SUT Journal of Mathematics
Vol. 52, No. 1 (2016), 1-19

A measure of departure from second-order marginal
symmetry for multi-way tables with nominal
categories

Yusuke Saigusa, Kouji Tahata and Sadao Tomizawa

(Received November 2, 2015; Revised February 23, 2016)

Abstract. For multi-way tables, Bhapkar and Darroch (1990) gave the second-
order marginal symmetry model. The present paper proposes a measure to
represent the degree of departure from the second-order marginal symmetry
model. The measure is expressed as the weighted sum of the Shannon entropy.
The paper also gives the approximate confidence interval of the measure, and
shows relationship between the measure and the trivariate normal distribution.
Examples are given.
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81. Introduction

Consider an r” contingency table (T > 3) with nominal categories. Let X}

denote the kth variable (k =1,...,T).
The first-order marginal symmetry (MS(1)) model is defined by

P =pP = =™ =1, ),

(k) — Pr(Xy = 1) (Agresti, 2013, p.439; Tahata and Tomizawa, 2014).

)

The second-order marginal symmetry (MS(2)) model is defined by

where p

D0 _ 02
Z({q’t) Z(]s,t) (i,j=1,....,m1<s<t<T),
Dy " =Py
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where pl(;’t) = Pr(X,; =i, X¢ = j) (Bhapkar and Darroch, 1990). If the MS(2)
model holds then the MS(1) model holds, but the converse is not always true.

Thus the MS(2) model has stronger constraint than the MS(1) model.

The data in Tables 1(a) and 1(b) taken from the 2014 General Social Sur-
vey (Smith et al., 2014) are conducted by the National Opinion Research
Center at the University of Chicago. Tables 1(a) and 1(b) describe the cross-
classifications of subjects’ opinions about government spending on the envi-
ronment, health, assistance to big city and law enforcement in 2004 and 2014,
respectively. The response categories are (1) ‘too little’, (2) ‘about right’ and
(3) ‘too much’. So Tables 1(a) and 1(b) are the 3% contingency tables.

For these data, some statisticians may be interested in determining degrees
of various unbalances of the opinions among items. There is one consider-
able analysis as comparing (first-order) marginal distributions of the opinions,
e.g., analyzing which item tends to be regarded ‘too little’ by relatively more
subjects than the other items. Moreover there is one of the other analyses as
comparing higher-order marginal distributions than first-order. For example,
determining whether there is MS(2) may be motivated by joint distributions of
pairs of opinions being able to unbalanced even though the first-order marginal
distributions are similar. Indeed, the analyses for second-order marginal struc-
ture are developed by several statisticians. Becker and Agresti (1992) dis-
cussed the log-linear models that describe second-order marginal structure for
determining degree of agreement among multiple observers. Fleiss, Levin and
Paik (2003, Chap.18), and Agresti (2013, Sec.11.5) reviewed the measurement
for pairwise agreement or multiple agreement. Balagtas, Becker and Lang
(1995) analyzed the crossover experiment data with three-treatments, three-
periods and binary responses using the models for log-odds-ratio of second-
order marginal probability. Lang and Agresti (1994) discussed simultaneously
modeling for joint and any-order marginal distributions.

For the data in Tables 1(a) and 1(b), the MS(1) model indicates that first-
order marginal distributions of the opinions are identical among items. The
MS(2) model indicates (i) the probabilities that a subject has opinion k about
both items are identical among all pairs of items, and (i) the probability that
a subject has opinion 7 about sth item and has opinion j about tth item, is
equal to the probability that the subject has opinion j about sth item and
has opinion ¢ about tth item for k,i,7 = 1,2,3;1 # j;1 < s <t < 4. If
the goodness-of-fit of the MS(2) model applied to the data is poorly, we are
interested in measuring the degree of departure from MS(2). Such measure
may be interpreted as the degree of unbalance of opinions for second-order
marginal distributions.

Tomizawa and Makii (2001) gave the measure which represents degree of
departure from MS(1). However Tomizawa and Makii’s measure cannot de-
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termine the degree of unbalance of more detailed structure of opinions than
first-order marginal distributions. Therefore, the present paper gives the mea-
sure to represent the degree of departure from MS(2). The proposed measure
enables us to compare the degrees of departure from MS(2) between two dif-
ferent tables (see Section 4).

82. Measure
The MS(2) model can also be expressed as

s,t (1,2
{ pl(ck )= Pr :

() (s0) (12) (kyi,j=1,....mi# §;1<s<t<T).

Pij ~ = Pji T Pij
Let
T-1 T L)
Z pwvm (Z = j)a
Oy = I=1 m=I+1
T-1 T
1 l,
Z ( z(’jm) + §Zm)) (i # ),
=1 m=Il+1
C..
T = -l (Z7] = 17' ,7")

Assume that {C;; > 0}. Let
(s:t)
“(st) _ Pij

Pij C.. (i, j=1,....m1<s<t<T).

Consider the measure to represent degree of departure from MS(2) as fol-
lows:

T
1
@-Zﬂkkll 7 Hk, —f—zzﬂzj 1 pa Hi; |,
k=1 (2) i=1 j=i+1 log (2(2))
where
T-1 T
*(s,t *(s,t . .
=3 >0 piyogp (i =),
Hz] — s=1 t=s+1
T-1 T
*(s,t *(s,t *(s,t *(s,t . .
- Z (pi](S )Ingi](S ) +pjz(s )Ingjz(s )) (i <),
s=1 t=s+1
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and Olog0 = 0. Thus & is the weighted sum of the Shannon entropy.
We obtain the following theorem.

Theorem 1.
(i) 0<P<1,

i) ® =0 if and only if there is a structure of MS(2) in the rT table.
(ii) y

Proof. We see
T
Hkkglog<2) (k:17...,7'),

mycwn(o(T))  sicicn

and

These lead to

T
1
0<> ok [1 - THkk] ;
k=1 log(5)

and

r—1 r 1

0<> D mij |1= — M

=1 j—it1 log (2(2)>
Therefore 0 < ®. Next, we shall show ® < 1. Let p;, i, denote the probability
that an observation will fall in (i1, ...,ir) cell of an r” table (ix = 1,...,7;k =

1,...,T). From the assumption {C;; > 0}, p,is};t) > 0 for at least one s < t

(k=1,...,7). Assume that p,&?’to) > 0 for fixed sg and tg. If prg.. x > 0 then
Hy, > 0. And if ppg. . = 0 (i.e., Ditevoyisg—15kyisg 415wty —1sKoitg 415eensiT > 0 for
at least one (i1, ..., 959—1,%9s9-41s -« - 0tg—1s9tg+1s---97)), then (1) H; . > 0 for
is < kor (2) Hy;, > 0 for is > k (s # so,tg). Therefore

r—=1 r 1
+Z Z 55 1—T)>Hi‘ < 1.

i=1 j=i+1 log <2(2

- 1
Tk |1 — ——= Hyyg,
; [ log(5)

Thus we obtain (i). If the MS(2) model holds, ® = 0. Assuming that & = 0,
then Hyy = log(%) for k =1,...,r, and Hy; = log (2(§)> for1<i<j<r,
namely the MS(2) model holds. Thus (i) holds. The proof is completed.

83. Approximate confidence interval of measure

Let n;,. i, denote the observed frequency in the (i1,...,i7) cell, and let
Diy.ip = Niy.ip/M, Where no = > ---> " ng 4 (ixg = 1,...,mk =1,...,T).
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Assuming that a multinomial distribution applies to the 7! table, we consider
an approximate standard error and large-sample confidence interval of ®. The
sample version of ®, denoted by P, is given by ® with (p;, ., ) replaced by
(Piy..ir). We obtain the following theorem.

Theorem 2. /n(®—®) has asymptotically (as n — c0) a normal distribution
with mean zero and variance o2[®]. The asymptotic variance o2[®] is obtained

as follows:
T '
2 2
= Z e Z pil---iTVil...iT - (I) ?
i1=1  ip=1
where
_ T (s t) *(s,t)
logp; ., logp;
Yiy..ip = ﬁ Z { ﬁ I(Zs 7& Zt)% )
2 s—1 0og log <2(2)>
and 1(-) is an indicator function.
Proof. Let p = (P1..11, - -, P11, P1..215 - - - » D120+ - - -, Dr..rr) Where 7 means

the transpose, and let p denote p with (p;,. i) replaced by (p;,...i, ). Note that
v/n(p — p) has a normal distribution with mean zero vector and covariance
matrix D — pp’ where D means a diagonal matrix with th component of p
as ith diagonal component. From Taylor expansion of the estimated measure
d about p = p,

ob X
d = ¢>+W(p—p)+0(|1p—p!\)-

Using the delta method (Agresti, 2013, p.587), /n(® — ®) has asymptotically
a normal distribution with mean zero and variance

The proof is completed.

Let 62[®] denote o[®] with {p;, ..} replaced by {p;, ir}. Then an esti-
mated standard error of ® is 6[®]/y/n. Therefore, we obtain an approximate
100(1—a)% confidence interval of ® as @A):I:za/g&[@)]/\/ﬁ, where z, 5 is the per-
centage point from standard normal distribution corresponding to a two-tail
probability equal to «.

84. Examples

The estimated measures ® applied to the data in Tables 1(a) and 1(b) are
0.104 and 0.064, respectively. The approximate 95% confidence interval of ®
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for Table 1(a) is (0.094, 0.115) with the estimated approximate standard error
0.005, and that for Table 1(b) is (0.055, 0.073) with the estimated approximate
standard error 0.005.

Thus it is inferred that the degree of departure from MS(2) for Table 1(a) is
larger than that for Table 1(b), since lower limit of the 95% confidence interval
of ® for Table 1(a) is greater than upper limit of the 95% confidence interval
of @ for Table 1(b). Namely, subjects’ opinions about government spending
on the environment, health, assistance to big city and law enforcement in 2004
may be more unbalanced than in 2014, in the sense structure of the pairwise
opinions in 2004 are more distant from MS(2) in terms of ® than in 2014.

85. Relationship between measure and normal distribution

Assume that Zszlpgl) >0fori=1,...,r. Let

T (0 (s)
m—Zl=T1pi, p® =P =1, 7).

7
Z;F:l pg )

Tomizawa and Makii (2001) gave the measure to represent degree of departure

from MS(1), defined by

.
1
) = (1 — ——H,
TM ;ﬂl < IOgT l) )
where

T
Hi=-Y pogp;¥  (i=1,....7),
s=1

and Olog0 = 0. H; is the Shannon entropy. Note that Tomizawa and Makii
(2001) also gave more general measure to represent the degree of departure
from MS(1).

We suppose that there is an underlying trivariate normal distribution for
the variables of the 7> contingency table. Consider random variables Uy, Us
and Us having a joint trivariate normal distribution with means E[Uy] = u,
variances Var[Uy] = o2 (k = 1,2,3), and correlations Corr[Us,U;] = pg
(1 < s <t < 3). Denote the probability density function of (Uy,Us,Us)
by f(u1,us,u3). Let Y denote the kth variable of the 72 table (k = 1,2, 3),
and let ng’t) denote the integral interval corresponding to Uy, Uz and Us for
obtaining the second-order marginal probability that Y takes ¢ and Y; takes
Jj,j=1,...,m1<s<t<3). We shall consider the second-order marginal
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probability obtained by multiple integral of f(u1,ug,us) as follows:

qz(JSt /// f(u1, ug, uz)duydugdus.

(s5t)
D;;

Tables 2, 3, 4 and 5 give the second-order marginal probability tables based

on the {qu’t)}, formed by using cutpoints for each variable at p1, g1 £+ 0.60,

for the underlying trivariate normal distribution with the conditions given in
the tables themselves. For examples,

D§213) {(u1,u2,u3)| — 00 < uy < 400, —00 < uz <pj — 0.60,

—oo <uz < p —0.60},
and
D%’g) = {(u1,u2,u3)|p1 — 0.60 < uy < p1, —00 < ug < + 00,

p1 < ug < pp+ 0.60}.

Note that values of {qi(j’t)} are calculated using cubature package in the sta-

tistical software R version 3.2.3. Tables 6(a) and 6(b) give the values of &7y,
and @ for each of Tables 2, 3, 4 and 5.

Let fy,uy, denote the second-order marginal probability density function of
Us and U; (s < t). We see

Jonlus,uw) _ {(“s —u)(ps — )| <

Jo.u, (ug, us) (1 — pet)o?
From this equation and Tables 2, 3 and 4, it follows that if pus < py, then
it tends to be q(St /qj(ft > 1 for i < j, and qU /q] tends to increase (i)
as the dlfference of means ps — p; decreases for fixed o and pg, or (i) as
the correlation pg increases for ﬁxed s, e and o2. Also, if s > p, then
ql(;t /q](ft < 1fori < j, and q” /qjz Y tends to decrease (i) as the difference
of means 5 — j1; increases for fixed o2 and pg, or (i) as the correlation Dst
increases for fixed ys, j; and o2. Moreover, if ps = piy, then qw / qJ =1
for i < j. We see from Tables 2, 3, 4 and 6(a), as all the differences of means
of latent variables, i.e. pu1 — a2, 1 — pg and pe — ps, decrease for fixed o2, P12,
p13 and po3, each of ®7j; and @ tends to increase. Also, as all the correlations
of latent variables, i.e. p, where p = pg (1 < s <t < 3), increases for fixed
w1, po, 3 and o2, ® tends to increase, while ®7,, is constant. It seems
natural to assume that the degree of departure from symmetry of the second-
order marginal probabilities becomes larger (i) as all the differences of means
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increase, or (i) as all the correlations increase, because qg’t)/ q§§’t> (> 1) tends

to increase for i < j (see Tables 2, 3 and 4). Thus ® may be appropriate for
measuring the degree of departure from symmetry of second-order marginal
probabilities.

We see from Tables 5 and 6(b), as the correlation pia increases for fixed
(1, f2, p3, 02, p13 and po3, ® tends to increase, while ®7y, is constant. It
seems natural to assume that the degree of departure from homogeneity of
the second-order marginal probabilities becomes larger as the correlation pio
increases, because q,(;i’m/q,(;’t) (> 1) increases for k =1,...,4, and q,f;’2)/q§;’t)
(< 1) decreases for |i — j| > 2 (see Table 5). Thus ® may be appropriate for
measuring the degree of departure from homogeneity of second-order marginal
probabilities.

Therefore ® may be appropriate for measuring the degree of departure from
MS(2), because ® may simultaneously measure the degrees of departure from
symmetry and homogeneity of second-order marginal probabilities. Also ®7pr

may not be appropriate for measuring the degree of departure from MS(2).

86. Concluding remarks

For an T contingency table (T > 3), we have proposed the measure to repre-

sent the degree of departure from the MS(2) model. Note that, the proposed
measure P is invariant under arbitrary same permutations of categories of
variables. Thus the measure ® is appropriate for the nominal contingency
table because this measure does not use information about the order of the
categories.

We have shown that the measure & is useful for comparing the degrees
of departure from MS(2) between two different tables in Section 4. Also we
have shown how the measure ® takes the values when there is an underlying
trivariate normal distribution with various conditions on three-way tables, and
have discussed the appropriation of the measure ® in Section 5.
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Table 1. Opinions about government spending (a) in 2004 with sample size
n = 1172 and (b) in 2014 with sample size n = 1061

()

Big city 1 2 3

Law enforcement 1 2 3 1 2 3 1 2 3
Environment Health

1 1 83 48 14 187 115 23 109 54 21

2 4 5 3 12 23 3 9 11 5

3 4 3 0 7 7 0 4 2 2

2 1 21 15 3 5 34 7 42 34 4

2 2 2 2 18 24 3 12 10 3

3 3 0 0 4 4 2 6 9 1

3 1 4 1 2 10 5 2 13 6 6

2 0o 0 2 2 6 2 2 4 2

3 2 0 1 1 0 1 8 3 5

(b)
Big city 1 2 3

Law enforcement 1 2 3 1 2 3 1 2 3
Environment Health

1 1 59 34 22 99 74 16 79 35 18

2 10 6 9 24 35 7 12 15 8

3 6 6 9 15 14 4 21 7 4

2 1 8 5 1 30 27 5 29 18 4

2 10 6 1 13 23 4 6 18 2

3 3 0 0 1 17 1 18 15 7

3 1 5 4 0 4 4 0 13 10 1

2 1 1 0 3 5 2 6 8 3

3 1 2 4 4 5 1 15 16 13

Note: These data are from the 2014 General Social Survey, with categories 1
is ‘too little’, 2 is ‘about right’ and 3 is ‘too much’.
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MEASURE OF SECOND-ORDER MARGINAL SYMMETRY
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Table 6. Values of &7y and ® (a) for each of Tables 2, 3 and 4 and (b) for

Table 5

(a)

Table 2 Table 3 Table 4

p  Ory P Oy P Prym

)

0 0.038 0.051 0.078 0.103 0.123 0.161
0.3 0.038 0.059 0.078 0.116 0.123 0.176
0.6 0.038 0.078 0.078 0.147 0.123 0.211
0.9 0.038 0.156 0.078 0.241 0.123 0.292

(b)

p12 Prm @
0 0 0

0.3 0 0.005
0.6 0 0.025
0.9 0 0.084
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