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Abstract. In this paper, we consider the one-sample problem of testing for the
subvector of a mean vector with two-step monotone missing data. In the case
that the data set consists of complete data with p(= p1 + p2 + p3) dimensions
and incomplete data with (p1 + p2) dimensions, we derive the likelihood ratio
criterion for testing the (p2 +ps) mean vector under the given mean vector of p;
dimensions. Furthermore, we propose an approximation for the upper percentile
of the likelihood ratio test (LRT) statistic. We investigate the accuracy and
asymptotic behavior of this approximation using Monte Carlo simulation. An
example is presented in order to illustrate the method.

AMS 2010 Mathematics Subject Classification. 62H20, 62H10.

Key words and phrases. Likelihood ratio test, maximum likelihood estimators,
Monte Carlo simulation, Rao’s U statistic.

81. Introduction

When analyzing data, it is important to consider missing observations. The
existence of missing data is a common problem that is present in almost all
statistical data analyses. However, the majority of statistical methods require
a comparatively strict assumption concerning the cause of missing data, and
are prone to substantial bias. Methods for dealing with missing data by re-
moving incomplete cases or imputing missing values are more vulnerable to
the propagation of bias throughout. Statistical analysis involving monotone
missing data has been discussed by many authors, because in this case the
mathematical complexity is reduced. For example, Anderson (1957) demon-
strated an approach for deriving the maximum likelihood estimators (MLEs)
of the mean vector and covariance matrix using the likelihood equations for

21



22 T. KAWASAKI AND T. SEO

monotone missing data. Kanda and Fujikoshi (1998) described the proper-
ties of MLEs based on two-step and three-step monotone missing samples and
a general k-step. Among the many papers that propose methods for testing
mean vectors with monotone missing data, we mention those by Krishnamoor-
thy and Pannala (1999); Yu, Krishnamoorthy, and Pannala (2006); and Chang
and Richards (2009). In particular, for testing the mean vector with two-step
monotone missing data, Seko, Yamazaki, and Seo (2012), and Seko, Kawasaki,
and Seo (2011) have provided a simple approach to deriving the approximate
upper percentiles of the Hotelling’s T? type statistic and LRT statistic for one-
sample and two-sample problems. Moreover, various statistical methods have
been developed to analyze data with non-monotone missing values by Srivas-
tava (1985), Srivastava and Carter (1986), and Shutoh, Kusumi, Morinaga,
Yamada, and Seo (2010), and others. In the case of general k-step monotone
missing data, many difficult problems remain unsolved. For simplicity, we
assume that £ = 2. Let the data set {z;;} be of the form

1,1 0 Tipy Lipi+1  Tlpi+pe Llpi4pe+1 "7 Tlp
Tni,l 0 Tnypr Tnipi+1 ~°° Tnipi+pe Tnypi+pe+l """ Tnip
)
Tni+1,1 " Tog+l,pr Tog+lpi+1 ° 0 Tng+1,p1+p2 * sk
Inl 0 Tngp Tnpi+1 " Tnpi+pr * X

[130%2

where ng = n — ny and n; > p. Here, “«” indicates missing data. That
is, we have complete data for n; mutually independent observations with p
dimensions, and incomplete data for ns mutually independent observations
with (p1 + p2) dimensions. Such a data set is described as two-step monotone
missing data.

In this paper, based on two-step monotone missing data, we consider the
one-sample problem of testing for the subvector of a mean vector. We derive
the MLEs of the mean vector and the covariance matrix and the MLE of the
covariance matrix under the null hypothesis. Using these MLEs, we propose
the likelihood ratio test statistic and its approximate upper percentile.

In Section 2, we review the test for a subvector based on non-missing data
when the first p; dimensions of the mean vector p is given. In Section 3,
we derive the MLEs and the MLEs under the null hypothesis, with two-step
monotone missing data. In Section 4, we propose the LRT statistic and its
approximate upper percentiles. The accuracy of the approximate upper per-
centiles of the test statistic is investigated using Monte Carlo simulation in
Section 5. In Section 6, we present a numerical example to illustrate our
method using the approximate upper percentiles of the test statistic. Finally,
Section 7 concludes this paper.
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8§2. Test for a subvector

We review the case of non-missing data. Let xi,xo,...,x, be distributed
as Np(p,X), where p = (g1, p2,...,pp) and ¥ are unknown. Let p =
(u‘lla “1(23))/7 where py = (,ulv K2, - Npl)/ and K23y = (MP1+17 Hpi4+25-- - :up)/v
p1 < p < n. Then, the sample mean vector and unbiased covariance matrix
are defined as

I T, 1 — _ .\ < S11 S1(23) >
T=— x,=|_ , 9= T, —T)(x; —T) = )
> (o ) 5=t Sl )i~

P Se23)1 S(23)(23)

respectively, where T is a pj-vector and S1; is a p; X p; matrix. Consider the
following hypothesis test problem for the case of two-step monotone missing
data in the one-sample problem:

(1.1)
Ho : paz) = Kazyo 8iven py = pryg vs. Hi @ piia3) 7# Ha3)0 glven pry = pyo,

where p1(93)9 and p1 are known. A criterion that is equivalent to the likelihood
ratio can be written as

TI? - T1321
Cn—14T%°
where T2 = n(E — p)'S~ (& — py) and T2 = n(@1 — pyo)' S5 (@1 — pap)-
We note that U = A\=2/" — 1, where \ is the likelihood ratio criterion. Un-
der Hy, it follows that (n — p)U/(p — p1) is distributed as an F' distribution
with p — p; and n — p degrees of freedom. This result follows from the one in
Siotani, Hayakawa, and Fujikoshi (1985, p. 215). The criterion is called Rao’s
U statistic (See, Rao (1949) and Giri (1964)). The situation in which a sub-
vector of g can be known is not rare. In some situations, partial information
concerning the population means may be available to the experimenter. Fur-
thermore, this hypothesis in the two-sample problem is equivalent to a test for
additional information. That is, a problem that is closely related to the test-
ing of the mean vectors () = p® is determining whether x(o3) = (h, x3)’
has additional information in the presence of @1, where & = (], a:(23))’ arises
from one of two groups IV : N,(u(V) %) and TI?) : N,(u? %), Eaton and
Kariya (1975) derived tests for the independence of two normally distributed
subvectors in the case that an additional random sample is available. Provost
(1990) obtained explicit expressions in the case that the MLEs of all of the pa-
rameters of the multinormal random vector are given, and the likelihood ratio
statistic for testing the independence between subvectors has been obtained.
In the next section, we derive the MLEs and MLEs under Hy, with two-step
monotone missing data, to obtain the LRT statistic.

~



24 T. KAWASAKI AND T. SEO

83. MLEs with two-step monotone missing data

In this section, we obtain the MLEs using the decomposition of the den-
sity into conditional densities, which is called the conditional method (Kanda
and Fujikoshi, 1998). Let xi,x2,...,x,, be distributed as N,(u,>), and
let @11, Tny+2,- -, Ty be distributed as Np, 4, (1(12), (12)(12)), Where each
x;j = (1,252, ., 2jp), 7 =1,2,...,n1 is p x 1, each x; = (zj1,2j2,...,
Tiprps)d=n1+1,n1+2,...,nis (p1 +p2) x 1, and

H1o Y1 Yaz | X3
=1 | = (“(12)> , U= Y21 XYoo | Yoz | = <2(12)(12) 2(12)3) .
13 23(12) Y33
Hs3 Y31 Y3z | Ua

We partition x; into a p; x 1 random vector, a ps x 1 random vector, and a p3x 1
random vector as &;= (&, Ts;, T3;)'= (:c’(12)j, xy;)', where ;5,1 =1,2,3,j =
1,2,...,n1is p; X1, and p = p1 +p2 +ps3. In addition, @ (;9); is partitioned into
a p1 x 1 random vector and a ps x 1 random vector as x(19);= (7, T5;)’, where
xij,t=1,2,7 =n1+1,n1+2,...,nis p; x 1. Then, the joint density function

of the observed data set @1, 2, ..., Tn;, T(12)n, 41 T(12)n1 425 - - - » £(12)n CaN1 be
written as

ni

H flzj;p, 2 H f(z T(12)55 K(12)> 2(12)(12))7

J=1 j=ni1+1

where f(z;; p, %) and f(2(12)5; B2)s X(12)(12)) are the density functions of
Np(p, X) and Ny, 1p, (B12); X(12)(12))> respectively. That is, the likelihood
function is given by

ni

L) =11 e o { g~

1 1 1
X H 27[- (p1+p2) /2|E(12)(12)|1/2€Xp{_2(m(12)j_”(12))/2(12)(12)(93(12)3'_N(lz))}.
Jj= N1+1

The sample mean vectors are defined as
1< 1<
T = — E T1j, ToT = — E T2;,
n 4 n -
]:l ]:1

_ _ _ 1 1
Tp = (931(12)F= Typ) = n Z “7/(12)]-7 o Z fcéj
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In our situation, we first multiply the observation vectors x; by the trans-
formation matrix

I, 9,

O
r, = (@) Ip,
—1

_23(12)2(12)(12) ‘ Ips

on the left side, so that the transformed observation vectors are

Z(12); ~ Npi+po (B2), Z(12)12)), J=12,...,n,
-1
T35 — L3(12) 2 (12)(12) % (12);
~ Nps (13 — 23(12)23(_112)(12):“(12)»233-(12))7 J=12,...,mn,

where 233,(12) = 233 — 23(12)2(_112)(12)2(12)3. Next, we multlply the above
observation vectors by the transformation matrix

I, 9,
~InSy Iy
O | I,

O

on the left side, so that the transformed observation vectors are
L5 ~ Npl(nh\pll)v J = 17 27 RN (2
mgj — \1121$1j ~ sz (772, \1122), ] = 1, 2, RN N
I3j — \IJ3(12)$(12)]' ~ NPS(TI& \1133)a J=12,...,n,

where
m 12310) ) H1o
n=\|mn|= Koy — E212111 H1o = Mo — Wor g )
3 B3 — B312) 5 (19)(12)H(12) B3 — V3(2)Ha2)

Uy WUyg | W v v
U = Wy Wog | Wog :< \1(112)(12) \1(112)3> ’
Uy sy | Uss 302) *

i e ~1
‘I’(12)(12)=<22121—11 ;22_1 7‘1’3(12)Z‘I’/(12)3223(12)E(12)(12),‘1/332233.(12)’

and 222.1 = 222 — 2212;11221. It should be noted that L1j, 25 — \I»'leclj,
and x3; — W3(12)@(12); are independent. Because (n, ¥) has a one-to-one
correspondence with (p, X), it is sufficient to derive the MLEs of (n, )
instead of (p, ). Using the above transformation matrices, we will derive the
MLESs of 5,3, ¥ (12)(12), Y3(12), and ¥s3.
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Theorem 1. Suppose that the data set has a two-step monotone missing pat-
tern. Then, the mazimum likelihood estimators of 3, M3, W11, Va1, Wag, U3(19),
and W33 are given by

Ny = Tor — V17, N3 = T3r — V312)T(12)F,

I /
Wi =— Z @1 — po) (T15 — M) s

-1
n

oy = Z(%j — Tor) (215 — Z17)’ Z (@1; = Z17) (@1 — Z17)’ ’
i=1 i=1

1 & R ~
2= E (x2; 21T 15 — 7o) (T2; 2115 — M)’

j=1
o~ "1
Us3(12) = Z(insj —T3r)(T(12); — Ta2)r)
j=1
-1
ni
X Z(w(u)j —Z19)r)(Ta2); — Tar) ;
j=1
~ 1 L = ~ T ~ \/
gy = - > (@3 — Va2 @a2); — 03) (@35 — Vaa)@2); — M3)',
j=1
respectively.

Proof. The likelihood function for the parameters 7 and ¥ can be written as

B n 1 1 A 1 —1 )
Hon = 1_[1 (2m)Pr/2 Ty [1/2 P {_Q(wlj s 771)}
j:

a 1
% Hl (27)P2/2 W |1/2

1 _
X exp {—2(w2j — Uiz — 15) Vo (@2 — Vo — 772)}

ni 1
X
g (Qﬁ)p3/2’W33|1/2
1 _
X eXp {—2(3333‘—‘P3(12)$(12)j—773)/‘1’331(533j—‘113(12)517(12)]‘—773)}-

Then, the partial derivative of log L(n, ¥) with respect to W17 (see Seber (1984,
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p.530)) is

DlogL(n, ) _ n_ 1 15~ -1
oy, —50 + ; Uiy (2 — ) (@ —m)' Py

Thus, by solving dlog L(n, ¥)/0¥1; = 0 we obtain

~ 1 &
V= > (@15 — o) (@15 — o)
j=1

Similarly, the partial derivative of log L(n, V) with respect to Wy is

dlog L(n, ¥)

T > {5 (w2) — Tor) (1) — Tar)

Jj=1

— Woy W (w1 — Err) (21 — Far)'}-

Thus, by solving dlog L(n, V)/0¥2; = 0 we obtain

-1
n n

(1\121 = Z(wzj — Tor) (@1 — T1r) Z(wlj —Zi7) (@1 — Tir)
j=1 j=1

In the same manner as for ¥1; and Yoy, we solve the equations resulting from
setting the partial derivative of log L(n, ') with respect to each of 1y, 13, Va2,
W3(12), and W33 to zero, and obtain the MLEs. O

Then, the MLES of p(53) and X are expressed as

Tor — 201501 (Tar — M)

ﬁ(23) =1_ a a-1 Tir — M1 ;
3T — 23(12)2(12)(12) (sz _ ﬁ2)

211 212 213 S o
U= Y91 M| X3 |= ( i(\:12)(12) élz)s) ’
E31 232 ‘ 233 3(12) 33
where
5 iy Uy Wi ~ ~ N R
E - U T T T = = ) Z — E — \II E ,
(12)(12) (\P21\I/11 \IJ22 + \P21\I]11\1112> 3(12) (12)3 3(12) (12)(12)

33 = Wa3 + @3(12)@(12)(12)@(12)3-
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Next, we represent the MLEs under Hy in order to obtain the LRT statistic.
The null hypothesis in (1.1) can be written as Hy : pp = pg (= (8o, o H50)
= (”/(12)07 th)'). Let x; = (x T(19); ,x3;)" be distributed as Np(pg,%),j =
1,2,...,n1, and x(19); be distributed as Ny, 45, (1(12)0: Z(12)(12)); for j =n1 +
1,n1 + 2,..., n. Then, the likelihood function is given by

ni

1 1 _
L(py, X) = H W exp {—2(503' — po)'S l(wj - No)}
j=1

n

1
x
jl;IH (2m) P14P2)/2| 8 19y 19y [1/2

1 _
X exp {—2(53(12)3' - N(12)0),E(112)(12) (53(12);' - N(12)0)} .
By multiplying the observation vectors by I'y on the left side, we obtain

Z(12); ~ Npi+pa(§12): Pazyaz))s 1=1,2,....m,
x3; — P312)T12); ~ Nps (€3, P33), 1=1,2,...,n1,

where

£ = <§(12)> — (12)0 _ ( K12)0 >
$ H30 — E3(12)2(12)(12)“( 12)0 K30 — P312)K(12)0/)

-1
o <‘I’(12)(12) ‘I’(m)s) _ (12)(112) X(12)(12) Z(12)3 ‘
P312) Da3 2i3(12)X(12)(12) Y33.(12)

These have a one-to-one correspondence with gy and 3. For the parameters
& and @, the likelihood function can be written as

- 1
(5 (I) :1;[ 27‘(‘ (p1+p2 /2|q) 12)(12) |1/2

—_

X exp {—2(37(12)j - 5(12))/‘1)(112)(12)(53(12)j - 5(12))}

ni

1
X
]’r:[]_ (277)173/2|CI)33|1/2

1
X €Xp {—2(3333 - @3(12 L(12)5 53) 33 ($3y - q’3(12)$(12 53)}

Similarly, as Theorem 1, we have the following Corollary. Note that ®3(19)
and P33 correspond to the ¥3(19) and W33 of Theorem 1, respectively.
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Corollary 1. Suppose that the data have a two-step monotone missing
pattern. The mazimum likelihood estimators of &3, ®(12)(12), P3(12) and P33
under Hy are given by

n

- ~ ~ 1
€3 = 30 — P312)L(12)00 P12)(12) = - Z(w(m)j — 12)0) (®(12); — Ba2)0)
=1
~ 2!
P3(12) = Z(ng — 30 (®(12); — Baz)0)
=1
~1
ni
X Z(m(u)j - U(12)0)(m(12)j - H(m)o)/ )
j=1
~ 1 & ~ ~ ~ ~
P33 = n—l Z(CC;;]' — (1)3(12).’13(12)]' - 53)(-'1733' - q)3(12)w(12)j - 53)17
=1

respectively.

84. Likelihood ratio test

In this section, we derive the LRT statistic for testing the subvector of a mean
vector with two-step monotone missing data. In the hypothesis in (1.1), the
parameter space {2 and the subspace w when Hg holds, respectively, are as
follows:

Q= {(IL?E) : —OO<[Li<OO,i :p1+17p1+27"'7p7“1 = H10)
¥ >0and 2(23)(23) > 0},

w={(1, %) : p = py, X >0 and ¥(g3)(23) > 0},

where 3 > 0 and X(93)(23y > 0 indicate that ¥ and 3(93)(23) are positive

definite matrices. We note that L(7, ¥) = L(€, ®), where 7 and U are the
MLEs of n and ¥ under Ho. We have that [®(12)(12)| = [¥11]-[¥22| by Siotani,
Hayakawa, and Fujikoshi (1985, p.591). Therefore, using the MLEs in Section
2, the likelihood ratio criterion is given by

ni

maxL(w,S)
= )‘1%4(12) yver

M=
Y maxZ(p, X)

where Apr(12) = |‘i11|'|‘i22|/|$(12)(12)| and Az = |W33]/|®s3] are independent.
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Next, we consider the null distribution of —2log Ajs. The characteristic
function of —2log Ajs can be written as

E[eit(—2log)\M)] — E[)‘Xfﬁ] _ E[)‘]T/[ZE?Q) . A]ngm]

We set

2y = (b Za) = Vi ("’“’F - “2) Vi = Vi = 1(Sp— 1),

T3F — M3
Zor, = Vn2(Tar — po), Vi = Ve — 1(SL = Ip,)),
where p(12) = p1 + P2, ®(23); = (T3, x3;)’, and the following hold:

!/

1 ni 1 n 1 n
T(23)F = *230(23)]‘, zp = (T, Ty) = | — Z T, — Z Ty |

ny < nz . na .

j=1 j=ni1+1 j=ni+1

1 <

Sp = Z(wj — EF)(:B] — fp)/,
ny — 1 =

1 n

Sp=——3 > (®az); — o) (T2, —FL)'-
277 jenitt

Then, we can obtain the expansions of E[Aﬁfg)] and E[\/2"] as follows:

) ) s _1
By = Ble o n | Bl Rl 224000 (1 23t 4 O(n ),

_1
B[\ itm] = Rleitm log s] — [(ZarZart0p(m ")) = (1 — 2i£) =5 4+ O(n] ),

where zop = /n(Tar — py). Thus, we have that

po+p3

E[ei(-2lgA)] = (1 — 2i)~7= ~ + O(n™1).

From the above that under the null hypothesis with ¥ = I,, the LRT statistic
—21log A\ is asymptotically distributed as x? with ps + p3 degrees of freedom,
when n1,n9 — oo with n;/n — ¢ € (0,1], i = 1,2. Even for the case of general
3} it should be possible to prove that this holds in a similar manner. However,
this becomes very complicated, and is left as a problem for a future study.
However, the upper percentile of the x? distribution is not a good approx-
imation to that of the LRT statistic when the sample size is not large. We
will consider an approximate upper percentile of the LRT statistic, because
the exact one is not easy to obtain. In this paper, we present a simple approx-
imation using the ny; x p and n x p complete data sets ( see, e.g., Seko et al.
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(2012)). As in Section 1, we make use of a property that is present in the case
of complete data. That is, the exact upper 100« percentile of A is given by

w3

)

Fyipnne -
gn(a) = {1+ (P2 + P3) Fpstpsm p(a)}
n—p
and Fyp(«) is the upper 100« percentile of the F' distribution with a and

b degrees of freedom. Thus, we can formulate an approximate upper 100c
percentile of the LRT statistic —2log Ay as

* D p1+p
qM<a>=—2log{; () + 22 Qqn<a>},

where

_n
q (a) — {14+ (p2 +p3)Fp2+P3,m—P(O‘) 2
" ny—p '

Therefore, we reject Hy if —2log Ay > ¢i (). In the next section, the
accuracy and asymptotic behavior of the approximation are investigated using
Monte Carlo simulation.

§5. Simulation studies

In this section, we compute the upper 100« percentiles of the LRT statistic
. (@) using Monte Carlo simulation for v = 0.05 and 0.01. We generate artifi-
cial two-step missing data from N, (0, I,,) for various conditions of py, p2, p3, n1,
and ny. We simulate the upper percentiles of the LRT statistic, ¢}, («), and the
type I error rates under the simulated LRT statistic when the null hypothesis
is rejected using g3 (@) and x2, ., where

Py =Pr{—-2log\y > ¢y, ()}, P.=Pr{—2logAy > X12)2+p3 (@)},

and X%(a) is the upper 100a percentile of the x? distribution with f degrees
of freedom. In Tables 1-4, we present the simulation results for the following
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four cases:

Case T+ (pr,psps) = (2,2,4), (2,3,3), (2,4,2),
(n1,n2) = (n1,2n1), (n1,n1), (n1,n1/2),n1 = 20,40, 80, 160;
Case I : (p1,p2,p3) = (2,2,4),(2,3,3),(2,4,2),
(n1,m2),n1 = 20,40, 80,160, 12 = 10, 20, 40;
Case II1 : (p1,p2,p3) = (2,2,2),(4,2,2),(8,2,2),
(n1,n2) = (n1,2n1), (n1,n1), (n1,n1/2),n1 = 20,40, 80, 160;
Case IV: (p1,p2,p3) = (2,2,4),(4,3,3),(6,2,2),
(n1,m2), n1 = 20,40, 80,160, 12 = 10, 20, 40.

We note that the cases for p = 8 and p; = 2 are given in Tables 1 and 2. That
is, the values of p and p; are fixed. Furthermore, Tables 3 and 4 present the
case where ps = p3, and ps and p3 are fixed.

From Tables 1 and 2, we can see that the proposed approximation g} («)
provides a good result in the case that the sample sizes ny and ns are large or
the sample size ny is large and ns is fixed. Our results also indicate that the
type I error rate is close to a when the sample size n; is large. From Tables
3 and 4, we can see that the approximation g} («) is good in the case that
p2 = p3 = 2 and the sample size n; is large. It can be seen from Tables 3
and 4 that the value of ¢ («) is close to that of the LRT when p; is small.
However, we note that the proposed approximation performs better than the
x? approximation for all cases.

In addition, we used Monte Carlo simulation for some selected parameters
to estimate the powers of the LRT based on two-step monotone missing data
and the LRT based on partially complete data of n; x p. In the case that
the type I error is close to «, each part of the data is set to the same degree.
We expected the results for the powers of the LRT based on ¢ (a) to be
larger than the corresponding powers of the LRT based on ¢, (a). Because
the type I error is not stable, the power of the LRT based on Xfm ﬂog(Oz) is not
comparing. We note that the upper 100a percentile of the X;Q;Q +py 1 smaller
than ¢}, the power becomes large. This should be investigated in further
detail using Monte Carlo simulation. Furthermore, we plan to discuss the
power in a theoretical context in future work. In particular, we will consider
the non-null distribution under local alternatives.
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TABLE 1: p; and p are fixed, and o = 0.05,0.01

33

a=0.05 a=0.01

moone  gin(@) qu(@) B P Guw(@) @y(a) P F
(p17p27p3) - (25 27 4)

20 40 17.69 15.17 .093 .171 2381 19.99 .028 .062
40 80 14.54 1390 .061 .091 19.50 18.50 .014 .024
80 160 13.48 13.24 .054 .067 18.06 17.66 .011 .016
160 320 13.01 1291 .052 .058 17.40 17.24 .011 .012
20 20 17.83 1592 .080 .176 24.00 21.05 .022 .064
40 40 14.61 14.15 .058 .093 19.52 18.85 .013 .025
80 80 13.52 13.33 .053 .068 18.05 17.80 .011 .016
160 160 13.02 1295 .051 .058 17.43 17.29 .011 .013
20 10 17.93 16.71 .068 .180 23.98 2221 .016 .066
40 20 14.69 14.39 .055 .095 19.63 19.20 .012 .025
80 40 13.54 13.43 .052 .069 18.10 1793 .011 .016
160 80 13.06 13.00 .051 .059 17.43 17.35 .010 .013
(p17p27p3) = (27 37 3)

20 40 17.09 1481 .090 .154 23.07 19.58 .026 .054
40 80 14.32 13.72 .060 .086 19.16 18.27 .014 .022
80 160 13.35 13.15 .054 .065 17.82 17.55 .011 .015
160 320 1296 12.87 .052 .057 17.31 17.18 .010 .012
20 20 17.37 1559 079 .163 23.35 20.68 .021 .058
40 40 14.46 14.00 .058 .089 19.31 18.66 .013 .023
80 80 13.43 13.27 .053 .067 17.95 1771 .011 .015
160 160 13.00 1292 .051 .058 17.38 17.25 .010 .012
20 10 17.62 16.45 .067 .171  23.66 21.90 .016 .061
40 20 14.56 14.29 .055 .092 19.45 19.06 .011 .024
80 40 13.49 13.39 .052 .068 18.00 17.87 .010 .015
160 80 13.01 1298 .051 .058 17.35 17.33 .010 .012
(p17p27p3) = (Qa 4, 2)

20 40 16.34 14.51 .081 .134 22.11 19.25 .022 .044
40 80 14.06 13.55 .059 .080  18.78 18.06 .013 .020
80 160 13.24 13.07 .053 .063 17.67 17.44 .011 .014
160 320 12.89 1283 .051 .055 17.26 17.13 .011 .012
20 20 16.74 1532 .073 .146 22.55 20.36  .019 .049
40 40 14.23 13.87 .056 .084  19.02 18.49 .012 .021
80 80 13.34 13.21 .052 .064 17.85 17.63 .011 .015
160 160 12.93 1289 .051 .056 17.31 17.21 .010 .012
20 10 1724 16.22 .065 .159 23.21 21.62 .015 .056
40 20 14.44 14.19 .054 .089 19.27 18.94 .011 .023
80 40 13.43 13.34 .051 .067 17.92 17.81 .010 .015
160 80 1298 1296 .050 .057 17.33 17.30 .010 .012

Note : x2(0.05) = 12.59, x2(0.01) = 16.81
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TABLE 2 : pi, p and ny are fixed, and o = 0.05,0.01

a=0.05 a=0.01

moon2  gin(@) gu(@) B P Guw(@) @y(a) P F
(plvp?v p3) - (25 27 4)

20 10 1793 16.71 .068 .180  23.98 22.21 .016 .066
40 10 14.75 14.58 .053 .097 19.72 19.47 .011 .026
80 10 13.58 13.56 .050 .070 18.13 18.10 .010 .016
160 10 13.08 13.07 .050 .059 17.50 17.45 .010 .013
20 20 17.83 1592 .080 .176 24.00 21.05 .022 .064
40 20 14.69 14.39 .055 .095 19.63 19.20 .012 .025
80 20 13.56 13.51 .051 .069 18.07 18.04 .010 .016
160 20 13.08 13.06 .050 .059 17.43 17.43 .010 .013
20 40 17.69 15.17 .093 .171 2381 19.99 .028 .062
40 40 14.61 14.15 .058 .093 19.52 18.85 .013 .025
80 40 13.54 13.43 .052 .069 18.10 1793 .011 .016
160 40 13.06 13.03 .051 .059 17.42 17.40 .010 .013
(p17p27p3) = (27 37 3)

20 10 17.62 16.45 .067 .171 23.66 21.90 .016 .061
40 10 14.68 14.51 .053 .094 19.60 19.38 .011 .025
80 10 13.56 13.54 .050 .069 18.11 18.08 .010 .016
160 10 13.07 13.07 .050 .059 17.47 1744 .010 .013
20 20 17.37 1559 .079 .163 23.35 20.68 .021 .058
40 20 14.56 14.29 .055 .092 19.45 19.06 .011 .024
80 20 13.54 13.48 .051 .069 18.09 18.00 .010 .016
160 20 13.06 13.056 .050 .059 17.43 17.42  .010 .013
20 40 17.09 14.81 .090 .154 23.07 19.58 .026 .054
40 40 14.46 14.00 .058 .089 19.31 18.66 .013 .023
80 40 13.49 13.39 .052 .068 18.00 17.87 .010 .015
160 40 13.05 13.02 .050 .059 1740 17.38 .010 .013
(p17p27p3) = (Qa 4, 2)

20 10 1724 16.22 .065 .159 23.21 21.62 .015 .056
40 10 14.58 14.45 .052 .092 19.47 19.30 .011 .024
80 10 13.57 13.53 .051 .070 18.12 18.06 .010 .016
160 10 13.09 13.06 .050 .060 17.51 17.44 .010 .013
20 20 16.74 1532 .073 .146  22.55 20.36  .019 .049
40 20 14.44 14.19 .054 .089 19.27 18.94 .011 .023
80 20 13.50 13.45 .051 .068 18.04 1796 .010 .016
160 20 13.08 13.04 .051 .059 17.49 17.41 .010 .013
20 40 16.34 14.51 .081 .134 22.11 19.25 .022 .044
40 40 14.23 13.87 .056 .084  19.02 18.49 .012 .021
80 40 13.43 13.34 .051 .067 17.92 17.81 .010 .015
160 40 13.02 13.01 .050 .058 17.41 17.37 .010 .013

Note : x2(0.05) = 12.59, x2(0.01) = 16.81
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a=0.05 a=0.01

moone gin(@) qu(@) B P Guw(@) @y(a) P F
(p17p27p3) - (25 27 2)

20 40 11.93 10.88 .070 .109 16.78 15.12  .018 .032
40 80 10.51 10.17 .057 .073 14.72 14.21 .012 .018
80 160 9.96 9.82 .053 .060 13.96 13.74 .011 .013
160 320 9.70 9.65 .051 .055 13.58 13.51  .010 .011
20 20 12.10 11.31 .064 .113 16.98 15.75 .015 .034
40 40 10.57 10.34 .055 .075 14.78 1445 .011 .018
80 80 10.01 9.90 .052 .061 14.02 13.85 .011 .013
160 160 9.75 9.69 .051 .056 13.61 13.56 .010 .012
20 10 12.29 11.76 .059 .119 17.30 16.42 .013 .037
40 20 10.66 10.51 .053 .077 14.97 14.70 .011 .019
80 40 10.05 9.97 .052 .062 14.06 13.95 .010 .014
160 80 9.75 9.72 .050 .056 13.60 13.61 .010 .011
(p17p27p3) = (47 27 2)

20 40 13.35 11.23 .091 .146  18.87 15.57 .026 .051
40 80 1098 10.35 .062 .084 15.39 14.45 .014 .022
80 160 10.13 991 .054 .064 14.19 13.86 .011 .014
160 320 9.81 9.70 .052 .057 13.70 13.57 .011 .012
20 20 13.59 11.96 .079 .155 19.19 16.62 .021 .055
40 40 11.06 10.63 .058 .086 15.49 14.85 .013 .022
80 80 10.20 10.03 .053 .066  14.29 14.03 .011 .015
160 160 9.82 9.75 .051 .057 13.75 13.65 .010 .012
20 10 13.94 12,78 .069 .165 19.60 17.82  .017 .060
40 20 11.22 1091 .056 .091 15.72 15.26 .012 .024
80 40 10.27  10.15 .052 .067 14.40 14.21 .011 .015
160 80 9.86 9.81 .051 .058 13.v8 13.73 .010 .012
(p17p27p3) = (Sa 27 2)

20 40 1824 11.99 .170 .271  26.27 16.63 .068 .132
40 80 12.01 10.71 .076 .111 16.91 14.92 .019 .033
80 160 10.55 10.09 .059 .074 14.79 14.10 .013 .018
160 320 9.99 9.78 .0564 .061 1399 13.69 .011 .013
20 20 18.67 1347 137 .289  26.83 18.71 .050 .142
40 40 12.28 11.23 .069 .118 17.28 15.67 .017 .036
80 80 10.64 10.30 .057 .076 14.91 14.41 .012 .018
160 160 10.03 9.88 .053 .062 14.03 13.83 .011 .014
20 10 19.33 1538 .106 .311  27.60 21.42 .033 .158
40 20 1247 11.81 .062 .125 17.48 16.50 .014 .039
80 40 10.77 10.53 .055 .079 15.06 14.v3 .011 .020
160 80 10.07 998 .052 .063 14.14 13.97 .011 .014

Note : x3(0.05) = 9.49

, X3(0.01) = 13.28
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TABLE 4 : ny is fixed, po = p3, and a = 0.05,0.01

a=0.05 a=0.01

moon2 gin(@) gu(@) B P Guw(@) @y(a) P F
(p17p27p3) - (25 27 2)

20 10 12.29 11.76 .059 .119 17.30 16.42 .013 .037
40 10 10.73 10.65 .052 .078 15.04 1490 .011 .020
80 10 10.11  10.07 .051 .063 14.16 14.10 .010 .014
160 10 9.79 9.78 .050 .056 13.69 13.69 .010 .012
20 20 12.10 11.31 .064 .113 16.98 15.75 .015 .034
40 20 10.66 10.51 .053 .077 14.97v 14.70 .011 .019
80 20 10.06 10.03 .050 .062 14.10 14.04 .010 .014
160 20 9.77 9.77 .050 .056 13.68 13.67 .010 .012
20 40 11.93 1088 .0v0 .109 16.78 15.12 .018 .032
40 40 10.57 10.34 .055 .075 14.78 14.45 .011 .018
80 40 10.05 9.97 .052 .062 14.06 13.95 .010 .014
160 40 9.79 9.75 .051 .056 13.70 13.65 .010 .012
(p17p27p3) - (47 27 2)

20 10 13.94 1278 .069 .165 19.60 17.82 .017 .060
40 10 11.34 11.15 .054 .094 15.86 15.60 .011 .025
80 10 10.34 10.32 .050 .069 14.49 14.44 .010 .016
160 10 9.90 9.90 .050 .059 13.83 13.86 .010 .013
20 20 13.59 1196 .079 .155 19.19 16.62 .021 .055
40 20 11.22 1091 .056 .091 15.72 15.26 .012 .024
80 20 10.32 10.25 .051 .068 14.44 14.34 .010 .016
160 20 9.89 9.88 .050 .059 13.84 13.83 .010 .013
20 40 13.35 11.23 .091 .146 18.87 15.57 .026 .051
40 40 11.06 10.63 .058 .086  15.49 14.85 .013 .022
80 40 10.27  10.15 .052 .067 14.40 14.21 .011 .015
160 40 9.88 9.85 .051 .059 13.82 13.79 .010 .012
(p17p27p3) = (8a 2, 2)

20 10 19.33 1538 .106 .311  27.60 21.42 .033 .158
40 10 12.75 1230 .057 .132 17.88 17.21  .012 .043
80 10 1092 10.84 .051 .083 15.30 15.17 .011 .021
160 10 10.16  10.15 .050 .065  14.23 14.21 .010 .015
20 20 18.67 1347 137 .289  26.83 18.71 .050 .142
40 20 1247 11.81 .062 .125 17.48 16.50 .014 .039
80 20 10.84 10.72 .052 .081 15.19 14.99 .011 .020
160 20 10.15 10.12 .051 .064 14.18 14.16 .010 .015
20 40 1824 11.99 .170 .271  26.27 16.63 .068 .132
40 40 12.28 11.23 .069 .118 17.28 15.67 .017 .036
80 40 10.77 10.53 .055 .079 15.06 14.v3 .011 .020
160 40 10.13 10.06 .051 .064 14.21 14.08 .010 .014

Note : x2(0.05) = 9.49, x2(0.01) = 13.28
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§6. Numerical example

Now, we illustrate the results of this study using an example given in Wei
and Lachin (1984). The sample data set consists of serum cholesterol values
that were measured under the treatment group at five different time points:
the baseline and at months 6, 12, 20, and 24. The original data set contains
36 complete observations, and we create two-step monotone missing data by
randomly selecting 30 observations and deleting the values for 10 observations
for each of the months 20 and 24. Thus, we have n = 30, n; = 20, ny =
10, p = 5, p1 = 1, and ps = p3 = 2. We are interested in the change from
the baseline at each post-baseline time point. It is known that the mean for
all baseline value was 220. We consider the hypothesis H : (uga, ps, i, p15) =
(220,220, 220, 220)’, given p; = 220. Then, we compute —2log Ay = 10.92.
Because we have ¢4,,(0.05) = 11.63 from the simulation study, we do not
reject the null hypothesis at the 0.05 significance level. Moreover, when we use
q:,(0.05) = 11.30, the null hypothesis is not rejected. When we use Xi(0.05) =
9.49, the null hypothesis is rejected. However, ¢,,(0.01) = 16.32 from the
simulation study, and the null hypothesis is rejected at the 0.01 significance
level. When we use ¢}(0.01) = 15.79 or Xzzl(o.m) = 13.28, the null hypothesis
is also rejected.

§87. Concluding remarks

In this paper, we have considered the one-sample problem of testing for the
subvector of a mean vector with two-step monotone missing data. First, we
provided an introduction to two-step monotone missing data. Then, we re-
viewed the test for the subvector of a mean vector with non-missing data. In
the case that the data set consists of complete data with p dimensions and
incomplete data with (p; 4+ p2) dimensions, we derived the likelihood ratio
criterion for testing the (p2 4+ p3) mean vector under the given mean vector
of p1 dimensions, which is given by (1.1). This test procedure only treats
the (p2 + p3)-components as if observations are present. Next, we derived
the MLEs, and provided the LRT statistic and the approximate upper 100«
percentiles of the LRT, ¢},(«), for a subvector. The approximate values can
easily be calculated, and the simulation results suggest that the type I error
rates are close to o when the sample size n is large. In all cases, it appears
that the approximate upper 100c percentiles gj,(a) are preferable to Xz2>2 +ps-
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