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Abstract. Let Q be an affine quartic which does not intersect transversely with
the line at infinity L∞ such that there exists a D2p-covering over P2 branched
along Q ∪ L∞. In this paper, we show the existence of a (2, 3) torus decompo-
sition of the defining polynomial of Q and its uniqueness except for one class.
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Introduction

Let C = {f = 0} ⊂ C2 be an irreducible affine plane curve and let a, b be
coprime positive integers with a, b ≥ 2. We say that C is a quasi torus curve
of type (a, b) (c.f [2]) if there exist polynomials fr, fp and fq such that they
satisfy the following condition:

(∗) fr(x, y)abf(x, y) = fp(x, y)a + fq(x, y)b, deg fj = j, j = r, p, q

where r ≥ 0 and p, q > 0. In the above affine equations, we also add conditions
that any two polynomials of f , fr, fp and fq are coprime. We say that such a
decomposition (∗) is a quasi torus decomposition of C. A quasi torus curve C
is called torus curve if fr(x, y) is a non-zero constant.

In [8], H. Tokunaga studied D2p covers of P2 branched along a quintic
Q + L∞ where Q is a quartic and L∞ is the line at infinity and their relative
positions are the following:

• Q ∩ L∞ consists of two points.

(i) L∞ is bi-tangent to Q at two distinct smooth points.

(ii) L∞ is tangent to a smooth point and passes through a singular
point of Q.
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(iii) L∞ passes through two distinct singular points of Q.

• Q ∩ L∞ consists of a point.

(iv) L∞ is tangent to Q at a smooth point with intersection multiplicity
4.

(v) L∞ intersects Q at a singular point with intersection multiplicity
4.

Table 1 is the list of the possible configurations Q + L∞ which is given in [8].

No. Sing(Q) Q ∩ L∞ No. Sing(Q) Q ∩ L∞
(1) 2a2 (i) (11) e6 (i)
(2) 2a2 (iv) (12) e6 (iv)
(3) 2a2 + a1 (i) (13) a4 + a∞2 (ii)
(4) 2a2 + a1 (iv) (14) a∞3 + a2 + a1 (ii)
(5) 3a2 (i) (15) a5 + a1 (i)
(6) a2 + a∞3 (ii) (16) a∞5 + a∞2 (iii)
(7) a5 (i) (17) 2a∞3 (iii)
(8) a5 (iv) (18) a∞7 (v)
(9) a∞6 (ii) (19) 2a∞3 + a1 (iii)
(10) a∞4 + a2 (v)

Table 1.

Here the singularities of types an and e6 are defined by

an : x2 + yn+1 = 0 (n ≥ 1), e6 : x3 + y4 = 0

and the notation ∗∞ express singularities on the line L∞. We call such configu-
rations QL-configurations. Note that Q is irreducible for the cases (1), . . . , (13)
and Q is not irreducible for the cases (14), . . . , (19). We call configurations
for the cases (1), . . . , (13) (respectively for the cases (14), . . . , (19)) irreducible
QL-configurations (resp. non-irreducible QL-configurations).

In [9], the second author studied two topological invariants of
QL-configurations, the fundamental group π1(C2\Q) and the Alexander poly-
nomial ∆Q(t). In particular, he showed that

(?) t2 − t + 1 divides ∆Q(t) except for the case (13) and (16).

In [5], M. Oka studied a special type of degeneration family {Cτ} of ir-
reducible torus sextics which degenerates into C0 := D + 2L∞ where D is a
quartic and L∞ is a line. We call such a degeneration a line degeneration of
order 2. (We will give the definition for general situation in §1). He showed the
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divisibility of the Alexander polynomials ∆Cτ (t) |∆D(t) for τ 6= 0. (Theorem
14 of [5])

In this paper, we study the possibilities of quasi torus decompositions of
QL-configurations so that the above divisibility (?) also follows from the results
of the line degeneration by M. Oka.

This paper consists of 9 sections. In section 1, we recall the definition
of line degenerated torus curves of type (p, q). In section 2, we classify the
singularities of line degenerated torus curves of type (2, 3). In section 3, we
state our main theorem. In sections 4, 5, 6 and 7, we prove theorems which
are stated in §3 using line degenerated torus curves of type (2, 3).

For the cases (14), . . . , (19), Q is not irreducible but we can also consider
torus decomposition of non-irreducible QL-configurations without irreducibil-
ity and the condition gcd(a, b) = 1 in the definition of quasi torus curves.
In section 8, we consider torus decomposition of above non-irreducible QL-
configurations. In section 9, we will show that if a plane curve has a (2, 3)
torus decomposition, then there exist infinite (2, 3) quasi torus decompositions.

§1. Line degenerated torus curves

Let U be an open neighborhood of 0 in C and let {Cs | s ∈ U} be an analytic
family of irreducible curves of degree d which degenerates into C0 := D+j L∞
(1 ≤ j < d) where D is an irreducible curve of degree d − j and L∞ is a line.
We denote this situation as Cs → C0 = D + j L∞. We assume that there is a
point B ∈ L∞ \ L∞ ∩ D such that B ∈ Cs and the multiplicity of Cs at P is
j for any non-zero s ∈ U . We call such a degeneration a line degeneration of
order j and we call L∞ the limit line of the degeneration. B is called the base
point of the degeneration. In [5], M. Oka showed that there exists a canonical
surjection:

ϕ : π1(C2 \ D) → π1(C2 \ Cs), s : sufficiently small,

where C2 = P2 \ L∞ and as a corollary he showed the divisibility among the
Alexander polynomials of a line degeneration family:

∆Cs(t) | ∆D0(t).

1.1. Line degenerated torus curves

Let Cp,q = {Fp,q = 0} be a (p, q) torus curve (p > q ≥ 2) where Fp,q is defined
by

(1.1) Fp,q(X,Y, Z) = Fp(X,Y, Z)q + Fq(X,Y, Z)p, deg Fk = k, k = p, q
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where (X,Y, Z) is a homogeneous coordinates system of P2. Suppose that Fp,q

is written by the following form:

(1.2) Fp,q(X,Y, Z) = Zj G(X,Y, Z)

where G(X,Y, Z) is a homogeneous polynomial of degree pq − j. We call a
curve D = {G = 0} a line degenerated torus curve of type (p, q) of order j
and the line L∞ = {Z = 0} the limit line of the degeneration. We divide the
situations (1.2) into two cases.
First case. Suppose that the defining polynomials of associated curves are
written as follows:

Fp(X,Y, Z) = F ′
p−r(X,Y, Z)Zr, Fq(X,Y, Z) = F ′

q−s(X,Y, Z)Zs

where r and s are positive integers such that r < p and s < q. We assume that
sp ≥ rq. Factoring Fp,q as Fp,q(X,Y, Z) = ZrqG(X,Y, Z), we can see that G
is defined as

(1.3) G(X,Y, Z) = F ′
p−r(X,Y, Z)q + F ′

q−s(X,Y, Z)pZsp−rq.

We call such a factorization visible factorization and D is called a visible
degeneration of torus curve of type (p, q). By the definition, D ∩ L∞ =
{F ′

p−r(X,Y, Z) = Z = 0} and thus the limit line L∞ is singular with re-
spect to the visible degeneration of torus curve D. In [5], M. Oka showed that
a visible degeneration of torus curve of type (p, q) can be expressed as a line
degeneration of irreducible torus curves of degree pq.
Second case. Neither Fp or Fq factors through Z but F can be written as
(1.2). Then D is called an invisible degeneration of torus curve of type (p, q).

§2. Line degenerated (2, 3) torus curves of degree 4

In this section, we consider a (2, 3) sextic of torus type which is a visible
factorization.

2.1. Visible factorization

Let D = {G = 0} be a quartic associated with a visible factorization (1.3):

D : G(X,Y, Z) = F ′
2(X,Y, Z)2 + F ′

1(X,Y, Z)3Z = 0.

We consider the associated curves C2 := {F ′
2 = 0}, L := {F ′

1 = 0} and
L∞ := {Z = 0}. Let P be an inner singularity of D, namely P is on the
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intersection C2∩L, C2∩L∞ or C2∩L∩L∞. Then the topological type (D,P )
depends only on the intersection multiplicities of C2, L and L∞. To describe
singularities of D, we put the intersection multiplicities ι1 := I(C2, L; P ) and
ι2 := I(C2, L∞; P ). Note that 0 ≤ ιi ≤ 2 for i = 1, 2 and (ι1, ι2) 6= (2, 2) as
L 6= L∞.

Lemma 1. Suppose that C2 is smooth at P . Then we have the following
descriptions:

(1) If P ∈ C2 ∩ L \ L∞, then we have (D,P ) ∼ a3ι1−1.

(2) If P ∈ C2 ∩ L∞ \ L, then D is smooth at P and is tangent to L∞ with
I(D,L∞; P ) = 2ι2.

(3) If P ∈ C2 ∩ L ∩ L∞, then we have (D,P ) ∼ a3ι1+ι2−1.

Proof. The assertion (1) is shown in [7] and [1] for general cases. We consider
the assertions (2) and (3). We use affine coordinates (x, z) = (X/Y,Z/Y )
on C2 = P2 \ {Y = 0}. Then the defining polynomial g of D in the affine
coordinates is given as follows.

g(x, z) := G(x, 1, z) = f ′
2(x, z)2 + f ′

1(x, z)3z, f ′
j(x, z) := F ′

j(x, 1, z), j = 1, 2.

As C2 is smooth at P , we can take local coordinates (u, v) so that L∞ = {v =
0} and f ′

2(u, v) = c1 v − ϕ(u) where c1 6= 0. Then orduϕ(u) = ι2 and

g(u, v) = (c1v − ϕ(u))2 + f ′
1(u, v)3v

= c u2ι2 + f ′
1(P )3 v + (higher terms), c 6= 0.

Here “higher terms” are linear combinations of monomials uαvβ such that
2ι2β + α > 2ι2. They do not affect the topology of D at P . As P is not on L,
f ′
1(P ) is not 0. Hence we have the assertion (2).

Now we show the assertion (3). As C2 is smooth at P , we can take local
coordinates (u, v) so that f ′

2(u, v) = v, f ′
1(v, v) = c1 v−ϕ1(u) and L∞ = {c2 v−

ϕ2(u) = 0} where c1 and c2 are non-zero constants. Then orduϕ1(u) = ι1 and
orduϕ2(u) = ι2 and

g(u, v) = v2 + (c1 v − ϕ1(u))3(c2 v − ϕ2(u))

= v2 − c u3ι1+ι2 + (higher terms), c 6= 0.

Here “higher terms” are linear combinations of monomials uαvβ such that
2α + (3ι1 + ι2)β > 2(3ι1 + ι2) if gcd(2, 3ι1 + ι2) = 1 and α + (3ι1 + ι2)β/2 >
(3ι1 + ι2) if gcd(2, 3ι1 + ι2) = 2. In particular, vϕ1(u)3 is in (higher terms).
This shows the assertion (3).
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Next we consider the case that C2 is singular at P . Then C2 consists of
two lines `1 and `2 such that `1 ∩ `2 = {P}.

Lemma 2. Suppose that C2 is singular at P . Then singularities of D at P
are described as follows:

(1) If P ∈ C2 ∩ L \ L∞, then we have (D,P ) ∼ e6.

(2) If P ∈ C2 ∩ L∞ \ L, then D is smooth at P and is tangent to L∞ with
I(D,L∞; P ) = 4.

(3) If P ∈ C2 ∩ L ∩ L∞, then D consists of four lines which intersect at P .

Proof. The assertion (1) is shown in [7]. We show the assertion (2). We take
a suitable local coordinates (u, v) at P so that f2(u, v) = u(b1u − b2v) and
L∞ = {v = 0} where bi 6= 0 for i = 1, 2. Then

g(u, v) = u2(b1u − b2v)2 + b3 f ′
1(P )3v

= b2
1u

4 + b3 f ′
1(P )3v + (higher terms).

As P is not on L, we have f ′
1(P ) 6= 0 and I(D,L∞; P ) = 4. This shows the

assertion (2). The assertion (3) is obvious from the defining polynomial of
D.

We say that P is an outer singularity of D if P ∈ Sing(D)\C2. We consider
possible outer singularities of D.

Lemma 3. If P ∈ D is an outer singularity, then (D,P ) is either a1 or a2.

Our proof is computational and it is done in the same way as in [6].

2.2. Invisible factorization

Let D = {G = 0} be an invisible factorization of a (2, 3) torus curve which
satisfies the following equations.

(2.1) F2,3(X,Y, Z) = F2(X,Y, Z)3 − F3(X,Y, Z)2 = Z2 G(X,Y, Z)

We assume that G is not divided by Z and G is reduced. We rewrite F2 and
F3 as follows:

F2(X,Y, Z) = F
(2)
2 (X,Y ) + F

(1)
2 (X,Y )Z + F

(0)
2 (X,Y )Z2,

F3(X,Y, Z) = F
(3)
3 (X,Y ) + F

(2)
3 (X,Y )Z + F

(1)
3 (X,Y )Z2 + F

(0)
3 (X,Y )Z3
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where F
(i)
j is a homogeneous polynomial of degree i. By an easy calculation,

we observe that there exists a linear form `1(X,Y ) so thatF
(2)
2 (X,Y ) = `1(X,Y )2,

F
(3)
3 (X,Y ) = ε `1(X,Y )3, F

(2)
3 (X,Y ) =

3ε

2
`1(X,Y )F (1)

2 (X,Y )

where ε = 1 or −1. We put `2(X,Y ) := F
(1)
2 (X,Y ) and `3(X,Y ) := F

(1)
3 (X,Y ).

Then we may assume the defining polynomials of C2 and C3 as the following:

(])

 F2(X,Y, Z) = `1(X,Y )2 + `2(X,Y ) Z + a00 Z2,

F3(X,Y, Z) = `1(X,Y )3 +
3
2

`1(X,Y ) `2(X,Y ) Z + `3(X,Y ) Z2 + b00 Z3.

Then F2,3 is factorized as

F2,3(X,Y, Z) = F2(X,Y, Z)3 − F3(X,Y, Z)2 = Z2G(X,Y, Z).

To see the local geometry of D at a intersection point D and L∞, we may
assume `1(X,Y ) = X and we take the affine coordinates (x, z) = (X/Y,Z/Y )
at O∗ := [0 : 1 : 0]. Let g(x, z) = G(x, 1, z), f2(x, z) = F2(x, 1, z) and
f3(x, z) = F3(x, 1, z) be the local equations of D, C2 and C3 respectively. In
the affine coordinates (x, z), f2 and f3 are written as

f2(x, z) = x2 + `2(x, 1) z + a00z
2,

f3(x, z) = x3 +
3
2
`2(x, 1)xz + `3(x, 1)z2 + b00z

3.

We can see the local geometries of C2 and C3 at O∗. First we consider the
case `2(0, 1) 6= 0. Then we have

(1) C2 is smooth at O∗ and is tangent to the limit line L∞ at O∗.

(2) C3 has an a1 singularity at O∗.

(3) The intersection multiplicity I(C2, C3; O∗) is 3.

Then, putting c1 = `2(0, 1), g(x, z) is given as

g(x, z) = c3
1 z +

3
4

c2
1 x2 + (higher terms).

Thus D is simply tangent to L∞ at O∗. We write g(x, 0) = x2 (x − α)(x − β)
for some α, β such that αβ = 3c2

1/4 6= 0. Then if α 6= β, then L∞ is tangent
to D at O∗ and intersects transversely with D at other 2 points. If α = β,
then L∞ is a bi-tangent line of D.
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Lemma 4. If c1 6= 0, then the set of singularities Sing(D) is {3a2} or {a2 +
a5}.

Proof. As the intersection C2 ∩ C3 ∩ L∞ = {O∗} and I(C2, C3;O∗) = 3, the
sum of the intersection numbers of C2 ∩ C3 is 3 in the affine space P2 \ L∞.
The possible configurations of Sing(D) are {3a2}, {a5 + a2} and {a8}. The
singularity a8 is locally irreducible but the Milnor number of an irreducible
quartics is less then or equal to 6. Hence the configuration {a8} does not
occur.

Remark 1. If D is bi-tangent to L∞, then the configuration {a5 + a2} does
not exist. Indeed, if the configuration {a5 + a2} exists, then D can not be
irreducible. If D is a union of a line and a cubic, then a cubic can not have a
bi-tangent line. If D is a union of two conics which are tangent to L∞, then
D can not have any a2 singularity.

Now we consider the case c1 = `2(0, 1) = 0. Then putting c2 = `3(0, 1),
their defining polynomials are given as

f2(x, z) = a00 z2 + `2(1, 0)xz + x2,

f3(x, z) = c2 z2 + x3 +
(
c3 x2z + c4 xz2 + b00z

3
)
, c3, c4 ∈ C.

Thus C2 consists of two lines `1 and `2 such that `1 ∩ `2 = {O∗} and C3 has
an a2 singularity at O∗ and I(C2, C3; O∗) = 4. Then after an easy calculation,
we have

g(x, z) = −c2
2 z2 − 2 c2 x3.

Hence D has an a2 singularity at O∗. Thus we have:

Lemma 5. If c1 = 0, then D has an a2 singularity on L∞ and Sing(D) =
{2a2 + a∞2 } or {a5 + a∞2 }.

Proof. As C2 ∩ C3 ∩ L∞ = {O∗} and I(C2, C3; O∗) = 4, the intersection
C2 ∩ C3 generically consists of two points in the affine space P2 \ L∞. By a
similar argument of Lemma 4, we have the assertion.

§3. Statement of the Theorem.

Let Q be a quartic in QL-configurations. For a quartic Q in one of the
(1), . . . , (13) of Table 1, Q is irreducible and Q is not irreducible for (14), . . . , (19)
of Table 1. Now our main results are the following:

Theorem 1. Let Q be an irreducible quartic in one of the QL-configurations.

(1) For Q in the case (13), there exists no (2, 3) torus decomposition.
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(2) For Q in the case (5), there exist five torus decompositions of type (2, 3)
whose three decompositions are visible decompositions and two are invis-
ible decompositions.

(3) For Q in the remaining cases, there exists a unique (2, 3) torus decom-
position for each case.

Note that a quartic Q for the case (5) is a 3 cuspidal quartic.

Remark 2. In section 9, we will show that if a plane curve has a (2, 3) torus
decomposition, then there exist infinite (2, 3) quasi torus decompositions.

Theorem 2. For each quartic Q of (1), . . . , (12), there exists a line degener-
ation family of sextic C(s) : H3(X,Y, Z, s)2 + H2(X,Y, Z, s)3 = 0 which are
(2, 3) torus curves such that C(0) = Q + 2L∞. In particular, we have the
divisibility ∆C(s)(t) | ∆Q(t).

The divisibility (?) in Introduction also follows from Theorem 2 and Corol-
lary 15 of [5].

Proposition 6. For non-irreducible quartics (14), . . . , (19) in Table 1, we have
the following:

(a) There exist unique (2, 3) torus decompositions for quartics (14) and (15)
and their decompositions are represented as visible decompositions.

(b) The quartic (16) does not admit any torus decompositions.

(c) There exist unique (2, 4) torus decompositions for the quartics (17), (18)
and (19). Their decompositions are represented as invisible decomposi-
tions.

Remark 3. For the quartics (13) and (16), there are not torus decomposition.
By the classifications of singularities in §2, their singularities do not occur as
the quartics with visible or invisible (2, 3) torus decompositions.

§4. The proof of Theorem 1 (3)

4.1. Strategy

There are 13 configurations of singularities of the quintic Q + L∞ as in (1),
. . . , (13) in Table 1. We divide these quintic into 5 cases (i), . . . , (v) as in
Introduction. Note that the case (iii) does not appear when Q is irreducible.

By the classification of the singularities for the visible and invisible factor-
izations in §2, for the quartics (1), . . . , (12) except the case (5), the possible
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torus decomposition must be visible and unique if it exists. The quartic (5)
has an exceptional property. It has both visible and invisible torus decompo-
sitions. Thus we treat this case in the next section.

First, we construct explicit quartics Q := {F = 0} with the prescribed prop-
erties at infinity. By the action of PSL(3, C) of P2, we can put the singularities
at fixed locations. Then we construct the respective torus decompositions in
§2.

Step 1. Construction of an explicit quartic Q. By the classification of
the singularities for invisible decomposition case (Lemma 4 and Lemma 5),
the quartics in cases (1)∼ (12) except the case (5) can not have invisible torus
decomposition. So we only need the possible visible decomposition for these
quartics. As the computations are boring and easy, we explain the quartic (1)
in Table 1 in detail and for the other cases we simply give the result of the
computations.
The quartic (1) in Table 1. In this case, L∞ is a bi-tangent line of Q and
the singularity is Sing(Q) = {2a2}. We construct a quartic Q with 2a2 which
L∞ is a bi-tangent line. Let Σ(Q) := {P1, P2} be the singular locus of Q and
let Q ∩ L∞ := {R1, R2} be the bi-tangent points. By the action of PSL(3, C)
on P2, we can put the locations of points:

P1 = [1 : 0 : 1], P2 = [−1 : 0 : 1], R1 = [1 : 1 : 0]

and we may assume that the tangent directions at P1 and P2 are given as

{x − 1 = 0}, {x + 1 = 0}

respectively. We start from the generic quartic F (X,Y, Z) =
∑

ν cνX
ν1Y ν2Zν3

with ν = (ν1, ν2, ν3) with ν1 + ν2 + ν3 = 4. The necessary conditions are

F (P1) =
∂F

∂X
(P1) =

∂F

∂Y
(P1) =

∂2F

∂Y 2
(P1) =

∂2F

∂X∂Y
(P1) = 0,

F (P2) =
∂F

∂X
(P2) =

∂F

∂Y
(P2) =

∂2F

∂Y 2
(P2) =

∂2F

∂X∂Y
(P2) = 0,

F (R1) =
∂F

∂X
(R1) = 0.

Under the above conditions, we have F (X,Y, 0) = (X−Y )2(X−α Y )(X−β Y ).
As L∞ is bi-tangent to Q, we must have α = β. Thus we have 13 equations
of the coefficients of F . By solving these equations, F has the following form:

Q : F (X,Y, Z) = Z4 + 2(Y 2 − X2)Z2 + t Y 3Z + (Y 2 − X2)2 = 0, t 6= 0.

Then another bi-tangent point R2 is [−1 : 1 : 0].
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Step 2. Torus decompositions. Now we consider the possibilities of visible
torus decompositions of Q. Thus we assume that F is written as follows:

F (X,Y, Z) = F ′
2(X,Y, Z)2 + F ′

1(X,Y, Z)3Z.

Two a2 singularities are inner singularities of Q. Hence we assume that C2 ∩
L = {P1, P2} and C2 is smooth at P1 and P2 where C2 = {F ′

2 = 0} and
L = {F ′

1 = 0}. Then we have

F ′
1(P1) = F ′

1(P2) = 0, F ′
2(P1) = F ′

2(P2) = 0.

Then L is the line pass through P1 and P2. Hence we get F ′
1(X,Y, Z) = s1 Y

where s1 ∈ C∗. As C2 is smooth at Pi, the tangent directions of C2 at Pi

must coincide with that of Q for i = 1, 2. Hence F ′
2 also satisfies the following

conditions:
∂F ′

2

∂Y
(P1) =

∂F ′
2

∂Y
(P2) = 0.

Then Sing(Q) = {2a2} by Lemma 1. As R1 ∈ Q, C2 passes through R1.
Namely F ′

2 satisfies the condition F ′
2(R1) = 0. Then F ′

2 takes the following
form:

F ′
2(X,Y, Z) = s2 (X2 − Y 2 − Z2), s2 ∈ C∗.

Note that C2 also passes through another bi-tangent point R2. Hence Q
satisfies the condition (i) by Lemma 1. Therefore we get the family of quartics
with visible factorizations:

F (X,Y, Z) = s2
2 (X2 − Y 2 − Z2)2 + s3

1 Y 3 Z = 0.

Finally, we put s3
1 = t and s2

2 = 1. Then we can see easily

(X2 − Y 2 − Z2)2 + t Y 3Z = Z4 − 2
(
X2 + Y 2

)
Z2 + t Y 3Z + (X2 + Y 2)2

= F (X,Y, Z).

Step 3. Uniqueness. By the classification of the singularities for the visible
and invisible factorizations in §2, we can see easily that the possible torus
decompositions are visible. Then two a2 singularities must be inner singu-
larities and the corresponding curves are uniquely determined by the above
arguments.
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L∞
L∞

L

C2

P1

P2

R1

R2

P1

P2

R1

R2

D

Figure 1: The quartic (1) in Table 1

For the other quartics, we only give the results of calculations.

Quartic (1)

Singularities 2a2 at [1 : 0 : 1], [−1 : 0 : 1]

Q ∩ L∞ bi-tangent at [1 : 1 : 0], [−1 : 1 : 0]

Torus decomposition (X2 − Y 2 − Z2)2 + t Y 3Z = 0

Quartic (2)

Singularities 2a2 at [1 : 0 : 1], [−1 : 0 : 1]

Q ∩ L∞ tangent multiplicity 4 at [0 : 1 : 0].

Torus decomposition (X2 − Z2)2 + t Y 3Z = 0.

Quartic (3)

Singularities 2a2 + a1 at [0 : 0 : 1], [1 : 1 : 1], [−1 : 1 : 0].

Q ∩ L∞ bi-tangent at [
√

3 : 1 : 0], [−
√

3 : 1 : 0].

Torus decomposition (4Z2 − 6Y Z − X2 + 3Y 2)2 + 16 (Y − Z)Z = 0.

Quartic (4)

Singularities 2a2 + a1 at [0 : 0 : 1], [1 : 1 : 1], [−1 : 1 : 0].

Q ∩ L∞ tangent multiplicity 4 at [0 : 1 : 0]

Torus decomposition (2Z2 + X2 − 3Y Z)2 + 4 (Y − Z)Z = 0.

Quartic (6)

Singularities a2 + a∞3 at [0 : 0 : 1], [−1 : 1 : 0].

Q ∩ L∞ singular at [−1 : 1 : 0] and tangent at [1 : 1 : 0].

Torus decomposition (X2 − 2XZ − Y 2)2 + t (X + Y )Z = 0.



ON (2, 3) TORUS DECOMPOSITIONS 105

Quartic (7)

Singularities a5 at [0 : 0 : 1].

Q ∩ L∞ bi-tangent at [1 : 1 : 0], [−1 : 1 : 0].

Torus decomposition (XZ + s(X2 − Y 2))2 + s(ts − 2)X3Z = 0.

Quartic (8)

Singularities a5 at [0 : 0 : 1].

Q ∩ L∞ tangent multiplicity 4 at [1 : 0 : 0].

Torus decomposition (XZ − s Y 2)2 + tX3Z = 0

Quartic (9)

Singularities a∞6 at [0 : 1 : 0].

Q ∩ L∞ singular at [0 : 1 : 0] and tangent at [−1 : 1 : 0].

Torus decomposition (t22Z
2 + t3XZ − t2X(X + Y ))2

+t2(2t3 + t1t2) X3Z = 0.

Quartic (10)

Singularities a∞4 , a2 at [0 : 0 : 1], [0 : 1 : 0].

Q ∩ L∞ singular at [0 : 1 : 0].

Torus decomposition (Y Z − t2X
2)2 + tX3Z = 0

Quartic (11)

Singularities e6 at [0 : 0 : 1].

Q ∩ L∞ bi-tangent at [1 : 1 : 0], [−1 : 1 : 0].

Torus decomposition (X2 + Y 2)2 + tX3Z = 0

Quartic (12)

Singularities e6 at [0 : 0 : 1].

Q ∩ L∞ tangent multiplicity 4 at [1 : 0 : 0].

Torus decomposition Y 4 + tX3Z = 0.

Table 2.
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§5. Proof of Theorem 1 (2).

In this section, we consider the exceptional case (5) in Table 1. This case
(5) is exceptional as the classification of the singularities tells us that it may
have a invisible case as well as visible decompositions. Let Q = {F = 0} be
a quartic with Sing(Q) = {3a2}. Then, by the class formula ([3]), Q has a
unique bi-tangent line and we take L∞ as the bi-tangent line of Q. We put the
singular locus Σ(Q) = {P1, P2, P3} and the intersection Q ∩ L∞ := {R1, R2}.
By the action of PSL(3, C) on P2, we can put the locations:

P1 = [1 : 0 : 1], P2 = [−1
2

:
√

3
2

: 1], P3 = [−1
2

: −
√

3
2

: 1], R1 = [I, 1, 0]

where I =
√
−1. By direct computations, the defining polynomial F of Q is

obtained by

F (X,Y, Z) = Z4 − 6(X2 + Y 2)Z2 + 8(X2 − 3Y 2)XZ − 3(X2 + Y 2)2.

Then another bi-tangent point R2 is [−I : 1 : 0]. Note that there is no free
parameters left.

Now we consider two transformations σ, τ : P2 → P2 which are defined as

σ(X : Y : Z) := (X : −Y : Z), τ(X : Y : Z) := (X : Y : Z)A,

where

A =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , θ = −2
3
π.

Consider the subgroup G of PSL(3; C) generated by σ and τ . Observe that
G ∼= S3 and σ2 = τ3 = (στ)2 = e. Then we can see that L∞ and Q = {F = 0}
are stable under the action of G:

F (X,Y, Z) = F (σ(X,Y, Z)) = F (τ(X,Y, Z)).

We observe also the following.

σ(R1) = R2, σ(R2) = R1, σ(P1) = P1, σ(P2) = P3, σ(P3) = P2.

τ(Ri) = Ri, i = 1, 2, τ(Pi) =

{
Pi+1 if i = 1, 2
P1 if i = 3.

Visible factorization. Now we consider the possibilities of (2, 3) visible
factorization of Q = {F = 0}. We assume that F is written as follows:

F (X,Y, Z) = F ′
2(X,Y, Z)2 + F ′

1(X,Y, Z)3Z.

In this case, two of P1, P2, P3 must be inner singularities and the rest is an
outer singularity. Thus we have three possible cases for these choices:
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(1) P1 is an outer singularity and P2, P3 are inner singularities.

(2) P2 is an outer singularity and P1, P3 are inner singularities.

(3) P3 is an outer singularity and P1, P2 are inner singularities.

First we assume the case (1). Then L = {F ′
1 = 0} and C2 = {F ′

2 = 0} are
satisfy the following.

• P1 is an outer singularity.

• L is the line passing P2 and P3.

• C2 passes through P2, P3, R1 and R2.

Then the defining polynomials F ′
1 and F ′

2 are obtained by

F ′
1(X,Y, Z) = −1

3
t2(Z + 2X), F ′

2(X,Y, Z) =
t3

6
(Z2 + 4XZ + Y 2 + X2).

We take t as one of the solutions t6 + 108 = 0. Then F is decomposed into

(V-1) F (X,Y, Z) = −3(Z2 + 4XZ + Y 2 + X2)2 + 4(Z + 2X)3Z.

Note that C2, L, P1 and {P2, P3} are stable by the action of σ.
Next we consider the case (2). The singular locus Σ(Q) is stable by the

action of τ and τ(C2 ∩L) = {P3, P1}. Hence P2 is the outer singularity. Thus
we have

F (X,Y, Z) = F (τ(X,Y, Z)) = F2(τ(X,Y, Z))2 + F1(τ(X,Y, Z))3Z

= −3(Z2 − 2XZ − 2
√

3Y Z + X2 + Y 2)2 + 4(Z − X −
√

3Y )3.

(V-2)

By the same argument, we have one more different torus decomposition:

F (X,Y, Z) = F (τ2(X,Y, Z)) = F ′
2(τ

2(X,Y, Z))2 + F ′
1(τ

2(X,Y, Z))3Z

= −3(Z2 − 2XZ + 2
√

3Y Z + X2 + Y 2)2 + 4(Z − X +
√

3Y )3.

(V-3)

Thus we have three different torus decompositions (V-1), (V-2) and (V-3).

Invisible factorization. Next we consider (2, 3) invisible factorization (§2):

Z2F (X,Y, Z) = F2(X,Y, Z)3 − F3(X,Y, Z)2
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where F2 and F3 are defined by

(])
F2(X,Y, Z) = `1(X,Y )2 + `2(X,Y ) Z + a00 Z2,

F3(X,Y, Z) = `1(X,Y )3 +
3
2

`1(X,Y ) `2(X,Y ) Z + `3(X,Y ) Z2 + b00 Z3

where `i is a linear form for i = 1, 2, 3. By the argument in §2.2, the singularity
locus P1, P2 and P3 are inner singularities. Hence we have the conditions:

(∗1) F2(Pi) = F3(Pi) = 0, i = 1, 2, 3.

Moreover one of the bi-tangent points is obtained by the intersection point
{`1 = 0} ∩ L∞.

First we assume that {`1 = 0} ∩ L∞ = {R1}. By solving conditions (∗1)
and `1(R1) = 0, we have a00 = 0, b00 = t3/2 and

`1(X,Y ) = t (X − IY ), `2(X,Y ) = −t2 (X + IY ), `3(X,Y ) = 0.

Thus F2 and F3 are given by

F2(X,Y, Z) = t2(X − IY )2 − t2(X + IY )Z,

F3(X,Y, Z) =
t3

2
(
Z3 − 3(X2 + Y 2)Z + 2(X − IY )3

)
.

Note that C2 = {F2 = 0} and C3 = {F3 = 0} are stable by the action σ. Then
we have

t6

4
Z2F (X,Y, Z) = F2(X,Y, Z)3 − F3(X,Y, Z)2.

Hence taking t as one of the solutions t6 = 4, we have an invisible torus
decomposition:

Z2F (X,Y, Z) = 4((X + IY )Z − (X − IY )2)3

+ (Z3 − 3(X2 + Y 2)Z + 2(X − IY )3)2.
(In-1)

Next we consider the case {`1 = 0} ∩ L∞ = {R2}. As the singular locus
Σ(Q) is stable by the action of σ and σ(R1) = R2, we have another invisible
torus decomposition from (In-1):

Z2F (σ(X,Y, Z)) = 4((X − IY )Z − (X + IY )2)3

+ (Z3 − 3(X2 + Y 2)Z + 2(X + IY )3)2.
(In-2)

Thus we have two different invisible torus decompositions (In-1) and (In-2).
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Figure 2: Invisible factorization (In-1) of the quartic (5)

We have shown in the above argument that the three visible decompositions
move each other by the action of σ:

(V-1) σ→ (V-2) σ→ (V-3).

We also showed that the two invisible decompositions move each other by the
action of τ :

(In-1) τ→ (In-2).

In this case, there exist other quasi torus decompositions. We discuss in
§9.

§6. Proof of Theorem 2

Let U be an open neighborhood of 0 and let C(t) = {F2,3(X,Y, Z, t) = 0}
(t ∈ U) be a (2, 3) torus curve which is defined by

F2,3(X,Y, Z, t) = H3(X,Y, Z, t)2 + H2(X,Y, Z, t)3.

Fix B = [0 : 1 : 0] in P2. We consider the family {C(t)}t∈U which has B as
the base point with multiplicity 2. We assume that the defining polynomials
have the following form:

(∗2)

{
H2(X,Y, Z, t) = F ′

1(X,Y, Z)Z + tXK1(X,Y ),
H3(X,Y, Z, t) = F ′

2(X,Y, Z)Z + tXK2(X,Y )

where F ′
i (X,Y, Z) and Ki(X,Y ) are homogeneous polynomials of degree i such

that Ki(0, 1) 6= 0 for i = 1, 2. Then B is in C(t) with multiplicity 2 for t 6= 0
and {C(t)}t∈U degenerates into C(0) = D + 2L∞ where D = {G = 0} is a
visible factorization of torus curve which is defined as

G(X,Y, Z) = F ′
2(X,Y, Z)2 + F ′

1(X,Y, Z)3Z.
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Thus we can construct a line degeneration of (2, 3) torus sextic. For exam-
ple, we give line degeneration for the case (1). Let Q = {F = 0} be the
quartic which is satisfies the condition of (1). In §4, we obtained the defining
polynomials F , F1 and F2 as

Q : F (X,Y, Z) = Z4 + 2(Y 2 − X2)Z2 + t Y 3Z + (Y 2 − X2)2 = 0,

L : F ′
1(X,Y, Z) = s1 Y = 0,

C2 : F ′
2(X,Y, Z) = s2 (X2 + Y 2 − Z2) = 0

where s1 and s2 are one of the solutions s3
1 = t and s2

2 = 1 respectively. Let
Ki(X,Y ) be any homogeneous polynomial of degree i such that Ki(0, 1) 6= 0
for i = 1, 2. We take H2 and H3 as (∗2) and then the family {C(t)}t∈U

degenerates into C(0) = Q + 2L∞.

§7. Degenerate families of QL-configurations.

Let QL be the set of quartics of QL-configurations and let L∞ be the fixed line
at infinity. We consider the subset QL(n) of QL which is the set of a quartic
Q whose configuration Q ∪ L∞ is of the type (n) in Table 1 for n = 1, . . . , 12.
It is easy to see that QL(n) is a connected subspace of the space of quartics
under the canonical topology. This implies that for any Q, Q′ ∈ QL(n), the
topology of C2 \ Q and C2 \ Q′ are homeomorphic.

For the comparison of the topology of C2 \ Q and C2 \ Q′ where Q ∈
QL(n) and Q′ ∈ QL(m) (n 6= m), we consider the degeneration problem
among quartics in these subsets. Suppose that there exists an analytic family
{Q(s)}s∈U of quartics such that Q(s) ∈ QL(n) for s ∈ U \ {0} and Q(0) ∈
QL(m) where U is an open neighborhood of 0 in C. In particular, Q(s)∪L∞ →
Q(0)∪L∞. We denote this situation as QL(n) Â QL(m) and say that QL(m)
is a t-boundary of QL(n). If QL(n) Â QL(m), then, by degenerate properties
([4]), we have the surjectivity of the homomorphism: π1(C2 \Q(0)) → π1(C2 \
Q(s)) (s 6= 0) and the divisibility of the Alexander polynomials: ∆Q(s)(t) |
∆Q(0)(t).

Proposition 7. The following diagram denotes the various t-boundary rela-
tions among the set QL(n), n = 1, . . . , 12.
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QL(10)

Â

QL(4) ≺ QL(2) Â QL(8) Â QL(12)

Â Â Â Â

QL(5) ≺ QL(3) ≺ QL(1) Â QL(7) Â QL(11)

Â

QL(6) Â QL(9)

For a proof, we give explicit defining equations and degenerations of quar-
tics for each case.

(1) Let {Cs,t,u} = {Fs,t,u = 0} ⊂ QL(1) be a family of quartics with 3
parameters where

Fs,t,u(X,Y, Z) = s4Z4 − 2s2uY Z3 + (2s2(t2Y 2 − X2) + u2Y 2)Z2

+ (Y 2 + 2u(X2 − t2Y 2))Y Z + (X2 − t2Y 2)2

such that

C0,t,u ∈ QL(7), C0,t,0 ∈ QL(11) for t 6= 0,
Cs,0,u ∈ QL(2), C0,0,u ∈ QL(8), C0,0,0 ∈ QL(12).

(2) Let {Cs,t,u} = {Fs,t,u = 0} ⊂ QL(1) be a family of quartics with 3
parameters where

Fs,t,u(X,Y, Z) = s(2 + s)Z4 − 3sXZ3 +
1
4
(x2(3s + 8u + 8su)

− y2(s + 1)(8u + 3))Z2 − 1
8
(u(x2 − t2y2)

+ (x2 − 9t2y2))XZ +
1
64

(8u + 3)2(X2 − t2Y 2)2

such that

C0,t,u ∈ QL(3), C0,t,0 ∈ QL(5) for t 6= 0,
Cs,0,u ∈ QL(2), C0,0,u ∈ QL(4) for u 6= 0.

(3) Let {Cs,t} = {Fs,t = 0} ⊂ QL(1) be a family of quartics with 2 parame-
ters where

Fs,t(X,Y, Z) = (t3 + 1)Z4 + 3t2`1(X,Y, s)Z3 + (3`1(X,Y, s)2t

− 2(X2 − Y 2))Z2 + `1(X,Y, s)3Z + (X2 − Y 2)2

where `1(X,Y, s) = X − sY − Y

such that
C0,t ∈ QL(6), C0,0 ∈ QL(9).
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(4) Let {Cs,t} = {Fs,t = 0} ⊂ QL(1) be a family of quartics with 2 parame-
ters where

Fs,t(X,Y, Z) = (X + Y )Z2 + ((X − sY )3

− 2(X + Y )(t2Y 2 − X2))Z + (t2Y 2 − X2)2

such that
C0,t ∈ QL(2), C0,0 ∈ QL(10).

§8. Non-irreducible QL-configurations

In this section, we consider torus decompositions of non-irreducible
QL-configurations for the quartics (14), . . . , (19). Then we will get defining
polynomials and torus decompositions by the same argument of irreducible
case. Recall that the situations of each case:

No. Sing(Q) Q ∩ L∞ irreducible components
(14) a∞3 + a2 + a1 (ii) a cuspidal cubic and a line
(15) a5 + a1 (i) two conics
(16) a∞5 + a∞2 (iii) a cuspidal cubic and a line
(17) 2a∞3 (iii) two conics
(18) a∞7 (v) two conics
(19) 2a∞3 + a1 (iii) a conic and two lines

Table 3.

8.1. Invisible factorization of (2,4) torus curves

Let D be an invisible factorization of (2, 4) torus curve which satisfies the
following.

F2,4(X,Y, Z) = F2(X,Y, Z)4 − F4(X,Y, Z)2

= (F2(X,Y, Z)2 − F4(X,Y, Z))(F2(X,Y, Z)2 + F4(X,Y, Z))

= Z4G(X,Y, Z).

By the same argument in §2.2, we can assume that the forms of F2 and F4 are

F2(X,Y, Z) = F
(2)
2 (X,Y ) + F

(1)
2 (X,Y )Z + a00Z

2, deg F
(i)
2 = i,

F4(X,Y, Z) = F2(X,Y, Z)2 − cZ4, c = b00 − a2
00 6= 0.

Then D = {G = 0} is defined by

D : G(X,Y, Z) = F2(X,Y, Z)2 − c′Z4 = 0, c′ 6= 0.
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By the form of the defining polynomial of D, the inner singularities of D is on
L∞. Singularities of D are described as follows.

Lemma 8. Under the above notations, D has the following singularities.

(1) If C2 is smooth at P ∈ C2 ∩ L∞, then (D,P ) ∼ a3ι−1 where ι =
I(C2, L∞; P ).

(2) If C2 is singular at P ∈ C2 ∩ L∞, then D consists of four lines.

(3) If P ∈ D is an outer singularity, then (D,P ) ∼ a1.

Our proof is done in the same way as Lemma 1 and [6].

8.2. Torus decompositions of non-irreducible QL-configurations

In this section, we show the possibilities of torus decompositions for non-
irreducible QL-configurations. Our proof is similar to the cases of irreducible
QL-configurations. For the quartics (14) and (15), we use (2, 3) visible factor-
izations. For the quartics (17), (18) and (19), we use (2, 4) invisible factoriza-
tions.

Quartic (14)

Singularities a∞3 + a2 + a1 at [1 : 1 : 0], [0 : 0 : 1], [−1 : 0 : 1].

Q ∩ L∞ singular at [1 : 1 : 0] and tangent at [−1 : 1 : 0].

Torus decomposition (X2 − Y 2 − XZ + 3Y Z)2 + 4 (X − Y )3Z = 0.

Quartic (15)

Singularities a5 + a1 at [0 : 0 : 1], [−1 : 0 : 1].

Q ∩ L∞ bi-tangent at [1 : 1 : 0] and [−1 : 1 : 0].

Torus decomposition (X2 − Y 2 + XZ)2 + 4 X3Z = 0.

Quartic (17)

Singularities 2a3 at [1 : 1 : 0] and [−1 : 0 : 0].

Q ∩ L∞ singular at [1 : 1 : 0] and [−1 : 0 : 0].

Torus decomposition 1
64(2X2 − 2Y 2 − t2Z

2)4

−(1
8(2X2 − 2Y 2 − t2Z

2)2 + 1
4(4t1 − t22)Z

4)2.
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Quartic (18)

Singularities a7 at [0 : 1 : 0].

Q ∩ L∞ singular at [0 : 1 : 0].

Torus decomposition
(
Z2 − 2

a01c2
(c3X − c2Y )Z − 2 c2

a01
X2

)4

−
((

Z2 − 2
a01c2

(c3X − c2Y )Z − 2 c2
a01

X2
)2

+ 2 4a00−a2
01

a2
01

Z4

)2

.

Quartic (19)

Singularities 2a3 + a1 at [1 : 1 : 0], [−1 : 1 : 0], [0 : 0 : 1].

Q ∩ L∞ singular at [1 : 1 : 0] and [−1 : 1 : 0].

Torus decomposition 1
t2

(
(−X2 + Y 2 − 1

2 tZ2)4

−
(
(−X2 + Y 2 − 1

2 tZ2)2 − 1
2 t2Z4

)2
)
.

Table 4.

§9. Infiniteness of (2, 3) quasi torus decompositions

In this section, we consider the possibilities of (2, 3) quasi torus decompositions
of a plane curve which admits a (2, 3) torus decomposition. We assert:

Proposition 9. Let C = {f = 0} ⊂ C2 be a (2, 3) torus curve of any degree.
Then C has infinitely many (2, 3) quasi torus decompositions.

Proof. Suppose that f(x, y) can be written as f(x, y) = h0(x, y)2 − g0(x, y)3.
We put inductively

gi+1(x, y) = −4
3

hi(x, y)2 + gi(x, y)3,

hi+1(x, y) =
√
−3
9

hi(x, y)(−8hi(x, y)2 + 9 gi(x, y)3)

for i ≥ 0. Then we claim that they satisfy the following equality:

(∗3)

(
i∏

k=0

gk(x, y)

)6

f(x, y) = hi+1(x, y)2 − gi+1(x, y)3, i ≥ 0.

Indeed, by a simple calculation, we have

hi+1(x, y)2 − gi+1(x, y)3 = gi(x, y)6
(
hi(x, y)2 − gi(x, y)3

)
.

The assertion follows immediately from this equality.
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Remark 4. Let C(t) be a family of curves given by

C(t) : t hi+1(x, y)2 − gi+1(x, y)3 = 0, t ∈ C.

We thank Professor J. I. Cogolludo for informing us the generic fiber of this
pencil is not irreducible.

Now we study the location of singularities of a family of (2, 3) quasi torus
decompositions which has the form (∗3).
We put ri(x, y) :=

∏i
k=0 gk(x, y) and Σi := {hi = 0} ∩ {gi = 0} for i ≥ 0.

Then, by the definitions, we have the followings:

(1) Σ0 is the set of inner singularities of {f = 0}.

(2) Σi ⊂ {ri = 0} for all i ≥ 0.

(3) Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σi ⊂ · · · .

In particular, {ri = 0} contains the inner singularities of {f = 0} for all i ≥ 0.
By Proposition 9 and above observations, it is important to study the

existence of (2, 3) torus decompositions which is obtained by visible or invisible
degenerations. We are also interested in quasi torus decompositions which does
not come from a torus decomposition as in (∗3).

We will give such an example (2, 3) quasi torus decomposition. Let Q =
{f = 0} be the three cuspidal quartic which has three (2, 3) torus decomposi-
tions (V-1), (V-2) and (V-3) as in §5. Recall that the (2, 3) torus decomposition
(V-1) and locations of singularities:

f(x, y) = −3(x2 + y2 + 4x + 1)2 + 4(2x + 1)3,

P1 = (1, 0), P2 =

(
−1

2
,

√
3

2

)
, P3 =

(
−1

2
,−

√
3

2

)

where P2, P3 are the inner singularities of torus decomposition (V-1). Now we
take following three polynomials s1 s3 and s5 of degree 1, 3 and 5 respectively:

s1(x, y) = x − Iy − 1,

s3(x, y) = 3
√

4(3Iy3 − (5x + 7)y2 − I(x − 1)2y − (x − 1)3),

s5(x, y) =
√

3(y5 + 3I(x + 5)y4 − 2(x2 + 13x + 10)y3 + 2I(x − 4)(x − 1)2y2

− 3(x + 1)(x − 1)3y − I(x − 1)5).

Then they satisfy the following equality:

s1(x, y)6f(x, y) = s5(x, y)2 + s3(x, y)3.
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Note that {s1 = 0} does not pass through the inner singularities of Q. Thus
this decomposition is an example of (2, 3) quasi torus decomposition which
does not come from as in (∗3).

P1

P3

P2
R1

R2

L∞

Q

{s1 = 0}

Figure 3:
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