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Abstract. We discuss approximations for the distribution of eigenvalues of
the ratio of Wishart matrices when the population eigenvalues are infinitely
dispersed. The first approximation is expressed as the F distribution with suit-
able parameters, and the second is expressed by the product of F distributions.
Numerical examples show that the proposed approximations are more accurate
than the known asymptotic expansions of the normal distribution.
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§1. Introduction

Random matrix theory originated in mathematical physics and statistics, and
recently it has found a wide range of applications in the fields of science and
engineering. One of the fundamental random matrices in multivariate anal-
ysis, the Wishart matrix, has important uses in estimation and in statistical
tests involving the sample covariance matrix. The landmark studies on ran-
dom matrix theory in statistics were Johnstone (2001, 2008, 2009). These
studies focus primarily on the null case, in which the population covariance
matrix is the identity matrix. Some multivariate statistics are also expressed
as the function of the eigenvalues of Wishart matrices, therefore it is impor-
tant to derive the distributions of these eigenvalues. The distribution of the
eigenvalues of a Wishart matrix or of the ratio of Wishart matrices depends
on a definite integral over the group of orthogonal matrices. This integral is
expressed as a hypergeometric series involving zonal polynomials, and it is
difficult to compute them numerically in a non-null case.
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To approximate the distribution of the eigenvalues of a Wishart matrix,
Sugiura (1973) and Muirhead and Chikuse (1975) derived asymptotic expan-
sions with normal distributions. Approximations have also been obtained with
χ2-distributions by Sugiyama (1972), Takemura and Sheena (2005), and Kato
and Hashiguchi (2014). For a ratio of Wishart matrices, Khatri (1967) derived
exactly the joint probability density function (pdf) of the eigenvalues, and Li
et al. (1970) derived an asymptotic expansion by evaluating an approximation
of the integral over the orthogonal group. Sugiura (1976) and Chikuse (1977)
derived an asymptotic expansion using the normal distribution.

In this paper, we use the F distribution to derive an approximation for the
distribution of eigenvalues of the ratio of Wishart matrices when population
eigenvalues are infinitely dispersed. This infinite dispersion property of pop-
ulation eigenvalues was introduced by Takemura and Sheena (2005). We also
consider an approximation that uses the product of F distributions; we use
a similar method to Kato and Hashiguchi (2014). In the remaining part of
this introduction, we summarize the results of Kato and Hashiguchi (2014) for
a single Wishart matrix. In Section 2, we discuss an extension of Kato and
Hashiguchi (2014) for the ratio of Wishart matrices. In Section 3, numerical
experiments are performed via Monte Carlo simulations.

Let W be distributed as the Wishart distribution Wp(n,Σ), where n ≥ p
and the covariance matrix Σ is positive definite. The eigenvalues of Σ are
denoted by σ1, . . . , σp, and we assume that σ1 > · · · > σp > 0. For a Wishart
matrix W , the eigenvalues are denoted by w1 > w2 > · · · > wp, which are
random variables.

From Theorem 3.2.18 of Muirhead (1982; p. 106), the joint distribution of
w1, w2, . . . , wp is

f(w1, . . . , wp) =
2−pn/2 πp2/2

Γp(p/2)Γp(n/2)|Σ|n/2

p∏
j=1

w
n−p−1

2
j

∏
j<k

(wj − wk)

0F
(p)
0

(
−1

2
Σ−1, L

)
,

where

0F
(p)
0

(
−1

2
Σ−1, L

)
=

∫
O(p)

etr

(
−1

2
Σ−1HLH⊤

)
(dH),

Γp(a) = π
p(p−1)

4

p∏
i=1

Γ

(
a− i− 1

2

)

and (dH) is the normalized Haar mesure on the orthogonal group O(p). From
Theorem 9.5.2 of Muirhead (1982; p.392), the integral has the following asymp-
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totic behavior

0F
(p)
0

(
−1

2
Σ−1, L

)
∼ Γp(p/2)

πp2/2
exp

−1

2

p∑
j=1

wj

σj

 p∏
j<k

(
2π

cjk

)1/2

,(1.1)

where cjk = [(wj − wk)(σj − σk)]/[σjσk]. When we say “a ∼ b for sufficiently
large n,” we mean that a/b → 1 as n → ∞. Furthermore, we define ρ1 as
follows:

ρ1 = max

(
σ2
σ1

, · · · , σp
σp−1

)
,

and we consider the case for ρ1 → 0. For any random variables X and Y , we
use the notation

X ≈ Y or Pr[X < x] ≈ Pr[Y < y]

to mean that, for sufficiently large n, X converges to Y as ρ1 → 0. By
evaluating the asymptotic expansion (1.1) when ρ1 → 0 for sufficiently large
n, Kato and Hashiguchi (2014) showed Propositions 1.1 and 1.2.

Proposition 1.1. Let w1, . . . , wp be the eigenvalues of W ∼ Wp(n,Σ), where
n ≥ p, Σ is positive definite, and w1 > w2 > · · · > wp. If ρ1 → 0, then
for sufficiently large n, w1, . . . , wp are mutually independent, and each wk

is asymptotically distributed as the χ2-distribution with n − k + 1 degrees of
freedom.

Proposition 1.1 is almost the same as a result of Takemura and Sheena (2005)
that places no assumptions on the sample size n. Considering the order of
w1, . . . , wp and their asymptotic behavior, Kato and Hashiguchi (2014) ob-
tained the following proposition, which states that each wk can be approxi-
mated by a product of χ2-distributions.

Proposition 1.2. Let Y1, . . . , Yp be mutually independent random variables,
and let each Yk be distributed as a χ2-distribution with n − k + 1 degrees of
freedom. We define U (k) and U (k) as{

U (k) = {σ1Y1, σ2Y2, . . . , σkYk}
U (k) = {σkYk, σk+1Yk+1, . . . , σmYm},

where, for convenience, we let U (0) = {∞} and U (m+1) = {0}. If ρ1 → 0, then
for sufficiently large n, the following two equations hold.

1. ℓk ≈ min{minU (k−1),maxU (k)},

Pr[wk > x] ≈Pr[min{minU (k−1),maxU (k)} > x]

=

k−1∏
j=1

(1−Gn−j+1(x/σj))×

1−
m∏
j=k

Gn−j+1(x/σj)

 .
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2. wk ≈ max{minU (k),maxU (k+1)},

Pr[wk < x] ≈ Pr[max{minU (k),maxU (k+1)} < x]

=

1−
k∏

j=1

(1−Gn−j+1(x/σj)

×
m∏

j=k+1

Gn−j+1(x/σj).

Corollary 1.3. Under the same conditions as Proposition 1.2, the approxi-
mate distribution of the eigenvalue w1 is given by

w1 ≈ maxU (1) and Pr[w1 < x] ≈
p∏

k=1

Gn−j+1(x/σj).(1.2)

Similarly, we have

wp ≈ minU (p) and Pr[wp > x] ≈
p∏

k=1

(1−Gn−j+1(x/σj)) .

We note that equation (1.2) is the same as a result of Sugiyama (1972), but
without assumptions on ρ and n.

§2. Main results

In this section, we consider the distribution of the eigenvalues of the ra-
tio of Wishart matrices. Let Wj(j = 1, 2) be independently distributed as
Wp(nj ,Σj). For k = 1, . . . , p, let ℓk denote the eigenvalues of W1W

−1
2 , and let

λk denote the population eigenvalues of Σ1Σ
−1
2 , where ℓ1 > · · · > ℓp > 0 and

λ1 > · · · > λp > 0.
LetX and Y be p×p positive Hermitian matrices. Then the hypergeometric

function 1F
(p)
0 (a;X,Y ) with two arguments X and Y is defined by

1F
(p)
0 (a;X,Y ) =

∫
O(p)

|I −XHYH⊤|−a(dH),(2.1)

where O(p) denotes the set of p × p orthogonal matrices, and (dH) is the
normalized Haar measure on O(p). Let x1, . . . , xp and y1, . . . , yp be the eigen-
values of X and Y , respectively, where x1 > x2 > · · · > xp > 0 and
y1 > y2 > · · · > yp > 0. Using Laplace’s method in a similar way to that
of (1.1), the asymptotic behavior of (2.1) is given by

1F
(p)
0 (a;X,Y ) ∼ Γp(p/2)

πp2/2
|I −XY |−a

∏
j<k

(
π

a cjk

) 1
2

,(2.2)
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where cjk = [(xj−xk)(yj−yk)]/[(1−xjyj)(1−xkyk)]. A general formula based
on Laplace’s method for a hypergeometric function with two matrix arguments
was obtained in Butler and Wood (2005). The asymptotic properties of (1.1)
and (2.2) are special cases of the results of Butler and Wood (2005). The
right hand side of (2.2) is the same as the first-order term of the asymptotic

expansion of 1F
(p)
0 given by Li et al. (1970).

James (1964) introduced the hypergeometric function for matrix arguments
and gave the joint pdf of ℓ1, . . . , ℓp. Khatri (1967) provided another expres-
sion for the joint distribution, and Khatri (1972) presented the distribution of
the largest and smallest eigenvalues. In Khatri (1972), the distribution of ℓ1
and ℓp were expressed by a finite series of Laguerre polynomials with matrix
arguments. Under the null hypothesis Σ1Σ

−1
2 = Ip, Venables (1973) proposed

a method for exactly computing the distribution of ℓ1 and ℓp.

Proposition 2.1. (Joint pdf of the eigenvalues)
Let n = n1 + n2, A = diag(λ1, . . . , λp), and B = diag(ℓ1, . . . , ℓp).

1. (James, 1964) The joint pdf of the eigenvalues ℓ1, . . . , ℓp of W1W
−1
2 is

given by

f(ℓ1, . . . , ℓp) =
πp2/2|A|−

n1
2 |B|

n1−p−1
2

Bp(n1/2, n2/2)Γp(p/2)

∏
j<k

(ℓj − ℓk)1F
(p)
0

(n
2
;−A−1, B

)
,

(2.3)

where Bp(n1/2, n2/2) is the multivariate beta function with parameters
n1/2 and n2/2 as

Bp (n1/2, n2/2) =
Γp(n1/2)Γp(n2/2)

Γp(n/2)
.

2. (Khatri, 1967) Another expression of f(ℓ1, . . . , ℓp) is given by

|A|−
n1
2 |B|

n1−p−1
2

Bp(n1/2, n2/2)

∏
j<k

(ℓj − ℓk)|I +B|−
n
2 1F

(p)
0

(n
2
; I −A−1, B(I +B)−1

)
.

Applying the Laplace approximation (2.2) to Proposition 2.1, the following
corollary is clearly obtained.

Corollary 2.2. The Laplace approximation for the joint pdf f(ℓ1, . . . , ℓp) of
(2.3) in Proposition 2.1 is given by

f(ℓ1, . . . , ℓp) ∼
1

Bp(n1/2, n2/2)

∏
j<k

(
2π

n

) 1
2

|A|−
n1
2 |B|

n1−p−1
2(2.4)

∣∣I +A−1B
∣∣−n

2
∏
j<k

(ℓj − ℓk) c
− 1

2
jk ,
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where cjk = [(λj − λk)(ℓj − ℓk)]/[(λj + ℓj)(λk + ℓk)].

Proof. From (2.2), we have

1F0

(n
2
;−A−1, B

)
∼ Γp(p/2)

πp2/2

∣∣I +A−1B
∣∣−n

2
∏
j<k

(
2π

n cjk

) 1
2

.

Substitute it into equation (2.3).

For sufficiently large n, the normalizing constant on the right-hand side of
(2.4) has the asymptotic property shown in the following lemma.

Lemma 2.3. If n is sufficiently large, then

1

Bp(n1/2, n2/2)

∏
j<k

(
2π

n

) 1
2

∼
p∏

j=1

1

B(n1−j+1
2 , n2−p+j

2 )
.

Proof. We note that the normalizing constant can be written as the product
of gamma and beta functions, as follows:

1

Bp(n1/2, n2/2)

∏
j<k

(
2π

n

) 1
2

=
Γp(n/2)

Γp(n1/2)Γp(n2/2)

(
2π

n

) p(p−1)
4

=

(
2

n

) p(p−1)
4

p∏
j=1

Γ(n−j+1
2 )

Γ(n−p+1
2 )

.
1

B(n1−j+1
2 , n2−p+j

2 )
.

Next, we note that the following two statements hold:

(
2

n

) p(p−1)
4

p∏
j=1

Γ(n−j+1
2 )

Γ(n−p+1
2 )

∼ 1 and

1

Bp(n1/2, n2/2)

∏
j<k

(
2π

n

) 1
2

∼
p∏

j=1

1

B(n1−j+1
2 , n2−p+j

2 )
,
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because Stirling’s formula for the gamma function gives(
2

n

) p(p−1)
4

p∏
j=1

Γ(n−j+1
2 )

Γ(n−p+1
2 )

=

(
2

n

) p(p−1)
4

p−1∏
j=1

Γ(n−j+1
2 + 1)

Γ(n−p−1
2 + 1)

∼
(
2

n

) p(p−1)
4

p−1∏
j=1

√
(n− j − 1)π(n−j−1

2e )
n−j−1

2√
(n− p− 1)π(n−p−1

2e )
n−p−1

2

=

(
2

n

) p(p−1)
4

p−1∏
j=1

(1− j+1
n )

n−j
2

(1− p+1
n )

n−p
2

( n

2e

) p(p−1)
4

∼ e−
p(p−1)

4

p−1∏
j=1

e−
j+1
2

e−
p+1
2

·

= 1.

In Proposition 2.1 and Corollary 2.2, we consider the asymptotic joint pdf
of ℓ1, . . . , ℓp in the case that the population eigenvalues are infinity dispersed
when

ρ2 = max

(
λ2

λ1
, · · · , λp

λp−1

)
→ 0.

If ρ2 → 0, then Lemma 2.4 is obtained.

Lemma 2.4. If n is sufficiently large and ρ2 → 0, then we have

Pr

(
ℓk
ℓj

> 0

)
→ 0

for 1 ≤ j < k ≤ p.

Proof. From Corollary 3.1 of Sugiura (1976), each ℓk is asymptotically dis-
tributed as N(λk, 2nλ

2
k/n1n2), and ℓ1, . . . , ℓp are asymptotically independent

of each other. Hence, using Markov’s inequality and a delta method for E(ℓ−1
j ),

we obtain

Pr

(∣∣∣∣ℓkℓj
∣∣∣∣ > ϵ

)
≤ 1

ϵ
E

(∣∣∣∣ℓkℓj
∣∣∣∣) =

λk

λjϵ

(
1 +O

(
n

n1n2

))
for any ϵ > 0. Set ϵ =

√
λk/λj . If ρ2 → 0, then we have ϵ → 0 and

lim
ρ2→0

Pr

(
ℓk
ℓj

>

√
λk

λj

)
≤ lim

ρ2→0

√
λk

λj

(
1 +O

(
n

n1n2

))
= 0,
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which yields

Pr

(
ℓk
ℓj

> 0

)
→ 0.

The above lemma means that ℓk/ℓj asymptotically tends to zero with prob-
ability one. Furthermore, from Lemmas 2.3 and 2.4, we have the following
asymptotic pdfs.

Theorem 2.5. 1. Let xj = ℓj/λj, m1,j = n1−j+1, and m2,j = n2−p+j.
If ρ2 → 0 and n is sufficiently large, then x1, . . . , xn are mutually inde-
pendent, and each xj is asymptotically distributed as the beta distribution
of the second kind with parameters m1,j/2 and m2,j/2:

f(x1, . . . , xp) ≈
p∏

j=1

1

B(m1,j/2,m2,j/2)

x
m1,j

2
−1

j

(1 + xj)
m1,j+m2,j

2

.

2. Let yj = xj/(1 + xj), then we also have

f(y1, . . . , yp) ≈
p∏

j=1

y
m1,j

2
−1

j (1− yj)
m2,j

2
−1

B(m1,j/2,m2,j/2)
,

where 0 ≤ yj ≤ 1. Namely, each yj is asymptotically distributed as the
beta distribution of the first kind with parameters m1,j/2 and m2,j/2.

3. Furthermore, if we set zj = m2,j xj/m1,j, then we also have

f(z1, . . . , zp) ≈
p∏

j=1

(
m1,j

m2,j
)
m1,j

2

B(m1,j/2,m2,j/2)

z
m1,j

2
−1

j

(1 +
m1,j

m2,j
zj)

m1,j+m2,j
2

dzj ,

where 0 ≤ zj < ∞. Thus, each zj is asymptotically distributed as the F
distribution with parameters m1,j and m2,j.

Proof. First, the terms other than the normalizing constant in (2.4) can be
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rewritten as

|A|−
n1
2 |B|

n1−p−1
2

∣∣I +A−1B
∣∣−n

2
∏
j<k

(ℓj − ℓk) c
− 1

2
jk

=

p∏
j=1

λ
−n1

2
j ℓ

n1−p−1
2

j

(
1 +

ℓj
λj

)−n
2 ∏
j<k

(
1

cjk

) 1
2

(ℓj − ℓk)

=

p∏
j=1

λ
−n1

2
j ℓ

n1−p−1
2

j

(
1 +

ℓj
λj

)−n
2 ∏
j<k

(
(λj + ℓj)(λk + ℓk)(ℓj − ℓk)

λj − λk

) 1
2

=

p∏
j=1

λ
−n1

2
j ℓ

n1−p−1
2

j

(
1 +

ℓj
λj

)−n
2 ∏
j<k


(
1 +

ℓj
λj

)(
1 + ℓk

λk

)(
1− ℓk

ℓj

)
λkℓj

1− λk
λj


1
2

.

If ρ2 → 0 and n is sufficiently large, then from Lemma 2.4, we have ℓk/ℓj ≈ 0,
and λk/λj → 0 for 1 ≤ j < k ≤ p. Hence, the last line of the above equation,
with differential operators dℓ1 · · · dℓp, can be expressed as

≈
p∏

j=1

λ
−n1

2
j ℓ

n1−p−1
2

j

(
1 +

ℓj
λj

)−n
2 ∏
j<k

(
1 +

ℓj
λj

) 1
2
(
1 +

ℓk
λk

) 1
2

λ
1
2
k ℓ

1
2
j dℓj

=

p∏
j=1

λ
−n1

2
j ℓ

n1−p−1
2

j

(
1 +

ℓj
λj

)−n
2

p∏
j=1

{
ℓj

(
1 +

ℓj
λj

)} p−j
2
{
λk

(
1 +

ℓk
λk

)} k−1
2

dℓj

=

p∏
j=1

(
ℓj
λj

)n1−j+1
2

−1 1

λj

(
1 +

ℓj
λj

)−n+p−1
2

dℓj

=

p∏
j=1

(
ℓj
λj

)n1−j+1
2

−1(
1 +

ℓj
λj

)−n+p−1
2 dℓj

λj
.

Therefore, we obtain

1

Bp(
n1
2 , n2

2 )

∏
j<k

(
2π

n

) 1
2

|A|−
n1
2 |B|

n1−p−1
2

∣∣I +A−1B
∣∣−n

2
∏
j<k

(ℓj − ℓk) c
− 1

2
jk dℓj

≈
p∏

j=1

1

B(n1−j+1
2 , n2−p+j

2 )

(
ℓj
λj

)n1−j+1
2

−1(
1 +

ℓj
λj

)−n+p−1
2 dℓj

λj
.(2.5)

If we set xj = ℓj/λj , m1,j = n1−j+1, andm2,j = n2−p+j, then equation (2.5)
becomes the product of beta distributions of the second kind with parameters
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m1,j/2 and m2,j/2:

f(x1, . . . , xp) ≈
p∏

j=1

1

B(m1,j/2,m2,j/2)

x
m1,j

2
−1

j

(1 + xj)
m1,j+m2,j

2

.(2.6)

If we use the transformation yj = xj/(1 + xj) (0 ≤ yj ≤ 1), then equation
(2.6) becomes the product of beta distributions of the first kind with param-
eters m1,j/2 and m2,j/2:

f(y1, . . . , yp) ≈
p∏

j=1

y
m1,j

2
−1

j (1− yj)
m2,j

2
−1

B(m1,j/2,m2,j/2)
.

Another transformation from xj to zj = m2,j xj/m1,j gives the joint pdf of
z1, . . . , zp as

f(z1, . . . , zp) ≈
p∏

j=1

(
m1,j

m2,j
)
m1,j

2

B(m1,j/2,m2,j/2)

z
m1,j

2
−1

j

(1 +
m1,j

m2,j
zj)

m1,j+m2,j
2

,

and the proof of Theorem 2.5 is completed.

Theorem 2.6 (Approximation by a product of F distributions). Let Z1, . . .,
Zp be independent random variables, where each Zk follows the F distribu-
tion with m1,j ,m2,j degrees of freedom, where m1,j and m2,j are as defined in
Theorem 2.5. Furthermore, let V (k) and V (k) be defined as{

V (k) = {δ−1
1 λ1Z1, δ

−1
2 λ2Z2, . . . , δ

−1
k λkZk}

V (k) = {δ−1
k λkZk, δ

−1
k+1λk+1Zk+1, . . . , δ

−1
p λpZp},

where δk = m2,k/m1,k, V (0) = {∞}, and V (p+1) = {0}. If ρ2 → 0, we have
the following two approximations for the distribution of the kth eigenvalue of
W1W

−1
2 .

1. ℓk ≈ min{minV (k−1),maxV (k)},

Pr[ℓk > x] ≈Pr[min{minV (k−1),maxV (k)} > x]

=

k−1∏
j=1

(
1− Fm1,j , m2,j

(
δj

x

λj

))1−
p∏

j=k

Fm1,j , m2,j

(
δj

x

λj

) .

2. ℓk ≈ max{minV (k),maxV (k+1)},

Pr[ℓk < x] ≈ Pr[max{minV (k),maxV (k+1)} < x]

=

1−
k∏

j=1

(
1− Fm1,j , m2,j

(
δj

x

λj

))
p∏

j=k+1

Fm1,j , m2,j

(
δj

x

λj

)
.
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In both statements, Fj,k(x) denotes the cumulative distribution function of an
F distribution with j, k degrees of freedom.

Proof. If ρ2 → 0, z1, . . . , zp are approximately independent, and each zj is
distributed as the F distribution with parameters m1,j and m2,j . From

maxV (k) ≤
λkZk

δk
≤ minV (k−1) and ℓk ≈ λkZk

δk
∈ V (k),

we have ℓk ≈ min{maxV (k),minV (k−1)}. Hence, the upper probability of ℓk
can be expressed as

Pr(ℓk > x) ≈ Pr(min{maxV (k),minV (k−1)} > x)

= Pr(maxV (k) > x)Pr(minV (k−1) > x)

=
(
1− Pr(maxV (k) < x)

)
×

k−1∏
j=1

Pr

(
λjZj

δj
> x

)

=

1−
k−1∏
j=1

Pr

(
λjZj

δj
< x

)×
k−1∏
j=1

Pr

(
λjZj

δj
> x

)

=

1−
p∏

j=k

Fm1,j ,m2,j

(
δj

x

λj

)×
k−1∏
j=1

{
1− Fm1,j ,m2,j

(
δj

x

λj

)}
.

In a similar manner, we have

maxV (k+1) ≤
λkZk

δk
≤ minV (k), ℓk ≈ λkZk

δk
∈ V (k),

and ℓk ≈ max{maxV (k+1),minV (k)}. Hence, the probability of ℓk is also given
by

Pr[ℓk < x] ≈ Pr[max{minV (k),maxV (k+1)} < x]

=

1−
k∏

j=1

(
1− Fm1,j ,m2,j

(
δj

x

λj

))
p∏

j=k+1

Fm1,j ,m2,j

(
δj

x

λj

)
.

We consider an approximate distribution for the extreme eigenvalues de-
fined in Theorem 2.6.

Corollary 2.7. If k = 1 in Theorem 2.6, the approximate distribution for the
largest eigenvalue ℓ1 is given by ℓ1 ≈ maxV (1), and

Pr[ℓ1 < x] ≈
k∏

j=1

Fm1,j ,m2,j

(
δj

x

λj

)
.
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In a similar manner, for the smallest eigenvalue ℓp, we have ℓp ≈ minV (p),
and

Pr[ℓp > x] ≈ 1−
k∏

j=1

(
1− Fm1,j ,m2,j

(
δj

x

λj

))
.

Proof. From statement 1 in Theorem 2.6, we have

ℓ1 ≈ min{minV (0),maxV (1)} = maxV (1),

and from statement 2 in Theorem 2.6, we have

ℓ1 ≈ max{minV (1),maxV (2)} = maxV (1).

Hence, both statements 1 and 2 in Theorem 2.6 yield the same equation. In a
similar way, statements 1 and 2 in Theorem 2.6 for the smallest eigenvalue ℓp
yield

ℓp ≈ min{minV (p−1),maxV (p)} = minV (p)

and

ℓp ≈ max{minV (p),maxV (p+1)} = minV (p),

respectively.

§3. Numerical experiments

We perform a simulation study to evaluate the approximate accuracy of the
results discussed above. We use a Monte Carlo simulation with 106 runs. For
the jth eigenvalues of W1W

−1
2 , we let G

(0)
j (x) be the asymptotic distribution

up to order O(n−3/2) in Corollary 3.1 of Sugiura (1976). That is, we define

G
(0)
j (x) such that

Pr

((n1n2

2n

)1/2 ℓj − λj

λj
<
(n1n2

2n

)1/2 x− λj

λj

)
= G

(0)
j (x) +O(n−3/2)

which means Pr(ℓj < x) = G
(0)
j (x) +O(n−3/2).

We also set G
(1)
j (x) = Fm1,j ,m2,j (m2,j/m1,jx) as in Theorem 2.5 and we

set G
(2)
j (x) = Pr[max{minV (k),maxV (k+1)} < x] as in Theorem 2.6. In

the simulation study, the matrix Σ1Σ
−1
2 is assumed to be a diagonal matrix

without loss of generality because each eigenvalue distribution is invariant
under the action of any orthogonal matrix. Therefore, we use Σ2 = Ip and
Σ1Σ

−1
2 = Σ1 = diag(λ1, . . . , λp). In order to compare the probability Pr(a <

X < b) = 0.95 for some random variable X, the values of the percentiles (a
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and b, Pr(X < a) = Pr(X > b) = 0.025) are obtained from G
(0)
j (x), G

(1)
j (x),

and G
(2)
j (x).

Tables 1 through 6 show the empirical probabilities based on percentiles

calculated by G
(0)
j (x), G

(1)
j (x), and G

(2)
j (x), respectively. Tables 1 through 3

show the results for the case n1 = n2, while in Tables 4 through 6, n1 ̸= n2.

In Table 1 we present the results of the simulation in which p = 3 for

various values of Σ1Σ
−1
2 = diag(λ1, λ2, λ3). The approximations G

(0)
1 and G

(0)
2

are more sensitive than the F -type approximations when the values of λ1, λ2,
and λ3 are close together. These probabilities are sometimes less than 0.9.

On the other hand, for the smallest eigenvalue, the approximation of G
(0)
3 is

the most accurate. The approximation of G
(2)
j tends to be better than that of

G
(1)
j for j = 1, 2, 3.

In Tables 2 and 3, we present the results for higher-dimensional cases for
p = 10, 20 than those of Table 1. We see that for larger and smaller eigenval-

ues, G
(2)
j is more accurate, whereas G

(0)
j is more accurate for eigenvalues of

moderate size.

In the remaining tables, we present the results of simulations when n1 ̸= n2

for p = 5, 10, and 20. In Table 4, when (n1, n2) = (20, 50), we find that G
(2)
j

for j = 1, 2, 3, and 5 is the most precise of the three approximations. When

(n1, n2) = (50, 20), G
(2)
j for j = 1, 2, 3 is the best of the three, and in the other

cases, all three approximations have almost the same precision. In Table 5,

when (n1, n2) = (10, 50) and (n1, n2) = (50, 20), we see that G
(2)
j is more

precise for the larger or smaller eigenvalues. The tendencies seen in Table 6
are similar to those seen in Table 5.

§4. Concluding remarks

In this paper, we consider the approximate distribution of the eigenvalues of
a ratio of Wishart matrices, where each population has a single eigenvalue.
Sugiura (1976) and Butler and Wood (2005) discussed the case of multiple
eigenvalues, but we leave this for future work.

The authors would like to thank the editor and the anonymous reviewer
for improving this paper. This research was supported in part by the Japan
Society for the Promotion Science, Grant-in-Aid for Scientific Research (C),
Nos. 25330033 and 26330053.
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Table 1: Approximate distribution of the jth eigenvalue when p = 3

(n1, n2) (50, 50) (100, 100)

j Σ1Σ
−1
2 AsN F F -prod AsN F F -prod

1 diag(6, 5, 1) 0.836 0.943 0.941 0.902 0.949 0.943
1 diag(6, 4, 1) 0.934 0.958 0.949 0.949 0.958 0.952
1 diag(6, 3, 1) 0.944 0.959 0.954 0.949 0.955 0.953
1 diag(6, 2, 1) 0.944 0.955 0.954 0.948 0.952 0.952

2 diag(6, 5, 4) 0.660 0.993 0.953 0.838 0.991 0.952
2 diag(7, 5, 4) 0.866 0.991 0.954 0.932 0.987 0.956
2 diag(8, 5, 4) 0.887 0.986 0.955 0.937 0.980 0.957
2 diag(6, 5, 3) 0.775 0.984 0.952 0.882 0.976 0.955
2 diag(6, 5, 2) 0.785 0.965 0.952 0.881 0.961 0.950
2 diag(6, 5, 1) 0.788 0.952 0.946 0.883 0.954 0.946

3 diag(6, 2, 1) 0.955 0.959 0.954 0.952 0.955 0.954
3 diag(6, 3, 1) 0.954 0.955 0.954 0.951 0.952 0.952
3 diag(6, 4, 1) 0.953 0.953 0.953 0.951 0.951 0.951
3 diag(6, 5, 1) 0.953 0.952 0.952 0.951 0.951 0.951

Table 2: Approximate distribution of the jth eigenvalue when p = 10 and
Σ1Σ

−1
2 = diag(29, 28, . . . , 20)

(n1, n2) (50, 50) (100, 100)

j AsN F F -prod AsN F F -prod

1 0.898 0.958 0.954 0.938 0.955 0.953
2 0.938 0.978 0.964 0.947 0.964 0.961
3 0.952 0.981 0.968 0.951 0.966 0.963
4 0.959 0.981 0.968 0.953 0.966 0.963
5 0.962 0.981 0.968 0.955 0.967 0.963
6 0.965 0.981 0.969 0.956 0.967 0.963
7 0.965 0.981 0.968 0.956 0.966 0.963
8 0.961 0.981 0.967 0.954 0.966 0.962
9 0.961 0.978 0.964 0.954 0.965 0.961
10 0.966 0.958 0.954 0.954 0.954 0.953

Note. AsN: G
(0)
j (x) F : G

(1)
j (x) F -prod: G

(2)
j (x)
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Table 3: Approximate distribution of the jth eigenvalue when p = 20 and
Σ1Σ

−1
2 = diag(219, 218, . . . , 20)

(n1, n2) (50, 50) (100, 100)

j AsN F F -prod AsN F F -prod

1 0.509 0.957 0.953 0.876 0.955 0.954
2 0.684 0.980 0.964 0.917 0.965 0.961
3 0.807 0.983 0.968 0.934 0.967 0.963
4 0.876 0.984 0.969 0.938 0.967 0.964
5 0.910 0.984 0.970 0.942 0.968 0.964
6 0.927 0.984 0.970 0.947 0.968 0.964
7 0.942 0.984 0.970 0.950 0.968 0.964
8 0.953 0.984 0.970 0.953 0.968 0.964
9 0.960 0.984 0.970 0.954 0.967 0.964
10 0.964 0.984 0.970 0.955 0.967 0.964
11 0.967 0.984 0.970 0.957 0.968 0.964
12 0.967 0.984 0.967 0.957 0.968 0.964
13 0.966 0.984 0.970 0.957 0.968 0.964
14 0.966 0.984 0.970 0.956 0.968 0.964
15 0.967 0.984 0.970 0.956 0.968 0.964
16 0.971 0.984 0.970 0.957 0.968 0.964
17 0.976 0.984 0.969 0.960 0.968 0.964
18 0.980 0.983 0.968 0.963 0.967 0.963
19 0.916 0.980 0.964 0.967 0.965 0.961
20 0.875 0.957 0.953 0.969 0.955 0.954

Table 4: Approximate distribution of the jth eigenvalue when p = 5 and
Σ1Σ

−1
2 = diag(24, 23, . . . , 20)

(n1, n2) (20, 50) (50, 20)

j AsN F F -prod AsN F F -prod

1 0.937 0.960 0.954 0.836 0.956 0.951
2 0.964 0.985 0.963 0.935 0.986 0.962
3 0.965 0.985 0.963 0.956 0.988 0.967
4 0.958 0.986 0.962 0.962 0.985 0.963
5 0.969 0.956 0.951 0.953 0.960 0.954

Note. AsN: G
(0)
j (x) F : G

(1)
j (x) F -prod: G

(2)
j (x)
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Table 5: Approximate distribution of the jth eigenvalue when p = 10 and
Σ1Σ

−1
2 = diag(29, 28, . . . , 20)

(n1, n2) (10, 50) (20, 50)

j AsN F F -prod AsN F F -prod

1 0.908 0.955 0.952 0.903 0.959 0.954
2 0.961 0.990 0.960 0.954 0.985 0.963
3 0.968 0.996 0.967 0.966 0.989 0.968
4 0.954 0.995 0.969 0.971 0.991 0.971
5 0.972 0.996 0.971 0.965 0.992 0.971
6 0.984 0.998 0.969 0.965 0.992 0.972
7 0.981 0.998 0.973 0.973 0.993 0.971
8 0.983 0.998 0.975 0.980 0.992 0.968
9 0.991 0.997 0.975 0.956 0.990 0.960
10 0.998 0.958 0.940 0.919 0.953 0.948

Table 6: Approximate distribution of the jth eigenvalue (j = 1, . . . , 20) when
p = 20 and Σ1Σ

−1
2 = diag(219, 218, . . . , 20)

(n1, n2) (20, 50) (30, 50)

j AsN F F -prod AsN F F -prod

1 0.660 0.960 0.954 0.581 0.958 0.953
2 0.856 0.988 0.962 0.803 0.984 0.963
3 0.910 0.990 0.965 0.883 0.988 0.969
4 0.947 0.993 0.972 0.918 0.988 0.970
5 0.961 0.993 0.971 0.942 0.989 0.971
6 0.970 0.993 0.972 0.956 0.989 0.971
7 0.976 0.994 0.975 0.964 0.990 0.972
8 0.972 0.994 0.974 0.969 0.990 0.972
9 0.972 0.995 0.973 0.971 0.990 0.972
10 0.979 0.995 0.977 0.971 0.990 0.972
11 0.985 0.997 0.976 0.970 0.991 0.972
12 0.988 0.997 0.974 0.972 0.991 0.974
13 0.970 0.996 0.971 0.977 0.991 0.972
14 0.972 0.997 0.971 0.982 0.992 0.972
15 0.982 0.997 0.972 0.969 0.992 0.972
16 0.990 0.997 0.974 0.947 0.992 0.972
17 0.996 0.998 0.972 0.944 0.993 0.971
18 0.999 0.998 0.974 0.948 0.992 0.969
19 0.999 0.997 0.972 0.954 0.990 0.961
20 1.000 0.954 0.935 0.949 0.953 0.948

Note. AsN: G
(0)
j (x) F : G

(1)
j (x) F -prod: G

(2)
j (x)
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