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Abstract. Let G be a (p, q)-graph and f : V (G) → {k, k + 1, k + 2, k + 3, . . . ,

p + q + k − 1} be an injection. For each edge e = uv, let f∗(e) =
l

f(u)+f(v)
2

m

.

Then f is called a k-super mean labeling if f(V ) ∪ {f∗(e) : e ∈ E(G)} =
{k, k +1, k +2, . . . , p+ q +k− 1}. A graph that admits a k-super mean labeling
is called k-super mean graph. In this paper, we present k-super mean labeling
of C2n(n 6= 2) and super mean labeling of Double cycle C(m, n), Dumb bell
graph D(m, n) and Quadrilateral snake Qn.
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§1. Introduction

By a graph we mean a finite, simple and undirected one. The vertex set and
the edge set of a graph G are denoted by V (G) and E(G) respectively. The
disjoint union of two graphs G1 and G2 is the graph G1∪G2 with V (G1∪G2) =
V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2).

Let Cm and Cn be two disjoint cycles with u ∈ V (Cm) and v ∈ V (Cn). The
double cycle, denoted by C(m,n), is the graph obtained by identifying u and
v. The dumb bell graph D(m,n) is obtained by joining the two vertices u and
v with an edge.

The antiprism graph G on 2n vertices has the vertex set {ui, vi : 1 ≤ i ≤ n}
and the edge set {uiui+1, vivi+1, u1un, v1vn : 1 ≤ i ≤ n − 1} ∪ {uivi : 1 ≤ i ≤
n} ∪ {viui−1, v1un : 2 ≤ i ≤ n}.

Any quadrilateral snake Qn is obtained from a path u1u2u3 . . . un by joining
ui and ui+1 to new vertices vi and wi(1 ≤ i ≤ n − 1) respectively and joining
vi to wi(1 ≤ i ≤ n−1). That is, every edge of the path is replaced by the cycle
C4. dxe denotes the smallest integer greater than or equal to x. For notations
and terminology we follow [2].
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§2. Preliminary Results

The concept of super mean labeling was introduced in [6] and further discussed
in [3, 4, 5]. B. Gayathri et al. extended the notion of k-super mean labeling of
graphs [1]. Let G be a (p, q)-graph and f : V (G) → {k, k + 1, k + 2, k + 3, . . . ,

p + q + k − 1} be an injection. For each edge e = uv, let f∗(e) =
⌈

f(u)+f(v)
2

⌉
.

Then f is called a k-super mean labeling if f(V ) ∪ {f∗(e) : e ∈ E(G)} =
{k, k + 1, k + 2, . . . , p + q + k − 1}. A graph that admits a k-super mean
labeling is called k-super mean graph. We use the following results in the
subsequent theorems.

Theorem 2.1. [6] Any path Pn is a super mean graph.

Theorem 2.2. [6] Let G1 = (p1, q1) and G2 = (p2, q2) be two super mean
graphs with super mean labeling f and g respectively. Let f(u) = p1 + q1 and
g(v) = 1. Then the graph (G1)f ∗(G2)g obtained from G1 and G2 by identifying
the vertices u and v is also a super mean graph.

Theorem 2.3. [6] Any odd cycle C2n+1 is a super mean graph.

Remark 2.4. [6] C4 is not a super mean graph.

§3. k-Super Mean Graph

In this section we establish k-super mean labeling of the graphs such as even
cycle (except C4), antiprism on 2n vertices (n > 4), the generalized prism
Cn × Pm (n is odd) and the grid Pm × Pn with one random crossing edge in
every square.

Theorem 3.1. Any even cycle C2n(n 6= 2) is a k-super mean graph.

Proof. Let V (C2n) = {u1, u2, u3, . . . , u2n}.
For n 6= 2, define f : V (C2n) → {k, k + 1, k + 2, k + 3, . . . , p + q + k − 1 =

4n + k − 1} by

f(u1) = k,

f(u2) = k + 2,

f(u3) = k + 6,

f(u4) = k + 11,

f(u4+i) = k + 11 + 4i for 1 ≤ i ≤ n − 3,

f(un+1+i) = 4(n − i)k for 1 ≤ i ≤ n − 3,

f(u2n−1) = k + 8,

f(u2n) = k + 5.



ON SUPER MEAN LABELING OF SOME GRAPHS 55

Then f(V ) = {k, k+2, k+5, k+6, k+8, k+11, k+12, k+15, k+16, . . . , k+4n−
9, k+4n−8, k+4n−5, k+4n−4, k+4n−1} and {f∗(e) : e ∈ E(C2n)} = {k+
1, k+3, k+4, k+7, k+9, k+13, k+14, . . . , k+4n−7, k+4n−6, . . . , k+4n−3, k+
4n−2}. Clearly f(V )∪{f∗(e) : e ∈ E(C2n)} = {k, k+1, k+2, . . . , k+4n−1}. So
f is a k-super mean labeling. Hence C2n(n 6= 2) is a k-super mean graph.

Example 3.2. The 5-super mean labeling of C8 is given in Figure 1.

Figure 1

Theorem 3.3. An antiprism G on 2n vertices (n > 4) is a k-super mean
graph.

Proof. Let {ui, vi : 1 ≤ i ≤ n} be the 2n vertices of the antiprism graph G.

Case (i) n is odd. Take n = 2s + 1.

Define f : V (G) → {k, k + 1, k + 2, k + 3, . . . , p + q + k− 1 = 6n + k− 1} by

f(u1) = k;
f(u2) = k + 5;

f(u2+i) = k + 5 + 4i for 1 ≤ i ≤ s − 1;
f(us+2) = k + 4s − 2;

f(us+2+i) = k + 4s − 2 − 4i for 1 ≤ i ≤ s − 1;
f(v1) = k + 8s + 4;
f(v2) = k + 8s + 9;

f(v2+i) = k + 8s + 9 + 4i for 1 ≤ i ≤ s − 1;
f(vs+2) = k + 12s + 2;

f(vs+2+i) = k + 12s + 2 − 4i for 1 ≤ i ≤ s − 1.

It can be verified that f is a k-super mean labeling of G.

Case (ii) n is even. Take n = 2s.
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Define f : V (G) → {k, k + 1, k + 2, k + 3, . . . , p + q + k− 1 = 6n + k− 1} by

f(u1) = k;
f(u2) = k + 2;
f(u3) = k + 6;
f(u4) = k + 11;

f(u4+i) = k + 11 + 4i for 1 ≤ i ≤ s − 3;
f(us+2) = k + 4s − 4;

f(us+2+i) = k + 4s − 4 − 4i for 1 ≤ i ≤ s − 3;
f(u2s) = k + 5;
f(v1) = k + 8s + 5;
f(v2) = k + 8s;
f(v3) = k + 8s + 2;
f(v4) = k + 8s + 6;
f(v5) = k + 8s + 11;

f(v5+i) = k + 8s + 11 + 4i for 1 ≤ i ≤ s − 3;
f(vs+3) = k + 12s − 4;

f(vs+3+i) = k + 12s − 4 − 4i for 1 ≤ i ≤ s − 3.

Clearly the induced edge labels are distinct. Therefore f is a k-super mean
labeling of G. Hence G is a k-super mean graph.

Example 3.4. The 3-super mean labeling of antiprism on 12 vertices is given
in Figure 2.

Figure 2
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Theorem 3.5. The graph Cn × Pm is a k-super mean graph where n is an
odd integer and m is any integer.

Proof. Let {ui
j : 1 ≤ j ≤ n, 1 ≤ i ≤ m} be the vertices of Cn × Pm. Take

n = 2s + 1.

Define f : V (Cn × Pm) → {k, k + 1, k + 2, k + 3, . . . , p + q + k − 1 =
n(3m − 1) + k − 1} by

f(u1
j ) = k + 2j − 2 for 1 ≤ j ≤ s + 1;

f(u1
s+2) = k + 2s + 3;

f(u1
s+2+j) = k + 2s + 3 + 2j for 1 ≤ j ≤ s − 1;

f(u2
1) = k + 8s + 3;

f(u2
1+j) = k + 8s + 4 + 2j for 1 ≤ j ≤ s;

f(u2
s+2) = k + 6s + 3;

f(u2
s+2+j) = k + 6s + 3 + 2j for 1 ≤ j ≤ s − 1.

For m > 2, f(um
j ) = f(um−2

j ) + 6n for 1 ≤ j ≤ n. One can prove that f is a
k-super mean labeling of Cn × Pm. Hence the theorem.

Example 3.6. The 4-super mean labeling of C7 × P4 is give in Figure 3.

Figure 3

Theorem 3.7. The grid Pm × Pn with one random crossing edge in every
square is a k-super mean graph.

Proof. Let {uj
i : 1 ≤ j ≤ m, 1 ≤ i ≤ n} be the vertices of Pm ×Pn. Define f as

follows: f(uj
i ) = k+2j−2+(2i−2)(2m−1) for all 1 ≤ j ≤ m, 1 ≤ i ≤ n. Hence
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the edges uj
iu

j
i+1 will get the label k + 2j − 2 + (2i− 1)(2m− 1) and the edge

uj
iu

j+1
i will get the label k+2j−1+(2i−2)(2m−1). A crossing edge is either

uj
iu

j+1
i+1 or uj

i+1u
j+1
i and both will get the label k + 2j − 1 + (2i − 1)(2m − 1).

Clearly f is a k-super mean labeling. Hence the grid Pm×Pn with one random
crossing edge in every square is a k-super mean graph.

Example 3.8. The 2-super mean labeling obtained from P3 × P4 is given in
Figure 4.

Figure 4

Note 3.9. The k-super mean labeling of the graph G is the generalization of
super mean labeling of G.

§4. Super Mean Graph

Theorem 4.1. Let G1(p1, q1) and G2(p2, q2) be two super mean graphs with
u ∈ V (G1) has the label p1 +q1 and v ∈ V (G2) has the label 1. Then the graph
G which is obtained by joining u to v by any path Pn is a super mean graph.

Proof. Let f and h be the super mean labelings of G1 and G2 respectively.
Let u1, u2, u3, . . . , un be vertices of path Pn. By Theorem 2.1, Pn is a super
mean graph. Let g be the super mean labeling of Pn as follows.

Then g(u1) = 1 and g(un) = 2n − 1. By Theorem 2.2, (G1)f ∗ (Pn)g = G3

(say) is a super mean graph. Let k be the super mean labeling of G3. Again
by Theorem 2.2, (G3)k ∗ (G2)h = G is a super mean graph. Hence G is a super
mean graph.

Theorem 4.2. The double cycle C(m,n) is a super mean graph for all m ≥ 3
and n ≥ 3.
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Proof. Case (i) m 6= 4 and n 6= 4.
Since all cycles except C4 are super mean graphs, by Theorem 2.2, C(m,n)

is a super mean graph.
Case (ii) At least one of m,n is 4. Assume m = 4.

Let u1, u2, u3, u4 be the vertices of C4 and V (Cn) = {vi : 1 ≤ i ≤ n}.
Identify u4 and v1. Then V (C(m,n)) = {ui, vj : 1 ≤ i ≤ 4, 1 ≤ j ≤ n with
u4 = v1}.
Subcase (i) n is odd. Take n = 2s + 1.

A super mean labeling of C(4, 3) is given by

For n > 3, define f : V (C(4, n)) → {1, 2, 3, . . . , p + q = 2n + 7 = 4s + 9} by

f(u1) = 1;
f(u2) = 3;
f(u3) = 5;
f(u4) = f(v1) = 11;
f(v2) = 7;
f(v3) = 12;
f(v4) = 4s + 9;

f(v4+i) = 2(2s − i) + 9 for 1 ≤ i ≤ s − 2;
f(vs+2+i) = 2(4 − i) + n + 3 for 1 ≤ i ≤ s − 1.

It can be established that f is a super mean labeling.
Subcase (ii) n is even. Take n = 2s.

Define f : V (C(4, n)) → {1, 2, 3, . . . , p + q = 2n + 7 = 4s + 7} by

f(u1) = 1;
f(u2) = 3;
f(u3) = 5;
f(u4) = f(v1) = 11;
f(v2) = 7;
f(v3) = 12;

f(v3+i) = 12 + 2i for 1 ≤ i ≤ s − 2;
f(vs+1+i) = 2s + 2i + 9 for 1 ≤ i ≤ s − 1.
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It can be verified that f is a super mean labeling. Hence the double cycles
C(m,n) are super mean graphs for all m ≥ 3 and n ≥ 3.

Example 4.3. The super mean labeling of C(4, 8) is given in Figure 5.

Figure 5

Theorem 4.4. The dumb bell graph D(m,n) is a super mean graph for all
m ≥ 3 and n ≥ 3.

Proof. We consider the following two cases.

Case (i) m 6= 4 and n 6= 4.

The proof follows from fact that all cycles except C4 are super mean graphs
and by Theorem 4.1.

Case (ii) At least one of m,n is 4. Let m = 4.

Let V (Cm) = {ui : i = 1, 2, 3, 4} and V (Cn) = {vi : 1 ≤ i ≤ n}.
Subcase (i) n is odd. Take n = 2s + 1.

Join u3 and v3 by an edge. Then V (D(m,n)) = V (Cm) ∪ V (Cn) and
E(D(m,n)) = E(Cm) ∪ E(Cn) ∪ {u3v3}. A super mean labeling of D(4, 3) is
given below:
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For n > 3, define f : V (D(m,n)) → {1, 2, 3, . . . , p + q = 2n + 9 = 4s + 11} by

f(u1) = 1;
f(u2) = 3;
f(u3) = 5;
f(u4) = 10;
f(v1) = 15;
f(v2) = 12;
f(v3) = 9;
f(v4) = 16;

f(v4+i) = 16 + 2i for 1 ≤ i ≤ s − 2;
f(vs+3) = 2s + 15;

f(vs+3+i) = 2s + 15 + 2i for 1 ≤ i ≤ s − 2.

One can verify that f is a super mean labeling.
Subcase (ii) n is even. Take n = 2s.

Join u3 and v2 with an edge. Then V (D(m,n)) = V (Cm) ∪ V (Cn) and
E(D(m,n)) = E(Cm) ∪ E(Cn) ∪ {u3v2}. For n = 4, a super mean labeling of
D(4, n) is given by

For n > 4, define f : V (D(m,n)) → {1, 2, 3, . . . , p + q = 2n + 9 = 4s + 9} by

f(u1) = 1;
f(u2) = 3;
f(u3) = 5;
f(u4) = 10;
f(v1) = 13;
f(v2) = 9;
f(v3) = 14;

f(v3+i) = 14 + 2i for 1 ≤ i ≤ s − 2;
f(vs+2) = 2s + 13;

f(vs+2+i) = 2s + 13 + 2i for 1 ≤ i ≤ s − 2.
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It can be established that f is a super mean labeling. Hence the dumb bell
graphs D(m,n) are super mean graphs for all m ≥ 3 and n ≥ 3.

Example 4.5. The super mean labeling of D(4, 7) is given in Figure 6.

Figure 6

Theorem 4.6. Let Cn(n ≥ 3) be an odd cycle. Consider n copies of an odd
cycle Cm(m ≥ 3). If G is a graph obtained by identifying a vertex of each
cycle Cm with a vertex of the cycle Cn is a super mean graph.

Proof. Let u1, u2, u3, . . . , un be the vertices of the cycle Cn. Let u1j , u2j , u3j , . . . ,

unj , 1 ≤ j ≤ m, be the vertices of the cycles C
(1)
m , C

(2)
m , C

(3)
m , . . . , C

(n)
m respec-

tively, identified at each vertex of Cn such that u1 = u1m, u2 = u21, u3 =
u3m, . . . , un−1 = un−1,1 and un = unm which means that u1m, u21, u3m, u41, . . . ,
un−1,1, unm are the vertices of the cycle Cn.

Take n = 2s + 1 and m = 2t + 1.
Define f : V (G) → {1, 2, 3, . . . , (2m + 1)n = 8st + 6s + 4t + 3} as follows:

For the cycle C
(1)
m , f(u1j) =

{
2j − 1 for 1 ≤ j ≤ t + 1
2j for t + 2 ≤ j ≤ m.

For the cycle C
(k)
m , where 2 ≤ k ≤ s + 1,

f(ukj) =
{

2(k − 1)m + 2(j − 1) + k for 1 ≤ j ≤ t + 1
2(k − 1)m + 2(j − 1) + k + 1 for t + 2 ≤ j ≤ m.

For the cycle C
(k)
m , where s + 2 ≤ k ≤ n.

f(ukj) =
{

2(k − 1)m + 2(j − 1) + k + 1 for 1 ≤ j ≤ t + 1
2(k − 1)m + 2(j − 1) + k + 2 for t + 2 ≤ j ≤ m.

Now we have
n⋃

i=1
{f(V (C(i)

m ))∪f∗(E(C(i)
m ))} = {1, 2, 3, . . . , 2m}∪{2m+2, 2m+

3, . . . , 4m+1}∪{4m+3, 4m+4, . . . , 6m+2}∪· · ·∪{(2m+1)s+1, (2m+1)s+
2, . . . , (2m+1)s+2m}∪{(2m+1)(s+1)+2, (2m+1)(s+1)+3, . . . , (2m+1)(s+
2)}∪· · ·∪{(2m+1)(n−1)+2, . . . , (2m+1)n}. Clearly these labels are all dis-
tinct. Further the labels of the edges u1u2, u2u3, u3u4, . . . , us+1us+2, us+2us+3, . . . ,
unu1 of the cycle Cn are 2m+1, 4m+2, 6m+3, . . . , (2m+1)(s+1)+1, (2m+
1)(s + 2) + 1 . . . (2m + 1)(s + 1) respectively. It can be easily verified that
f(V )∪{f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , n(2m+1)}. Hence G is a super mean
graph.
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Corollary 4.7. The graph C2n+1 ¯ K2 is a super mean graph for all n.

Example 4.8. The super mean labeling of G obtained from C3 by identifying
a vertex of the cycle C5 with each vertex of the cycle C3 is given in Figure 7.

Figure 7

The graph Q2 is C4, and hence it is not a super mean graph [6]. Next we
prove Qn is a super mean graph for all odd values of n.

Theorem 4.9. The quadrilateral snake Qn, where n is odd, is a super mean
graph.

Proof. Let V (Qn) = {ui, vi, wi, un : 1 ≤ i ≤ n − 1}.
Define f : V (Qn) → {1, 2, 3, . . . , 7n − 6} by

f(u1) = 1;
f(u2i) = f(u2i−1) + 10 for 1 ≤ i ≤ s;

f(u2i+1) = f(u2i) + 4 for 1 ≤ i ≤ s;
f(v1) = 3;
f(v2i) = f(v2i−1) + 4 for 1 ≤ i ≤ s;

f(v2i+1) = f(v2i) + 10 for 1 ≤ i ≤ s − 1;
f(w1) = 5;

f(wi+1) = f(wi) + 7 for 1 ≤ i ≤ n − 1.

Clearly f(V ) ∪ {f∗(e) : e ∈ E(Qn)} = {1, 2, 3, . . . , 7n − 6}. Hence, Qn where
n is odd, is a super mean graph.

Example 4.10. The super mean labelig of Q5 is given in Figure 8.

Figure 8
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Theorem 4.11. Let Cn : u1u2u3 . . . unu1(n is odd) be a cycle. Let G be the
graph with V (G) = V (Cn) ∪ {vi : 1 ≤ i ≤ n}, E(G) = E(Cn) ∪ {uivi, ui+1vi :
1 ≤ i ≤ n − 1} ∪ {unvn, u1vn}. Then G is a super mean graph.

Proof. Take n = 2s + 1. Define f : V (G) → {1, 2, 3, . . . , p + q = 5n} by

f(u1) = 1;
f(ui) = 5i − 4 for 2 ≤ i ≤ s + 1;

f(us+2) = 5s + 8;
f(us+2+i) = 5s + 8 + 5i for 1 ≤ i ≤ s − 1;

f(v1) = 3;
f(vi) = 5i − 2 for 2 ≤ i ≤ s;

f(vs+1) = 5s + 6;
f(vs+2) = 5(s + 2);

f(us+2+i) = 5(s + 2) + 5i for 1 ≤ i ≤ s − 1.

Clearly the vertex labels, the induced edge labels are distinct and f(V ) ∪
{f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , 5n}. Hence G is a super mean graph.

Theorem 4.12. Let Cn : u1u2u3 . . . unu1 (n is odd) be a cycle. Let G be the
graph obtained from Cn by joining the vertices ui and ui+1 by the path P i

m (m
is odd) 1 ≤ i ≤ n− 1 and joining the vertices un and u1 by the path Pn

m. Then
G is a super mean graph.

Proof. By Theorem 4.11, the theorem is true when m = 3. We prove the
theorem for m > 3. Let vj

1, v
j
2, v

j
3, . . . , v

j
m for 1 ≤ j ≤ m be the vertices of

the path P i
m(1 ≤ i ≤ n) such that vj

m = vj+1
1 = uj+1 for 1 ≤ j ≤ n − 1 and

vn
m = v1

1 = u1. Take n = 2s + 1 and m = 2t + 1.

Define f : V (G) → {1, 2, 3, . . . , p + q = n(2m − 1)} by

f(v1
i ) = 2i − 1 for 1 ≤ i ≤ t + 1;

f(v1
i ) = 2i for t + 2 ≤ i ≤ 2t + 1;

f(vj
i ) = f(vj−1

i ) + 2m − 1 for 1 ≤ i ≤ 2t + 1 and 2 ≤ j ≤ s;

f(vs+1
1 ) = f(vs

m) = 1 + (2m − 1)s;

f(vs+1
2 ) = 4 + (2m − 1)s;
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f(vs+1
2+i ) = 4 + (2m − 1)s + 2i for 1 ≤ i ≤ t − 2;

f(vs+1
t+1 ) = 2t(2s + 1) + s + 4;

f(vs+1
t+1+i) = 2t(2s + 1) + s + 4 + 2i for 1 ≤ i ≤ t;

f(vs+2
i ) = 4t(s + 1) + s + 2 + 2i for 1 ≤ i ≤ t + 1;

f(vs+2
i ) = 4t(s + 1) + s + 3 + 2i for t + 2 ≤ i ≤ 2t + 1;

f(vj
i ) = f(vj−1

i ) + 2m − 1 for 1 ≤ i ≤ 2t + 1 and s + 3 ≤ j ≤ 2s;

f(v2s+1
1+i ) = f(v2s

m ) + 2i for 1 ≤ i ≤ 2t − 1.

It can be verified that f is a super mean labeling of G. Hence G is a super
mean graph.

Example 4.13. The super mean labeling of G with m = 5 and n = 7 is given
in Figure 9.

Figure 9
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