On super mean labeling of some graphs

P. Jeyanthi, D. Ramya and P. Thangavelu

(Received July 23, 2009; Revised May 24, 2010)

Abstract

Let G be a (p, q)-graph and $f: V(G) \rightarrow\{k, k+1, k+2, k+3, \ldots$, $p+q+k-1\}$ be an injection. For each edge $e=u v$, let $f^{*}(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then f is called a k-super mean labeling if $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}=$ $\{k, k+1, k+2, \ldots, p+q+k-1\}$. A graph that admits a k-super mean labeling is called k-super mean graph. In this paper, we present k-super mean labeling of $C_{2 n}(n \neq 2)$ and super mean labeling of Double cycle $C(m, n)$, Dumb bell graph $D(m, n)$ and Quadrilateral snake Q_{n}.

AMS 2000 Mathematics Subject Classification. 05C78. Key words and phrases. Super mean labeling, super mean graph, k - super mean graph.

§1. Introduction

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The disjoint union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Let C_{m} and C_{n} be two disjoint cycles with $u \in V\left(C_{m}\right)$ and $v \in V\left(C_{n}\right)$. The double cycle, denoted by $C(m, n)$, is the graph obtained by identifying u and v. The dumb bell graph $D(m, n)$ is obtained by joining the two vertices u and v with an edge.

The antiprism graph G on $2 n$ vertices has the vertex set $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and the edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{1} u_{n}, v_{1} v_{n}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{v_{i} u_{i-1}, v_{1} u_{n}: 2 \leq i \leq n\right\}$.

Any quadrilateral snake Q_{n} is obtained from a path $u_{1} u_{2} u_{3} \ldots u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i} and $w_{i}(1 \leq i \leq n-1)$ respectively and joining v_{i} to $w_{i}(1 \leq i \leq n-1)$. That is, every edge of the path is replaced by the cycle $C_{4} .\lceil x\rceil$ denotes the smallest integer greater than or equal to x. For notations and terminology we follow [2].

§2. Preliminary Results

The concept of super mean labeling was introduced in [6] and further discussed in $[3,4,5]$. B. Gayathri et al. extended the notion of k-super mean labeling of graphs [1]. Let G be a (p, q)-graph and $f: V(G) \rightarrow\{k, k+1, k+2, k+3, \ldots$, $p+q+k-1\}$ be an injection. For each edge $e=u v$, let $f^{*}(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then f is called a k-super mean labeling if $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}=$ $\{k, k+1, k+2, \ldots, p+q+k-1\}$. A graph that admits a k-super mean labeling is called k-super mean graph. We use the following results in the subsequent theorems.
Theorem 2.1. [6] Any path P_{n} is a super mean graph.
Theorem 2.2. [6] Let $G_{1}=\left(p_{1}, q_{1}\right)$ and $G_{2}=\left(p_{2}, q_{2}\right)$ be two super mean graphs with super mean labeling f and g respectively. Let $f(u)=p_{1}+q_{1}$ and $g(v)=1$. Then the graph $\left(G_{1}\right)_{f} *\left(G_{2}\right)_{g}$ obtained from G_{1} and G_{2} by identifying the vertices u and v is also a super mean graph.
Theorem 2.3. [6] Any odd cycle $C_{2 n+1}$ is a super mean graph.
Remark 2.4. [6] C_{4} is not a super mean graph.

§3. k-Super Mean Graph

In this section we establish k-super mean labeling of the graphs such as even cycle (except C_{4}), antiprism on $2 n$ vertices ($n>4$), the generalized prism $C_{n} \times P_{m}(n$ is odd $)$ and the grid $P_{m} \times P_{n}$ with one random crossing edge in every square.
Theorem 3.1. Any even cycle $C_{2 n}(n \neq 2)$ is a k-super mean graph.
Proof. Let $V\left(C_{2 n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{2 n}\right\}$.
For $n \neq 2$, define $f: V\left(C_{2 n}\right) \rightarrow\{k, k+1, k+2, k+3, \ldots, p+q+k-1=$ $4 n+k-1\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =k, \\
f\left(u_{2}\right) & =k+2, \\
f\left(u_{3}\right) & =k+6, \\
f\left(u_{4}\right) & =k+11, \\
f\left(u_{4+i}\right) & =k+11+4 i \text { for } 1 \leq i \leq n-3, \\
f\left(u_{n+1+i}\right) & =4(n-i) k \text { for } 1 \leq i \leq n-3, \\
f\left(u_{2 n-1}\right) & =k+8, \\
f\left(u_{2 n}\right) & =k+5 .
\end{aligned}
$$

Then $f(V)=\{k, k+2, k+5, k+6, k+8, k+11, k+12, k+15, k+16, \ldots, k+4 n-$ $9, k+4 n-8, k+4 n-5, k+4 n-4, k+4 n-1\}$ and $\left\{f^{*}(e): e \in E\left(C_{2 n}\right)\right\}=\{k+$ $1, k+3, k+4, k+7, k+9, k+13, k+14, \ldots, k+4 n-7, k+4 n-6, \ldots, k+4 n-3, k+$ $4 n-2\}$. Clearly $f(V) \cup\left\{f^{*}(e): e \in E\left(C_{2 n}\right)\right\}=\{k, k+1, k+2, \ldots, k+4 n-1\}$. So f is a k-super mean labeling. Hence $C_{2 n}(n \neq 2)$ is a k-super mean graph.

Example 3.2. The 5-super mean labeling of C_{8} is given in Figure 1.

Figure 1

Theorem 3.3. An antiprism G on $2 n$ vertices $(n>4)$ is a k-super mean graph.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the $2 n$ vertices of the antiprism graph G.
Case (i) n is odd. Take $n=2 s+1$.
Define $f: V(G) \rightarrow\{k, k+1, k+2, k+3, \ldots, p+q+k-1=6 n+k-1\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =k \\
f\left(u_{2}\right) & =k+5 \\
f\left(u_{2+i}\right) & =k+5+4 i \text { for } 1 \leq i \leq s-1 \\
f\left(u_{s+2}\right) & =k+4 s-2 \\
f\left(u_{s+2+i}\right) & =k+4 s-2-4 i \text { for } 1 \leq i \leq s-1 \\
f\left(v_{1}\right) & =k+8 s+4 \\
f\left(v_{2}\right) & =k+8 s+9 \\
f\left(v_{2+i}\right) & =k+8 s+9+4 i \text { for } 1 \leq i \leq s-1 \\
f\left(v_{s+2}\right) & =k+12 s+2 \\
f\left(v_{s+2+i}\right) & =k+12 s+2-4 i \text { for } 1 \leq i \leq s-1
\end{aligned}
$$

It can be verified that f is a k-super mean labeling of G.
Case (ii) n is even. Take $n=2 s$.

Define $f: V(G) \rightarrow\{k, k+1, k+2, k+3, \ldots, p+q+k-1=6 n+k-1\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =k \\
f\left(u_{2}\right) & =k+2 \\
f\left(u_{3}\right) & =k+6 \\
f\left(u_{4}\right) & =k+11 \\
f\left(u_{4+i}\right) & =k+11+4 i \text { for } 1 \leq i \leq s-3 \\
f\left(u_{s+2}\right) & =k+4 s-4 \\
f\left(u_{s+2+i}\right) & =k+4 s-4-4 i \text { for } 1 \leq i \leq s-3 \\
f\left(u_{2 s}\right) & =k+5 \\
f\left(v_{1}\right) & =k+8 s+5 \\
f\left(v_{2}\right) & =k+8 s \\
f\left(v_{3}\right) & =k+8 s+2 \\
f\left(v_{4}\right) & =k+8 s+6 \\
f\left(v_{5}\right) & =k+8 s+11 \\
f\left(v_{5+i}\right) & =k+8 s+11+4 i \text { for } 1 \leq i \leq s-3 \\
f\left(v_{s+3}\right) & =k+12 s-4 ; \\
f\left(v_{s+3+i}\right) & =k+12 s-4-4 i \text { for } 1 \leq i \leq s-3
\end{aligned}
$$

Clearly the induced edge labels are distinct. Therefore f is a k-super mean labeling of G. Hence G is a k-super mean graph.

Example 3.4. The 3-super mean labeling of antiprism on 12 vertices is given in Figure 2.

Figure 2

Theorem 3.5. The graph $C_{n} \times P_{m}$ is a k-super mean graph where n is an odd integer and m is any integer.

Proof. Let $\left\{u_{j}^{i}: 1 \leq j \leq n, 1 \leq i \leq m\right\}$ be the vertices of $C_{n} \times P_{m}$. Take $n=2 s+1$.

Define $f: V\left(C_{n} \times P_{m}\right) \rightarrow\{k, k+1, k+2, k+3, \ldots, p+q+k-1=$ $n(3 m-1)+k-1\}$ by

$$
\begin{aligned}
f\left(u_{j}^{1}\right) & =k+2 j-2 \text { for } 1 \leq j \leq s+1 \\
f\left(u_{s+2}^{1}\right) & =k+2 s+3 \\
f\left(u_{s+2+j}^{1}\right) & =k+2 s+3+2 j \text { for } 1 \leq j \leq s-1 \\
f\left(u_{1}^{2}\right) & =k+8 s+3 \\
f\left(u_{1+j}^{2}\right) & =k+8 s+4+2 j \text { for } 1 \leq j \leq s \\
f\left(u_{s+2}^{2}\right) & =k+6 s+3 \\
f\left(u_{s+2+j}^{2}\right) & =k+6 s+3+2 j \text { for } 1 \leq j \leq s-1
\end{aligned}
$$

For $m>2, f\left(u_{j}^{m}\right)=f\left(u_{j}^{m-2}\right)+6 n$ for $1 \leq j \leq n$. One can prove that f is a k-super mean labeling of $C_{n} \times P_{m}$. Hence the theorem.

Example 3.6. The 4-super mean labeling of $C_{7} \times P_{4}$ is give in Figure 3.

Figure 3
Theorem 3.7. The grid $P_{m} \times P_{n}$ with one random crossing edge in every square is a k-super mean graph.

Proof. Let $\left\{u_{i}^{j}: 1 \leq j \leq m, 1 \leq i \leq n\right\}$ be the vertices of $P_{m} \times P_{n}$. Define f as follows: $f\left(u_{i}^{j}\right)=k+2 j-2+(2 i-2)(2 m-1)$ for all $1 \leq j \leq m, 1 \leq i \leq n$. Hence
the edges $u_{i}^{j} u_{i+1}^{j}$ will get the label $k+2 j-2+(2 i-1)(2 m-1)$ and the edge $u_{i}^{j} u_{i}^{j+1}$ will get the label $k+2 j-1+(2 i-2)(2 m-1)$. A crossing edge is either $u_{i}^{j} u_{i+1}^{j+1}$ or $u_{i+1}^{j} u_{i}^{j+1}$ and both will get the label $k+2 j-1+(2 i-1)(2 m-1)$. Clearly f is a k-super mean labeling. Hence the grid $P_{m} \times P_{n}$ with one random crossing edge in every square is a k-super mean graph.

Example 3.8. The 2-super mean labeling obtained from $P_{3} \times P_{4}$ is given in Figure 4.

Note 3.9. The k-super mean labeling of the graph G is the generalization of super mean labeling of G.

§4. Super Mean Graph

Theorem 4.1. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two super mean graphs with $u \in V\left(G_{1}\right)$ has the label $p_{1}+q_{1}$ and $v \in V\left(G_{2}\right)$ has the label 1. Then the graph G which is obtained by joining u to v by any path P_{n} is a super mean graph.

Proof. Let f and h be the super mean labelings of G_{1} and G_{2} respectively. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be vertices of path P_{n}. By Theorem 2.1, P_{n} is a super mean graph. Let g be the super mean labeling of P_{n} as follows.

Then $g\left(u_{1}\right)=1$ and $g\left(u_{n}\right)=2 n-1$. By Theorem $2.2,\left(G_{1}\right)_{f} *\left(P_{n}\right)_{g}=G_{3}$ (say) is a super mean graph. Let k be the super mean labeling of G_{3}. Again by Theorem 2.2, $\left(G_{3}\right)_{k} *\left(G_{2}\right)_{h}=G$ is a super mean graph. Hence G is a super mean graph.

Theorem 4.2. The double cycle $C(m, n)$ is a super mean graph for all $m \geq 3$ and $n \geq 3$.

Proof. Case (i) $m \neq 4$ and $n \neq 4$.
Since all cycles except C_{4} are super mean graphs, by Theorem 2.2, $C(m, n)$ is a super mean graph.
Case (ii) At least one of m, n is 4 . Assume $m=4$.
Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of C_{4} and $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$. Identify u_{4} and v_{1}. Then $V(C(m, n))=\left\{u_{i}, v_{j}: 1 \leq i \leq 4,1 \leq j \leq n\right.$ with $\left.u_{4}=v_{1}\right\}$.
Subcase (i) n is odd. Take $n=2 s+1$.
A super mean labeling of $C(4,3)$ is given by

For $n>3$, define $f: V(C(4, n)) \rightarrow\{1,2,3, \ldots, p+q=2 n+7=4 s+9\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 ; \\
f\left(u_{2}\right) & =3 ; \\
f\left(u_{3}\right) & =5 ; \\
f\left(u_{4}\right) & =f\left(v_{1}\right)=11 ; \\
f\left(v_{2}\right) & =7 ; \\
f\left(v_{3}\right) & =12 ; \\
f\left(v_{4}\right) & =4 s+9 ; \\
f\left(v_{4+i}\right) & =2(2 s-i)+9 \text { for } 1 \leq i \leq s-2 ; \\
f\left(v_{s+2+i}\right) & =2(4-i)+n+3 \text { for } 1 \leq i \leq s-1 .
\end{aligned}
$$

It can be established that f is a super mean labeling.
Subcase (ii) n is even. Take $n=2 s$.
Define $f: V(C(4, n)) \rightarrow\{1,2,3, \ldots, p+q=2 n+7=4 s+7\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 ; \\
f\left(u_{2}\right) & =3 ; \\
f\left(u_{3}\right) & =5 ; \\
f\left(u_{4}\right) & =f\left(v_{1}\right)=11 ; \\
f\left(v_{2}\right) & =7 ; \\
f\left(v_{3}\right) & =12 ; \\
f\left(v_{3+i}\right) & =12+2 i \text { for } 1 \leq i \leq s-2 ; \\
f\left(v_{s+1+i}\right) & =2 s+2 i+9 \text { for } 1 \leq i \leq s-1 .
\end{aligned}
$$

It can be verified that f is a super mean labeling. Hence the double cycles $C(m, n)$ are super mean graphs for all $m \geq 3$ and $n \geq 3$.

Example 4.3. The super mean labeling of $C(4,8)$ is given in Figure 5.

Figure 5

Theorem 4.4. The dumb bell graph $D(m, n)$ is a super mean graph for all $m \geq 3$ and $n \geq 3$.

Proof. We consider the following two cases.
Case (i) $m \neq 4$ and $n \neq 4$.
The proof follows from fact that all cycles except C_{4} are super mean graphs and by Theorem 4.1.
Case (ii) At least one of m, n is 4 . Let $m=4$.
Let $V\left(C_{m}\right)=\left\{u_{i}: i=1,2,3,4\right\}$ and $V\left(C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$.
Subcase (i) n is odd. Take $n=2 s+1$.
Join u_{3} and v_{3} by an edge. Then $V(D(m, n))=V\left(C_{m}\right) \cup V\left(C_{n}\right)$ and $E(D(m, n))=E\left(C_{m}\right) \cup E\left(C_{n}\right) \cup\left\{u_{3} v_{3}\right\}$. A super mean labeling of $D(4,3)$ is given below:

For $n>3$, define $f: V(D(m, n)) \rightarrow\{1,2,3, \ldots, p+q=2 n+9=4 s+11\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 ; \\
f\left(u_{2}\right) & =3 ; \\
f\left(u_{3}\right) & =5 ; \\
f\left(u_{4}\right) & =10 \\
f\left(v_{1}\right) & =15 \\
f\left(v_{2}\right) & =12 \\
f\left(v_{3}\right) & =9 \\
f\left(v_{4}\right) & =16 \\
f\left(v_{4+i}\right) & =16+2 i \text { for } 1 \leq i \leq s-2 \\
f\left(v_{s+3}\right) & =2 s+15 ; \\
f\left(v_{s+3+i}\right) & =2 s+15+2 i \text { for } 1 \leq i \leq s-2
\end{aligned}
$$

One can verify that f is a super mean labeling.
Subcase (ii) n is even. Take $n=2 s$.
Join u_{3} and v_{2} with an edge. Then $V(D(m, n))=V\left(C_{m}\right) \cup V\left(C_{n}\right)$ and $E(D(m, n))=E\left(C_{m}\right) \cup E\left(C_{n}\right) \cup\left\{u_{3} v_{2}\right\}$. For $n=4$, a super mean labeling of $D(4, n)$ is given by

For $n>4$, define $f: V(D(m, n)) \rightarrow\{1,2,3, \ldots, p+q=2 n+9=4 s+9\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 ; \\
f\left(u_{2}\right) & =3 ; \\
f\left(u_{3}\right) & =5 ; \\
f\left(u_{4}\right) & =10 \\
f\left(v_{1}\right) & =13 \\
f\left(v_{2}\right) & =9 ; \\
f\left(v_{3}\right) & =14 ; \\
f\left(v_{3+i}\right) & =14+2 i \text { for } 1 \leq i \leq s-2 \\
f\left(v_{s+2}\right) & =2 s+13 ; \\
f\left(v_{s+2+i}\right) & =2 s+13+2 i \text { for } 1 \leq i \leq s-2 .
\end{aligned}
$$

It can be established that f is a super mean labeling. Hence the dumb bell graphs $D(m, n)$ are super mean graphs for all $m \geq 3$ and $n \geq 3$.

Example 4.5. The super mean labeling of $D(4,7)$ is given in Figure 6.

Figure 6
Theorem 4.6. Let $C_{n}(n \geq 3)$ be an odd cycle. Consider n copies of an odd cycle $C_{m}(m \geq 3)$. If G is a graph obtained by identifying a vertex of each cycle C_{m} with a vertex of the cycle C_{n} is a super mean graph.
Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the cycle C_{n}. Let $u_{1 j}, u_{2 j}, u_{3 j}, \ldots$, $u_{n j}, 1 \leq j \leq m$, be the vertices of the cycles $C_{m}^{(1)}, C_{m}^{(2)}, C_{m}^{(3)}, \ldots, C_{m}^{(n)}$ respectively, identified at each vertex of C_{n} such that $u_{1}=u_{1 m}, u_{2}=u_{21}, u_{3}=$ $u_{3 m}, \ldots, u_{n-1}=u_{n-1,1}$ and $u_{n}=u_{n m}$ which means that $u_{1 m}, u_{21}, u_{3 m}, u_{41}, \ldots$, $u_{n-1,1}, u_{n m}$ are the vertices of the cycle C_{n}.

Take $n=2 s+1$ and $m=2 t+1$.
Define $f: V(G) \rightarrow\{1,2,3, \ldots,(2 m+1) n=8 s t+6 s+4 t+3\}$ as follows:
For the cycle $C_{m}^{(1)}, f\left(u_{1 j}\right)= \begin{cases}2 j-1 & \text { for } 1 \leq j \leq t+1 \\ 2 j & \text { for } t+2 \leq j \leq m\end{cases}$
For the cycle $C_{m}^{(k)}$, where $2 \leq k \leq s+1$,

$$
f\left(u_{k j}\right)= \begin{cases}2(k-1) m+2(j-1)+k & \text { for } 1 \leq j \leq t+1 \\ 2(k-1) m+2(j-1)+k+1 & \text { for } t+2 \leq j \leq m\end{cases}
$$

For the cycle $C_{m}^{(k)}$, where $s+2 \leq k \leq n$.

$$
f\left(u_{k j}\right)= \begin{cases}2(k-1) m+2(j-1)+k+1 & \text { for } 1 \leq j \leq t+1 \\ 2(k-1) m+2(j-1)+k+2 & \text { for } t+2 \leq j \leq m .\end{cases}
$$

Now we have $\bigcup_{i=1}^{n}\left\{f\left(V\left(C_{m}^{(i)}\right)\right) \cup f^{*}\left(E\left(C_{m}^{(i)}\right)\right)\right\}=\{1,2,3, \ldots, 2 m\} \cup\{2 m+2,2 m+$ $3, \ldots, 4 m+1\} \cup\{4 m+3,4 m+4, \ldots, 6 m+2\} \cup \cdots \cup\{(2 m+1) s+1,(2 m+1) s+$ $2, \ldots,(2 m+1) s+2 m\} \cup\{(2 m+1)(s+1)+2,(2 m+1)(s+1)+3, \ldots,(2 m+1)(s+$ $2)\} \cup \cdots \cup\{(2 m+1)(n-1)+2, \ldots,(2 m+1) n\}$. Clearly these labels are all distinct. Further the labels of the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, \ldots, u_{s+1} u_{s+2}, u_{s+2} u_{s+3}, \ldots$, $u_{n} u_{1}$ of the cycle C_{n} are $2 m+1,4 m+2,6 m+3, \ldots,(2 m+1)(s+1)+1,(2 m+$ 1) $(s+2)+1 \ldots(2 m+1)(s+1)$ respectively. It can be easily verified that $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}=\{1,2,3, \ldots, n(2 m+1)\}$. Hence G is a super mean graph.

Corollary 4.7. The graph $C_{2 n+1} \odot K_{2}$ is a super mean graph for all n.
Example 4.8. The super mean labeling of G obtained from C_{3} by identifying a vertex of the cycle C_{5} with each vertex of the cycle C_{3} is given in Figure 7.

Figure 7
The graph Q_{2} is C_{4}, and hence it is not a super mean graph [6]. Next we prove Q_{n} is a super mean graph for all odd values of n.

Theorem 4.9. The quadrilateral snake Q_{n}, where n is odd, is a super mean graph.

Proof. Let $V\left(Q_{n}\right)=\left\{u_{i}, v_{i}, w_{i}, u_{n}: 1 \leq i \leq n-1\right\}$.
Define $f: V\left(Q_{n}\right) \rightarrow\{1,2,3, \ldots, 7 n-6\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 ; \\
f\left(u_{2 i}\right) & =f\left(u_{2 i-1}\right)+10 \text { for } 1 \leq i \leq s ; \\
f\left(u_{2 i+1}\right) & =f\left(u_{2 i}\right)+4 \text { for } 1 \leq i \leq s ; \\
f\left(v_{1}\right) & =3 ; \\
f\left(v_{2 i}\right) & =f\left(v_{2 i-1}\right)+4 \text { for } 1 \leq i \leq s ; \\
f\left(v_{2 i+1}\right) & =f\left(v_{2 i}\right)+10 \text { for } 1 \leq i \leq s-1 ; \\
f\left(w_{1}\right) & =5 ; \\
f\left(w_{i+1}\right) & =f\left(w_{i}\right)+7 \text { for } 1 \leq i \leq n-1 .
\end{aligned}
$$

Clearly $f(V) \cup\left\{f^{*}(e): e \in E\left(Q_{n}\right)\right\}=\{1,2,3, \ldots, 7 n-6\}$. Hence, Q_{n} where n is odd, is a super mean graph.

Example 4.10. The super mean labelig of Q_{5} is given in Figure 8.

Figure 8

Theorem 4.11. Let $C_{n}: u_{1} u_{2} u_{3} \ldots u_{n} u_{1}(n$ is odd) be a cycle. Let G be the graph with $V(G)=V\left(C_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}, E(G)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i+1} v_{i}\right.$: $1 \leq i \leq n-1\} \cup\left\{u_{n} v_{n}, u_{1} v_{n}\right\}$. Then G is a super mean graph.

Proof. Take $n=2 s+1$. Define $f: V(G) \rightarrow\{1,2,3, \ldots, p+q=5 n\}$ by

$$
\begin{aligned}
f\left(u_{1}\right) & =1 \\
f\left(u_{i}\right) & =5 i-4 \text { for } 2 \leq i \leq s+1 \\
f\left(u_{s+2}\right) & =5 s+8 \\
f\left(u_{s+2+i}\right) & =5 s+8+5 i \text { for } 1 \leq i \leq s-1 \\
f\left(v_{1}\right) & =3 \\
f\left(v_{i}\right) & =5 i-2 \text { for } 2 \leq i \leq s \\
f\left(v_{s+1}\right) & =5 s+6 \\
f\left(v_{s+2}\right) & =5(s+2) \\
f\left(u_{s+2+i}\right) & =5(s+2)+5 i \text { for } 1 \leq i \leq s-1
\end{aligned}
$$

Clearly the vertex labels, the induced edge labels are distinct and $f(V) \cup$ $\left\{f^{*}(e): e \in E(G)\right\}=\{1,2,3, \ldots, 5 n\}$. Hence G is a super mean graph.

Theorem 4.12. Let $C_{n}: u_{1} u_{2} u_{3} \ldots u_{n} u_{1}$ (n is odd) be a cycle. Let G be the graph obtained from C_{n} by joining the vertices u_{i} and u_{i+1} by the path P_{m}^{i} (m is odd) $1 \leq i \leq n-1$ and joining the vertices u_{n} and u_{1} by the path P_{m}^{n}. Then G is a super mean graph.

Proof. By Theorem 4.11, the theorem is true when $m=3$. We prove the theorem for $m>3$. Let $v_{1}^{j}, v_{2}^{j}, v_{3}^{j}, \ldots, v_{m}^{j}$ for $1 \leq j \leq m$ be the vertices of the path $P_{m}^{i}(1 \leq i \leq n)$ such that $v_{m}^{j}=v_{1}^{j+1}=u_{j+1}$ for $1 \leq j \leq n-1$ and $v_{m}^{n}=v_{1}^{1}=u_{1}$. Take $n=2 s+1$ and $m=2 t+1$.

Define $f: V(G) \rightarrow\{1,2,3, \ldots, p+q=n(2 m-1)\}$ by

$$
\begin{aligned}
f\left(v_{i}^{1}\right) & =2 i-1 \text { for } 1 \leq i \leq t+1 \\
f\left(v_{i}^{1}\right) & =2 i \text { for } t+2 \leq i \leq 2 t+1 \\
f\left(v_{i}^{j}\right) & =f\left(v_{i}^{j-1}\right)+2 m-1 \text { for } 1 \leq i \leq 2 t+1 \text { and } 2 \leq j \leq s \\
f\left(v_{1}^{s+1}\right) & =f\left(v_{m}^{s}\right)=1+(2 m-1) s \\
f\left(v_{2}^{s+1}\right) & =4+(2 m-1) s
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{2+i}^{s+1}\right) & =4+(2 m-1) s+2 i \text { for } 1 \leq i \leq t-2 \\
f\left(v_{t+1}^{s+1}\right) & =2 t(2 s+1)+s+4 \\
f\left(v_{t+1+i}^{s+1}\right) & =2 t(2 s+1)+s+4+2 i \text { for } 1 \leq i \leq t \\
f\left(v_{i}^{s+2}\right) & =4 t(s+1)+s+2+2 i \text { for } 1 \leq i \leq t+1 \\
f\left(v_{i}^{s+2}\right) & =4 t(s+1)+s+3+2 i \text { for } t+2 \leq i \leq 2 t+1 \\
f\left(v_{i}^{j}\right) & =f\left(v_{i}^{j-1}\right)+2 m-1 \text { for } 1 \leq i \leq 2 t+1 \text { and } s+3 \leq j \leq 2 s \\
f\left(v_{1+i}^{2 s+1}\right) & =f\left(v_{m}^{2 s}\right)+2 i \text { for } 1 \leq i \leq 2 t-1
\end{aligned}
$$

It can be verified that f is a super mean labeling of G. Hence G is a super mean graph.

Example 4.13. The super mean labeling of G with $m=5$ and $n=7$ is given in Figure 9.

Figure 9

References

[1] B.Gayathri, M.Tamilselvi and M.Duraisamy, k - Super mean labeling of Graphs, Proceedings of the International Conference on Mathematics and Computer Sciences, (2008),107-111.
[2] F.Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).
[3] P.Jeyanthi, D.Ramya and P.Thangavelu, On Super mean graphs, AKCE J. Graphs. Combin., 6(1) (2009),103-112.
[4] P. Jeyanthi, D. Ramya and P. Thangavelu, Some construction of k-super mean graphs, International Journal of Pure and Applied Mathematics, 56(1) (2009), 77-86.
[5] R. Ponraj and D. Ramya, On super mean graphs of order ≤ 5, Bulletin of Pure and Applied Sciences, 25 E (1) 2006, 143-148.
[6] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combin., (To appear).

P. Jeyanthi
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamil Nadu, India.
E-mail: jeyajeyanthi@rediffmail.com
D. Ramya
Department of Mathematics
Dr.Sivanthi Aditanar College of Engineering
Tiruchendur- 628 215, Tamil Nadu, India.
E-mail: aymar_padma@yahoo.co.in
P. Thangavelu
Department of Mathematics
Aditanar College of Arts and Science
Tiruchendur- 628 216, Tamil Nadu, India.

