k}\right.$ on some neighborhood of t_{0} which may depend on k.

However, if G_{t} is restricted to periodic functions $G_{t}\left(u+\frac{\hbar i a}{2}, v\right)=G_{t}(u, v)$, then (2.1) turns out to be

$$
\left(\partial_{t}-\frac{\hbar}{2} e^{2 a v} \partial_{v}\right) G_{t}(u, v)=0
$$

and the solution is given by

$$
G_{t}(u, v)=\varphi\left(u, \frac{\hbar t}{2}-\frac{1}{2 a} e^{-2 a v}\right)
$$

Thus, if the initial function G_{0} is restricted furthermore to a periodic function $G_{0}\left(u, v+\frac{\pi i}{a}\right)=G_{0}(u, v)$, then the solution is written uniquely by the above shape.

Next, we want to restrict the variables u, v to the real line. To do this, denote by \mathfrak{S} be the space of all rapidly decreasing functions of the variable ξ, and let \mathfrak{S}^{\prime} be its dual space, that is the space of all slowly increasing distributions.

First we assume that $G_{t}(u, v)$ is written as

$$
G_{t}(u, v)=\int_{-\infty}^{\infty} a(t, \xi, v) e^{i \xi u} d \xi
$$

by using slowly increasing Schwartz distribution $a(t, \xi, v)$ with respect to ξ (i.e. $a(t, \xi, v)$ is a \mathfrak{S}^{\prime}-valued C^{∞} function). Then the above equation (2.1) is changed into the differential equation

$$
\begin{equation*}
\left(e^{a \hbar \xi / 2} \partial_{t}-\frac{\hbar}{2} e^{2 a v} \partial_{v}\right) a(t, \xi, v)=0 \tag{2.2}
\end{equation*}
$$

It is remarkable that ξ plays only as a parameter. (2.2) shows that $a(t, \xi, v)$ is constant along the real analytic vector field $e^{a \hbar \xi / 2} \partial_{t}-\frac{\hbar}{2} e^{2 a v} \partial_{v}$.

Figure 1: Level curves of $\frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}$
Along the integral curves of this vector field, $\eta=\frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}$ is constant.

Thus, by fixing ξ arbitrarily, and by replacing

$$
t^{\prime}=t-\frac{1}{a \hbar} e^{-2 a v} e^{a \hbar \xi / 2}, \quad v^{\prime}=v,
$$

the identities

$$
\partial_{t^{\prime}}=\partial_{t}, \quad \partial_{v^{\prime}}=-\frac{2}{\hbar} e^{a \hbar \xi / 2} e^{-2 a v} \partial_{t}+\partial_{v}
$$

shows that if ξ is fixed in \mathbb{R}, the solutions $a(t, \xi, v)$ are given by arbitrary functions of t^{\prime}, not containing v^{\prime}. That is, the solutions are given as arbitrary functions of $\frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}$ by multiplying $\frac{\hbar}{2} e^{-a \hbar \xi / 2}$ to both sides.

Our main theorem is as follows:
Theorem 1. If $t \leq 0$ (resp. $t \geq 0$), then the equation

$$
\left\{\begin{array} { r l }
{ \frac { d } { d t } L _ { t } } & { = (i e ^ { a v } * u) * L _ { t } , } \tag{2.3}\\
{ L _ { 0 } } & { = g (u , v) , }
\end{array} \quad \text { resp. } \quad \left\{\begin{array}{rl}
\frac{d}{d t} R_{t} & =R_{t} *\left(i e^{a v} * u\right) \\
R_{0} & =g(u, v)
\end{array}\right.\right.
$$

has the unique solution $L_{t}(g)$, (resp. $\left.R_{-t}(g)\right)$ for almost all initial functions g with polynomial growth. However, if $t>0$ (resp. $t<0$), then the equation has a solution for almost all initial functions g with polynomial growth, but these are not unique, i.e. $L_{t}, t>0$ is not defined as operators.

Precise definition of "almost all" will be clarified in the proof.

For every (t, v), we may view $a(t, \xi, v)$ as an \mathfrak{S}^{\prime}-valued function $a(t, v)(\xi)$, that is for every test function $\psi(\xi) \in \mathfrak{S}$,

$$
\int\left(\partial_{t} a(t, v)(\xi) e^{a \hbar \xi / 2}-\frac{\hbar}{2} e^{2 a v} \partial_{v} a(t, v)(\xi)\right) \psi(\xi) d \xi=0
$$

The solution is written by using a \mathfrak{S}^{\prime}-valued C^{∞} function $\varphi(v)(\xi)=\varphi(\xi, v)$ as

$$
\begin{equation*}
a(t, \xi, v)=\varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) . \tag{2.4}
\end{equation*}
$$

The right hand side of (2.4) is the distribution defined for the test function $\psi(\xi) \in \mathfrak{S}$

$$
\int \varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) \psi(\xi) d \xi .
$$

The condition that has been imposed is as follows:
Condition 1. $\varphi(\xi, v)$ is a \mathfrak{S}^{\prime}-valued C^{∞} function such that for every (t, v),

$$
\varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right)
$$

is also a slowly increasing Schwartz distribution.
Let $\mathcal{S}_{u, v}$ be the set of all Fourier image of such functions. In particular, if $\operatorname{supp} \varphi$ is bounded below with respected to ξ, then φ satisfies the condition.

Setting $t=0$ in (2.4) gives the Fourier inverse image of the initial function. Remark

$$
e^{\frac{c i}{\hbar} u v}=\int_{-\infty}^{\infty} \delta\left(\xi-\frac{c v}{\hbar}\right) e^{i \xi u} d \xi
$$

Then the solution φ with initial function g being $e^{\frac{2 i}{\hbar} u v}, 1$ or $e^{-\frac{2 i}{h} u v}$, is given respectively as follows:

$$
\varphi\left(\xi,-\frac{1}{2 a} e^{-2 a v}\right)=\delta\left(\xi-\frac{4 v}{\hbar}\right), \quad \delta\left(\xi-\frac{2 v}{\hbar}\right), \quad \delta(\xi)
$$

In general if $\hat{g}(\xi, v)=\int e^{-i u \xi} g(u, v) đ u$ is the Fourier transform of $g(u, v)$, then the Fourier image of $G_{0}(u, v)=g(u, v) e^{\frac{2 i}{\hbar} u v}$ with respect to the variable u is

$$
\psi(\xi, v)=\int \delta\left(\xi^{\prime}-\frac{2 v}{\hbar}\right) \hat{g}\left(\xi-\xi^{\prime}, v\right) d \xi^{\prime}=\hat{g}\left(\xi-\frac{2 v}{\hbar}, v\right)
$$

and hence

$$
\begin{equation*}
\varphi\left(\xi,-\frac{1}{2 a} e^{-2 a v}\right)=\hat{g}\left(\xi-\frac{2 v}{\hbar}, v\right) . \tag{2.5}
\end{equation*}
$$

Thus the distribution $\varphi(\xi, \eta)$ which gives the initial function $G_{0}(u, v)=$ $e^{\frac{2 i}{\hbar} u v}$ or $G_{0}(u, v)=g(u, v) e^{\frac{2 i}{\hbar} u v}$ is given respectively, by putting $-2 a \eta=e^{-2 a v}$ at the place $\eta \leq 0$, as followings:

$$
\begin{aligned}
& \varphi(\xi, \eta)=\delta\left(\xi+\frac{1}{a \hbar} \log (-2 a \eta)\right), \\
& \varphi(\xi, \eta)=\hat{g}\left(\xi+\frac{1}{a \hbar} \log (-2 a \eta),-\frac{1}{2 a} \log (-2 a \eta)\right)
\end{aligned}
$$

and these are arbitrary where $\eta>0$.
By this, if the initial condition is $F_{0}(u, v)=1$, then the solution is

$$
\begin{equation*}
\varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right)=\delta\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right) \tag{2.6}
\end{equation*}
$$

For the general initial function $F_{0}(u, v)=g(u, v)$, we see

$$
\begin{equation*}
=\hat{g}\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right),-\frac{1}{2 a} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right) . \tag{2.7}
\end{equation*}
$$

In general, if $\eta \geq 0, t$ is always positive >0 on the curve defined by $\frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{2 a v}=\eta$ (see Figure 1). So this curve does not cross the initial surface $t=0$.

Since we are trying to fix the solution by means of initial data, this is possible only for $\eta<0$. For $\eta \geq 0, \varphi$ is arbitrary. Hence the solution is not unique.

Remark 2. The family of curves $\frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}=\eta$ is holomorphic. Thus, if (t, v) is complex, then every curve does cross the initial surface $t=0$.

Recall that the solution of (2.2) is given by

$$
a(t, \xi, v)=\varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right),
$$

and the initial data is given as $a(\xi, v)=\varphi\left(\xi,-\frac{1}{2 a} e^{-2 a v}\right)$. Hence, the restriction for the initial data is only that $a(\xi, v)$ has the periodicity $a(\xi, v)=a\left(\xi, v+\frac{\pi i}{a}\right)$.

§3. The solutions with initial data $1, e^{\frac{2 i}{\hbar} u v}, e^{-\frac{2 i}{\hbar} u v}$

In particular, write the solution $L_{t}(1)$ with initial data 1 by $\tilde{F}_{t}(u, v)$. Then, $\tilde{F}_{t}(u, v)$ is given by

$$
\tilde{F}_{t}(u, v)=e^{-\frac{2 i}{\hbar} u v} \int_{-\infty}^{\infty} \delta\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right) e^{i \xi u} d \xi
$$

For $t \leq 0$, we see that

$$
\xi^{\prime}=\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)
$$

gives a diffeomorphism of ξ-space. Thus it is better to change the variable by this diffeomorphism. Since the property of delta function gives $\tilde{G}_{t}(u, v)=$ $\left.e^{i \xi u} \frac{d \xi}{d \xi^{\prime}}\right|_{\xi^{\prime}=0}$, we express this as a function of u, v. Since

$$
\frac{d \xi^{\prime}}{d \xi}=1+\frac{1}{2} \frac{a \hbar t e^{-a \hbar \xi / 2}}{e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}}
$$

the point $\xi^{\prime}=0$ is given as the solution of the equation $e^{-a \hbar \xi}+a \hbar t e^{-\frac{a \hbar \xi}{2}}=$ $e^{-2 a v}$. For both $t \leq 0$ and $t>0$, the solution is given by

$$
\begin{equation*}
2 e^{-a \hbar \xi / 2}=-a \hbar t+\sqrt{(a \hbar t)^{2}+4 e^{-2 a v}} . \tag{3.1}
\end{equation*}
$$

We write the right hand side of (3.1) as ψ, and

$$
\begin{equation*}
\left.\frac{d \xi^{\prime}}{d \xi}\right|_{\xi^{\prime}=0}=\frac{\psi}{\psi+a \hbar t} \tag{3.2}
\end{equation*}
$$

Thus, we have

$$
\begin{gathered}
\tilde{G}_{t}(u, v)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2} \psi} \frac{\psi}{\psi+a \hbar t}, \\
\tilde{F}_{t}(u, v)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2} \psi} \frac{\psi}{\psi+a \hbar t} e^{-\frac{2 i}{\hbar} u v} .
\end{gathered}
$$

These are real analytic in (t, v). This solution can be extended naturally to the domain $t>0$. It is also easy to check that this is a solution for all t by remarking the following identity:

$$
\begin{gathered}
\tilde{G}_{t}\left(u+\frac{a \hbar i}{2}, v\right)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2} \psi} \frac{\psi^{2}}{2(\psi+a \hbar t)}, \\
\partial_{t} \psi=-a \hbar \frac{\psi}{\psi+a \hbar t}, \quad \partial_{v} \psi=-4 a \frac{e^{-2 a v}}{\psi+a \hbar t} .
\end{gathered}
$$

$\tilde{F}_{t}(u, v)$ is real analytic by its construction.

Lemma 3. For every $s, t \in \mathbb{R}$, the exponential law

$$
\tilde{F}_{s}(u, v) * \tilde{F}_{t}(u, v)=\tilde{F}_{s+t}(u, v)
$$

holds.
We can write $e_{*}^{i t{ }^{a v} * u}=\tilde{F}_{t}(u, v)$ precisely as

$$
\begin{equation*}
\tilde{F}_{t}(u, v)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2} e^{a v} \psi} \frac{e^{a v} \psi}{e^{a v} \psi+e^{a v} a \hbar t}, \quad e^{a v} \psi=-a \hbar t e^{a v}+\sqrt{\left(a \hbar t e^{a v}\right)^{2}+4} \tag{3.3}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& \sqrt{\left(\frac{1}{2} e^{a v} a \hbar t\right)^{2}+1}+\frac{1}{2} e^{a v} a \hbar t=\left(\sqrt{\left(\frac{1}{2} e^{a v} a \hbar t\right)^{2}+1}-\frac{1}{2} e^{a v} a \hbar t\right)^{-1} \tag{3.4}\\
& \left(1-\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right)\left(1+\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right)=\frac{4}{\left(e^{a v} a \hbar t\right)^{2}+4} \tag{3.5}
\end{align*}
$$

Remarking above, we see $e^{a v} \psi(-t, v)=a \hbar t e^{a v}+\sqrt{\left(a \hbar t e^{a v}\right)^{2}+4}$ and

$$
\begin{aligned}
\tilde{F}_{-t}(u, v) & =e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2} e^{a v} \psi(-t, v)} \frac{e^{a v} \psi(-t, v)}{e^{a v} \psi(-t, v)-e^{a v} a \hbar t} \\
& =e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2}\left(e^{a v} a \hbar t+\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}\right)}\left(1+\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right) .
\end{aligned}
$$

We have also

$$
\overline{\tilde{F}_{-t}(u, v)}=\tilde{F}_{t}(u, v)\left(\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}+e^{a v} a \hbar t\right)^{2}
$$

The reason why $\tilde{F}_{t}(u, v)$ is not a unitary element is that $e^{a v} * u$ is not hermite and $\overline{e^{a v} * u}=u * e^{a v}$.

Since $e^{a v} * u=e^{a v}\left(u+\frac{a \hbar i}{2}\right)$ and $u * e^{a v}=e^{a v}\left(u-\frac{a \hbar i}{2}\right)$, we have $e^{a v} u=$ $e^{a v} *\left(u-\frac{a \hbar i}{2}\right)$ is an hermite element. Thus, if we replace u by $u+\frac{a \hbar}{2}$ and construct

$$
\hat{F}_{t}(u, v)=e_{*}^{t i\left(e^{a v} u\right)}
$$

then,

$$
\hat{F}_{t}(u, v)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2}\left(-e^{a v} \hbar t+\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}\right.}\left(\frac{2}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right)
$$

It is easy to see that

$$
\overline{\hat{F}_{-t}(u, v)}=\hat{F}_{t}(u, v)
$$

On the other hand, for the original $\tilde{F}_{t}(u, v)$ we can check that the bracket vanishes

$$
\left[e^{a v} * u, e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2}\left(\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}+e^{a v} a \hbar t\right)}\left(1+\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right)\right]=0
$$

by direct computations. By these, we see that

Proposition 4.

$$
e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2}\left(\sqrt{\left(e^{-2 v} a \hbar t\right)^{2}+4}+e^{a v} a \hbar t\right)}\left(1+\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right)
$$

is the solution of the right equation

$$
\frac{d}{d t} R_{t}=R_{t} *\left(i e^{a v} * u\right), \quad R_{0}=1
$$

3.1. The solution of the initial condition $e^{\frac{2 i}{\hbar} u v}$. The distribution which gives the solution φ in (2.4) is given by

$$
\varphi(\xi, \eta)=\delta\left(\xi+\frac{2}{a \hbar} \log (-2 a \eta)\right)
$$

Thus, the solution at the time t is

$$
\varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right)=\delta\left(\xi+\frac{2}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right)
$$

This is similar to (2.6), but since the coefficient is changed from $a \hbar$ to $a \hbar / 2$, the behavior is changed as follows: If $2 \hbar t<1$, then we see

$$
\xi+\frac{2}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)>0
$$

and therefore the right hand side vanishes.
All together, we see the following:
Theorem 5. For every $t \in \mathbb{R}, L_{t}\left(e^{\frac{2 i}{\hbar} u v}\right)$, $L_{t}\left(e^{-\frac{2 i}{\hbar} u v}\right)$ is a real analytic solution in t. Moreover, $L_{t}\left(e^{-\frac{2 i}{\hbar} u v}\right)=e^{-\frac{2 i}{\hbar} u v}$ and $L_{t}\left(e^{\frac{2 i}{\hbar} u v}\right)=0$ for $2 \hbar t \leq 1$.

Proof. For initial functions $e^{\frac{2 i}{\hbar} u v}$ and $e^{-\frac{2 i}{\hbar} u v}$, these Fourier images are $\delta\left(\xi-\frac{4 v}{\hbar}\right)$ and $\delta(\xi)$. They satisfy the Condition 1.

The first one is obtained by viewing the equation as the equation of vector field $\left(e^{a v} * u\right) * e^{-\frac{2 i}{\hbar} u v}=0$. Actually this is obtained by the fact that the initial function is $\varphi(\xi, \eta)=\delta(\xi)$ (cf. (3.6)).

The relation $\left[\frac{1}{a} e^{-a v}, e^{a v} * u\right]=-\hbar i$ gives the following:
Proposition 6. Let

$$
\tilde{F}_{t}(u, v)=e^{-\frac{2 i u}{a \hbar} \log \frac{1}{2}\left(\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}-e^{a v} a \hbar t\right)}\left(1-\frac{e^{a v} a \hbar t}{\sqrt{\left(e^{a v} a \hbar t\right)^{2}+4}}\right),
$$

then

$$
\left[\frac{1}{a \hbar} e^{-a v}, \tilde{F}_{s}(u, v)\right]=s \tilde{F}_{s}(u, v)
$$

Proof. At $t=0$, we have $\left[e^{-a v}, \tilde{F}_{0}(u, v)\right]=0$. Taking the derivative

$$
\begin{aligned}
\frac{d}{d t}\left[\frac{1}{a} e^{-a v}, \tilde{F}_{t}(u, v)\right] & =\left[\frac{1}{a} e^{-a v}, i e^{a v} * u * \tilde{F}_{t}(u, v)\right] \\
& =\hbar \tilde{F}_{t}(u, v)+i e^{a v} * u *\left[\frac{1}{a} e^{-a v}, \tilde{F}_{t}(u, v)\right]
\end{aligned}
$$

Set $\left[\frac{1}{a} e^{-a v}, \tilde{F}_{t}(u, v)\right]=\tilde{F}_{t}(u, v) * g_{t}$ and looking for the solution, then $\tilde{F}_{t}(u, v) *$ $\frac{d}{d t} g_{t}=\hbar \tilde{F}_{t}(u, v)$ gives $\hbar t \tilde{F}_{t}(u, v)$ is a real analytic solution. However, this does not give the uniqueness. This is given by the direct calculation: Since

$$
\left[e^{-a v}, \tilde{F}_{t}(u, v)\right]=e^{-a v}\left(\tilde{F}_{t}\left(u-\frac{\hbar i a}{2}, v\right)-\tilde{F}_{t}\left(u+\frac{\hbar i a}{2}, v\right)\right)
$$

(3.4) gives that the result.

Rewriting the above, for $\left(e^{-a v}-a \hbar s\right) * \tilde{F}_{s}=\tilde{F}_{s} * e^{-a v}$, then, we have the following.

Lemma 7. If $s \geq 0$,

$$
\begin{aligned}
\tilde{F}_{-s}(u, v) *\left(e^{-a v} * \tilde{F}_{s}(u, v)\right)-a \hbar s & =\tilde{F}_{-s}(u, v) *\left(\left(e^{-a v}-a \hbar s\right) * \tilde{F}_{s}(u, v)\right) \\
& =\tilde{F}_{-s}(u, v) *\left(\tilde{F}_{s}(u, v) * e^{-a v}\right)=e^{-a v} .
\end{aligned}
$$

Proof. $\tilde{F}_{s}(u, v) * e^{-a v}$ is defined and the solution of left equation with the initial function $e^{-a v}$. The first equality is given by the distributive law and the exponential law. On the other hand, for $t \geq 0$ the uniqueness for the left equation, the exponential law gives $\tilde{F}_{-t}(u, v) *\left(\tilde{F}_{s}(u, v) * g\right)=\tilde{F}_{-t+s}(u, v) * g$. Then, set $t=s$.

This is indeed a dangerous equality. If the associativity holds then, applying F_{s} and F_{-s} to both side from left and right, we see that the above formula is valid for $s<0$. It follows

$$
1=\left(F_{-s} * e^{a v} * F_{s}\right) *\left(F_{-s} * e^{-a v} * F_{s}\right)=\left(F_{s} * e^{a v} * F_{-s}\right) *\left(e^{-a v}+a \hbar s\right)
$$

and hence $e^{-a v}+a \hbar s$ is invertible for $s<0$. This makes contradiction. Thus, we see that the associativity must break at some point.

We want to see how the associativity breaks down.
3.2. For general initial functions. For a general initial function g, the solution for $t \leq 0$ is given by (2.7) and this is

$$
\begin{aligned}
& G_{t}(u, v) \\
& =\int e^{i \xi u} \hat{g}\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right),-\frac{1}{2 a} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right) d \xi
\end{aligned}
$$

This is determined uniquely by g. Denote this by $\tilde{L}_{t}(g)(t \leq 0)$. The real analyticity in t does not hold unless g has some smooth property. But for $t \leq 0, \tilde{L}_{t}$ is a linear operator of $\mathcal{S}_{u, v}$ into $\mathcal{S}_{u, v}$.

For $t>0$, there is a place such that $e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}<0$. In such a place the solution is not determined by the initial function g, but φ may be chosen arbitrarily so that $G_{t}(u, v)$ is C^{∞}. This implies that for $t>0$ the uniqueness does not hold for the left equation.

Avoiding this inconvenience, we fix the solution. One way to fix the solution is that we set $\varphi(\xi, \eta)=0$ for $\eta>0$.

This means we set to 0 on the domain $e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}<0$. Here $G_{t}(u, v)$ must be C^{∞}. For this we must have that

$$
\begin{aligned}
& \int \varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) e^{i \xi u} d \xi \\
& =\int_{-\infty}^{\frac{2}{a \hbar} \log (a \hbar t)-\frac{1}{\hbar} 4 v} \varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) e^{i \xi u} d \xi
\end{aligned}
$$

is C^{∞} function and this looks like a new condition. But the imposed condition is in fact that this must be a slowly increasing distribution for every fixed t, v. Hence the C^{∞}-ness in t, v is satisfied automatically.

Thus, if we set

$$
\begin{align*}
& \varphi_{0}\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) \tag{3.6}\\
= & \left\{\begin{array}{lr}
\hat{g}\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right),-\frac{1}{2 a} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right) \\
& \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}>0\right) \\
0, & \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2} \leq 0\right),
\end{array}\right.
\end{align*}
$$

then we have the solution for $t>0$. Write this by $L_{t}(g)$. The second line of (3.6) may not be used if $\lim _{v \rightarrow \infty} g(\xi, v)=0$. Thus, $L_{t}(g)$ is defined for all $g \in \mathcal{S}_{u, v}$. For $t \geq 0$, it is clear that $L_{t}(g)=\tilde{L}_{t}(g)$.

In any way, for every initial function $g(u, v) \in \mathcal{S}_{u, v}$, the solution of the equation (2.3) is defined for all $t \in \mathbb{R}$.

The direct calculation shows this is a solution. This proved Theorem 1.
L_{t} for $t>0$ is by the equality (3.6) has the property that $L_{t}(g)=0$ means $g=0$. That is to say $L_{t}: \mathcal{S}_{u, v} \rightarrow \mathcal{S}_{u, v}$ is a monomorphism for $t \geq 0$.

However there are other solutions, and the uniqueness does not hold. For $t>0, L_{t}(g)=\tilde{F}_{t} * g$ may not hold. Such identity holds only for $t \leq 0$.

The above observation tells us many: For $t \geq 0, \tilde{L}_{-t}(g)$ is determined by g. If we denote by g_{t} a solution with initial function g, then $\tilde{L}_{-t}\left(g_{t}\right)=g$ holds.

We have many g_{t}. Hence the linearity of the left equation gives for $t>0$ that \tilde{L}_{-t} has the non trivial kernel $\left(\tilde{L}_{-t}(K)=0\right) . \tilde{L}_{-t}(K)$ may be written as $\tilde{L}_{-t}(1) * K, \tilde{F}_{t}=\tilde{L}_{t}(1)$ and the exponential law holds for \tilde{F}_{t}. Since $\tilde{F}_{t} * \tilde{F}_{-t}=1$, $0=\tilde{F}_{t} *\left(\tilde{F}_{-t} * K\right) \neq K$ shows that the associativity breaks down at such place.

Lemma 8. $\tilde{L}_{-t}: \mathcal{S}_{u, v} \rightarrow \mathcal{S}_{u, v}$ has non-trivial kernel for $t>0$, and $\tilde{L}_{-t} L_{t}=I$.
3.3. Ker \tilde{L}_{t}. For $t \leq 0, \tilde{L}_{t}(g)$ is uniquely determined for initial functions. Here we consider the case $t<0$. Recall (3.3) at first. In (3.6) the initial function $\hat{g}(\xi, v)$ satisfies for some $t<0$ that

$$
\begin{align*}
& \varphi\left(\xi, \frac{\hbar t}{2} e^{-a \hbar \xi / 2}-\frac{1}{2 a} e^{-2 a v}\right) \tag{3.7}\\
& \quad=\hat{g}\left(\xi+\frac{1}{a \hbar} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right),-\frac{1}{2 a} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right)=0 .
\end{align*}
$$

Let $G(u, v)=\int \hat{g}(\xi, v) e^{i \xi u} d \xi$ be the initial function corresponding to $\hat{g}(\xi, v)$. Then setting $K(u, v)=G(u, v) e^{-\frac{2 i}{\hbar} u v}$, we see that $L_{t}(K)=\tilde{F}_{t}(u, v) * K=0$.

We want to characterize $\hat{g}(\xi, v)$. Fix $t<0$ and we first determine the domain

$$
\begin{equation*}
E_{t}=\left\{\left(\xi+\frac{1}{\hbar} \mu,-\frac{1}{2} \mu\right) \left\lvert\, \mu=\frac{1}{a} \log \left(e^{-2 a v}-a \hbar t e^{-a \hbar \xi / 2}\right)\right., \xi, v \in \mathbb{R}\right\} . \tag{3.8}
\end{equation*}
$$

If the supp \hat{g} is in the complement of E_{t}, \hat{g} satisfies this condition.
If $t<0$ is fixed, the above μ in (3.8) moves in the range $\mu>\log \left(-a \hbar t e^{-a \hbar \xi / 2}\right)$ for every ξ, since $e^{-2 a v}$ takes arbitrary positive number, By this, we see

$$
E_{t}=\left\{(\xi, \eta) \left\lvert\, \eta<\frac{\hbar}{2} \xi-\frac{1}{a} \log (-a \hbar t)\right.\right\} .
$$

A distribution, supported in $D_{t}=E_{t}^{c}$ and satisfying Condition 1, satisfies also (3.7). In particular for every η this must be a slowly increasing distribution with respect to ξ. By the property of the domain D_{t}, it is finite for the direction $\xi>0$. If $0 \geq t>t^{\prime}, D_{t} \subset D_{t^{\prime}}$ is clear.

Initial function $\hat{g}(\xi, v)$ reflects $\tilde{L}_{t}(g)$ at $t<0$ only for the part $(\xi, v) \in E_{t}$.
Proposition 9. For $\hat{g}(\xi, v)$, if $\operatorname{supp} \hat{g} \subset D_{t}, t<0$, Setting

$$
G(u, v)=\int \hat{g}(\xi, v) e^{i \xi u} d \xi, \quad K(u, v)=G(u, v) e^{-\frac{2 i}{\hbar} u v}
$$

we have $L_{t}(K)=\tilde{F}_{t}(u, v) * K=0$.

References

[1] H. Basart, M. Flato, A. Lichnerowicz and D. Sternheimer, Deformation theory applied to quantization and statistical mechanics, Lett. Math. Phys., 8, (1984), 483-494.
[2] H. Basart and A. Lichnerowicz, Conformal symplectic geometry, deformations, rigidity and geometrical KMS conditions, Lett. Math. Phys., 10, (1985), 167-177.
[3] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[4] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Academic Press, 1968.
[5] A. Kaneko, Introduction to hyperfunctions, Kluwer Academic Pub., 1988.
[6] C. Moreno and J. A. P. da Silva, Star products and spectral analysis, Preprint.
[7] H. Omori, Infinite dimensional Lie groups, AMS Trans. Mono., 158, AMS, 1997.
[8] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Deformation quantizations of the Poisson algebra of Laurent polynomials, Lett. Math. Phys., 46, (1998), 171-180.
[9] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Deformation quantization of Fréchet-Poisson algebras -Convergence of the Moyal product-, In Conférence Moshé Flato 1999, Quantizastions, Deformations and Symmetries, Math. Phys. Studies, 23(2), 233-246, Kluwer Academic Press, 2000.
[10] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Singular system of exponential functions, In Noncommutative differential geometry and its application to physics, Math. Phys. Studies, 23, 169-186, Kluwer Academic Press, 2001.
[11] H. Omori, Y. Maeda and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. Math., 85(2), (1991), 224-255.
[12] V. Ovsienko, Exotic deformation quantization, J. Diff. Geom., (1997), 390-406.
[13] M. Rieffel, Deformation quantization for actions of \mathbb{R}^{n}, Memoir A.M.S., 106, AMS, 1993.
[14] K. Yoshida, Functional Analysis, Springer-Verlag, 1965.

Hideki Omori
Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo Noda, Chiba, 278-8510, Japan
E-mail: omori@ma.noda.sut.ac.jp

Takao Kobayashi
Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo Noda, Chiba, 278-8510, Japan
E-mail: takao@ma.noda.sut.ac.jp

