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Improved transformation of ϕ-divergence
goodness-of-fit test statistics based on minimum
ϕ∗-divergence estimator for GLIM of binary data
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Abstract. Generalized linear models of binary data including a logistic regres-
sion model and a probit model are considered. For testing the null hypothesis
that the considered model is correct, the ϕ-divergence family of goodness-of-
fit test statistics Cϕϕ∗ that is based on a minimum ϕ∗-divergence estimator is
considered. The family of statistics Cϕϕ∗ includes a power divergence family of
statistics Ra,b that is based on a minimum power divergence estimator. The
derivation of an expression of a continuous term of asymptotic expansion for
the distribution of Cϕϕ∗ under the null hypothesis is shown. Using the expres-
sion, a transformed Cϕϕ∗ statistic that improves the speed of convergence to
the chi-square limiting distribution of Cϕϕ∗ is obtained. In the case of Ra,b, it is
numerically shown that the transformed statistics usually perform better than
the original statistics with respect to speed of convergence to the chi-square
limiting distribution and it is also numerically shown that the power of the
transformed statistics is almost the same as that of the original statistics.
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§1. Introduction

We discuss generalized linear models (Nelder and Wedderburn [10]) in which
the response variables are measured on a binary scale. Let N independent
random variables Yα, α = 1, . . . , N corresponding to the number of successes
in N different subgroups be distributed according to binomial distributions
B(nα, πα), α = 1, . . . , N. If we use a monotone and differentiable function g
as a link function, we obtain a generalized linear model for binary data as
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follows.

(1.1) g(πα) = x′
αβ (α = 1, . . . , N),

where xα = (xα1, . . . , xαp)
′(α = 1, . . . , N) are covariate vectors and β =

(β1, . . . , βp)
′ is an unknown parameter vector and p < N . We consider a mini-

mum ϕ∗-divergence estimator of model (1.1) and also consider a ϕ-divergence
goodness-of-fit test statistic based on the estimator. Let yα (α = 1, . . . , N)
be an observed value of Yα (α = 1, . . . , N), then the minimum ϕ∗-divergence
estimator of model (1.1) is given by

β̂
gϕ∗

= arg min
β∈Θ

Dϕ∗ ,

where

Dϕ∗ =
1

N

N∑
α=1

nα

πα(β)ϕ∗


yα
nα

πα(β)

+ (1− πα(β))ϕ
∗

 1− yα
nα

1− πα(β)


 ,

where ϕ∗ is a real convex function in (0,∞) satisfying ϕ∗(1) = ϕ∗
′
(1) =

0, ϕ∗
′′
(1) = 1, 0ϕ∗(0/0) = 0, 0ϕ∗(x/0) = limu→∞ ϕ∗(u)/u, and Θ is an

open subset of Rp (Pardo [11]). When we choose a convex function

(1.2) ϕa(t) =


{a(a+ 1)}−1{ta+1 − t+ a(1− t)} (a ̸= 0,−1)
t log t+ 1− t (a = 0)
− log t− 1 + t (a = −1),

as ϕ∗(t), Dϕ0 becomes a Kullback divergence measure (Kullback [7]). Then, in

this case, estimator β̂
gϕ0

becomes the maximum likelihood estimator. There-
fore, the maximum likelihood estimator is a special case of the minimum ϕ∗-
divergence estimator.

In order to test the null hypothesis

(1.3) Hg
0 : πα = πα(β) = g−1(x′

αβ) (α = 1, . . . , N),

we consider the family of ϕ-divergence statistics based on the minimum ϕ∗-
divergence estimator

(1.4) Cϕϕ∗ = 2
N∑

α=1

nα

π̂gϕ∗
α ϕ

 Yα
nα

π̂gϕ
∗

α

+ (1− π̂gϕ
∗

α )ϕ

 1− Yα
nα

1− π̂gϕ
∗

α

 ,

where π̂gϕ
∗

α = πα(β̂
gϕ∗

) (α = 1, . . . , N), β̂
gϕ∗

= (β̂gϕ
∗

1 , . . . , β̂gϕ
∗

p )′ is the mini-
mum ϕ∗-divergence estimator of β under Hg

0 given by (1.3) and ϕ satisfies the
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same conditions of ϕ∗ (Pardo [11], Pardo and Pardo [12]). The test statistic
Cϕ given by (7) in Taneichi et al. [21] is written as Cϕ ≡ Cϕϕ0 , and therefore
the family of statistics given by (1.4) includes that of Cϕ.

When we choose convex functions ϕa and ϕb given by (1.2) as ϕ and ϕ∗,
respectively, in (1.4), Cϕaϕb

becomes a power divergence statistic

(1.5) Ra,b = 2

N∑
α=1

nα

{
Ia
(
Yα
nα
, π̂gϕb

α

)
+ Ia

(
1− Yα

nα
, 1− π̂gϕb

α

)}
,

where

Ia(e, f) =


{a(a+ 1)}−1e

{(
e
f

)a
− 1
}

(a ̸= 0,−1)

e log
(
e
f

)
(a = 0)

f log
(
f
e

)
(a = −1),

which is based on the minimum power divergence estimator (Cressie and Read
[4], Read and Cressie [14]). Under Hg

0 , all members of the class of statistics
Cϕϕ∗ have a χ2

N−p limiting distribution, assuming the condition that

(1.6) nα/n→ µα (α = 1, . . . , N) as n→ ∞,

where n =
∑N

α=1 nα, 0 < µα < 1 (α = 1, . . . , N) and
∑N

α=1 µα = 1. Using
the results, we can use Cϕϕ∗ as a goodness-of-fit test statistic for model (1.1).

With regard to the goodness-of-fit test for a multinomial distribution,
Yarnold [23] obtained an approximation based on asymptotic expansion for
the null distribution of Pearson’s X2 statistic. The expansion consists of a
term of multivariate Edgeworth expansion for a continuous distribution and
a discontinuous term. In a fashion similar to that for Pearson’s X2 statis-
tic, approximations based on asymptotic expansions for null distributions of
some kinds of multinomial goodness-of-fit statistics have been investigated by
Siotani and Fujikoshi [16], Read [13] and Menéndez et al. [9]. Edgeworth
approximations of the distributions of some kinds of multinomial goodness-
of-fit statistics under alternative hypotheses have also been investigated by
Taneichi et al. [17, 18], and Sekiya and Taneichi [15]. Taneichi and Sekiya
[19] discussed approximations for the distribution of ϕ-divergence statistics for
the test of independence in r× s contingency tables. By using the above the-
ory of approximation, Taneichi et al. [21] considered a family of ϕ-divergence
statistics using the maximum likelihood estimator Cϕ ≡ Cϕϕ0 and investigated
asymptotic approximation of the distribution of statistics for testing the null
hypothesis Hg

0 given by (1.3). They proposed transformed Cϕ statistics that
improve the speed of convergence to a chi-square limiting distribution.

In this paper, we generalize the family of statistics Cϕ ≡ Cϕϕ0 based on
ϕ-divergence to Cϕϕ∗ and investigate an asymptotic approximation of the dis-
tribution of Cϕϕ∗ under Hg

0 . Also, we propose transformed Cϕϕ∗ statistics.
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In Section 2, we first describe a local Edgeworth approximation for the prob-
ability of Yα (α = 1, . . . , N) under Hg

0 . Next, we consider an expression of
asymptotic expansion for the distribution of Cϕϕ∗ under Hg

0 . Evaluation for
the continuous term of the expression is considered. In Section 3, using the
term of multivariate Edgeworth expansion assuming a continuous distribution
in the expression in Section 2, we construct transformations for improving
small-sample accuracy of the χ2 approximation of the distribution of Cϕϕ∗

under Hg
0 . In Section 4, in the case of Ra,b, performance of the transformed

statistic and that of the original statistic are compared numerically.

§2. Asymptotic approximation for the distribution of Cϕϕ∗

under Hg
0

First, we consider a local Edgeworth approximation for the probability of
Yα (α = 1, . . . , N) under null hypothesis Hg

0 given by (1.3). Let Yα, α =
1, . . . , N be distributed according to a binomial distribution B(nα, π

g
α) α =

1, . . . , N, where each πgα (α = 1, . . . , N) is represented as πgα = g−1(x′
αβ) (α =

1, . . . , N) by using covariate vectors xα = (xα1, . . . , xαp)
′ and an unknown

parameter vector β. Let

(2.1) Wα =
Yα − nαπ

g
α√

nα
(α = 1, . . . , N).

Then, W = (W1, . . . ,WN )′ is a lattice random vector that takes values in the
set

L =
{
w = (w1, . . . , wN )′ : wα =

yα − nαπ
g
α√

nα
(α = 1, . . . , N),

y = (y1, . . . , yN )′ ∈M
}
,

where

M =
{
y = (y1, . . . , yN )′ : y1, . . . , yN are non-negative integers that

satisfy yα ≤ nα (α = 1, . . . , N)
}
.

If we consider only for a limiting distribution of Cϕϕ∗ , we can discuss under
the assumption given by (1.6). In this section, since we consider asymptotic
expansion of the distribution of Cϕϕ∗ , we need an assumption that states the
way of converging nα/n to µα more strictly than the assumption given by
(1.6). Therefore, we consider the following Assumption 2.1 instead of the
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assumption given by (1.6).

Assumption 2.1. nα → ∞ (α = 1, . . . , N), as n→ ∞,with nα depending on
n in such a way that nα/n = µα (α = 1, . . . , N), where 0 < µα < 1
(α = 1, . . . , N) and

∑N
α=1 µα = 1.

With regard to a local Edgeworth approximation for the probability of
Yα (α = 1, . . . , N) under Hg

0 , the following lemma is shown in Taneichi et al.
[21].

Lemma 2.1. For each y = (y1, . . . , yN )′ ∈ M , let w = (w1, . . . , wN )′, where
wα = (yα − nαπ

g
α)/

√
nα (α = 1, . . . , N). Then, under Assumption 2.1,

Pr{W = w|Hg
0} =

(
N∏

α=1

1√
nα

)
hg(w)

{
1 +

1√
n
hg1(w) +

1

n
hg2(w)

+ 1
n
√
n
hg3(w) +O(n−2)

}
,

where

(2.2) hg(w) = (2π)−N/2|Ω|−1/2 exp

(
−1

2
w′Ω−1w

)
,

hg1(w) = −1

2

N∑
α=1

1
√
µα

1− 2πgα
πgα(1− πgα)

wα +
1

6

N∑
α=1

1
√
µα

1− 2πgα
(πgα)

2(1− πgα)
2w

3
α,

hg2(w) =
1

2
{hg1(w)}2 − 1

12

N∑
α=1

1

µα

1− πgα + (πgα)
2

πgα(1− πgα)

+
1

4

N∑
α=1

1

µα

1− 2πgα + 2(πgα)
2

(πgα)
2(1− πgα)

2 w2
α

− 1

12

N∑
α=1

1

µα

1− 3πgα + 3(πgα)
2

(πgα)
3(1− πgα)

3 w4
α,

hg3(w) = −1

3
{hg1(w)}3 + hg1(w)hg2(w) +

1

12

N∑
α=1

1

µα
√
µα

1− 2πα

(πgα)
2(1− πgα)

2wα

−1

6

N∑
α=1

1

µα
√
µα

(1− 2πgα)(1− πgα + (πgα)
2)

(πgα)
3(1− πgα)

3 w3
α

+
1

20

N∑
α=1

1

µα
√
µα

(1− 2πgα)(1− 2πgα + 2(πgα)
2)

(πgα)
4(1− πgα)

4 w5
α,
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and

(2.3) Ω = diag(πg1(1− πg1), . . . , π
g
N (1− πgN )).

For the statistics Cϕ ≡ Cϕϕ0 , Taneichi et al. [21] considered the following
approximation for the distribution of Cϕ under Hg

0 .

Pr{Cϕ ≤ x|Hg
0} ≈ Jg,ϕ

1 (x) + Jg,ϕ
2 (x),

where the Jg,ϕ
1 (x) term is multivariate Edgeworth expansion assuming a con-

tinuous distribution and the Jg,ϕ
2 (x) term, which corresponds to the K2 term

of Taneichi et al. [17] in the case of a multinomial goodness-of-fit test, is a
discontinuous term to account for the discontinuity. By using the continuous
term Jg,ϕ

1 (x), a transformation for Cϕ that improves the speed of convergence

to a χ2 limiting distribution is constructed. Let Jg,ϕϕ∗

1 (x) be a continuous
term of the approximation of Pr{Cϕϕ∗ ≤ x|Hg

0}. Similarly, in this paper, we

construct the transformation for Cϕϕ∗ by using Jg,ϕϕ∗

1 (x). With regard to

evaluation of the Jg,ϕϕ∗

1 (x) term, we obtain the following theorem.

Theorem 2.1. When g−1 and ϕ∗ are fourth time continuously differentiable
functions and ϕ is a fifth time continuously differentiable function, under As-
sumption 2.1, the Jg,ϕϕ∗

1 (x) term is evaluated as

(2.4) Jg,ϕϕ∗

1 (x) = Pr{χ2
N−p ≤ x}+ 1

n

3∑
j=0

vg,ϕϕ
∗

j Pr{χ2
N−p+2j ≤ x}+O(n−2),

where χ2
f denotes a chi-square random variable with degrees of freedom f ,

vg,ϕϕ
∗

0 =
1

24
(−Γ4),

vg,ϕϕ
∗

1 =
1

24

[
Γ1ϕ

(4)(1) + Γ2{ϕ
′′′
(1) + 1}2 + (2Γ1 + Γ3)ϕ

′′′
(1)

+(Γ3 + Γ4) + ∆
]
,

vg,ϕϕ
∗

2 =
1

24

[
−Γ1ϕ

(4)(1)− 2Γ2{ϕ′′′(1) + 1}2 − (2Γ1 + Γ3)ϕ
′′′
(1)− Γ3 −∆

]
,

vg,ϕϕ
∗

3 =
1

24
Γ2{ϕ′′′(1) + 1}2,

where
∆ = Γ5{ϕ∗

′′′
(1) + 1}{ϕ∗′′′(1)− 2ϕ′′′(1)− 1},

Γ1 = −3(A1− 2A3+A6), Γ2 = 5A2− 12A4+9A7− 3B1+6B2− 2B4− 3B7,
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Γ3 = 2(3A1 − 2A2 − 6A3 +6A4 +3A5 +3A6 − 6A7 − 3A8 − 3B3 +2B4 +3B8),

Γ4 = 6A1 − 4A2 − 6A6 + 12A8 − 3A9 + 4B4 − 12B5 + 6B6 − 3B9,

Γ5 = −3(2A4 − 4A7 +B1 − 2B2 + 2B4 +B7),

A1 =
N∑

α=1

1− 3πgα + 3(πgα)2

µαπ
g
α(1− πgα)

, A2 =
N∑

α=1

(1− 2πgα)2

µαπ
g
α(1− πgα)

,

A3 =
N∑

α=1

1− 3πgα + 3(πgα)2

(πgα)2(1− πgα)2
G1(α)

2σαα, A4 =
N∑

α=1

(1− 2πgα)2

(πgα)2(1− πgα)2
G1(α)

2σαα,

A5 =
N∑

α=1

1− 2πgα
πgα(1− πgα)

G2(α)σαα, A6 =
N∑

α=1

µα(1− 3πgα + 3(πgα)2)

(πgα)3(1− πgα)3
G1(α)

4σ2αα,

A7 =
N∑

α=1

µα(1− 2πgα)2

(πgα)3(1− πgα)3
G1(α)

4σ2αα,

A8 =
N∑

α=1

µα(1− 2πgα)

(πgα)2(1− πgα)2
G1(α)

2G2(α)σ
2
αα, A9 =

N∑
α=1

µα
πgα(1− πgα)

G2(α)
2σ2αα,

B1 =
N∑

α=1

N∑
γ=1

1− 2πgα
πgα(1− πgα)

1− 2πgγ
πgγ(1− πgγ)

G1(α)G1(γ)σαγ ,

B2 =
N∑

α=1

N∑
γ=1

µα(1− 2πgα)

(πgα)2(1− πgα)2
1− 2πgγ

πgγ(1− πgγ)
G1(α)

3G1(γ)σαασαγ ,

B3 =

N∑
α=1

N∑
γ=1

µα
πgα(1− πgα)

1− 2πgγ
πgγ(1− πgγ)

G1(α)G2(α)G1(γ)σαασαγ ,

B4 =
N∑

α=1

N∑
γ=1

µα(1− 2πgα)

(πgα)2(1− πgα)2
µγ(1− 2πgγ)

(πgγ)2(1− πgγ)2
G1(α)

3G1(γ)
3σ3αγ ,

B5 =
N∑

α=1

N∑
γ=1

µα
πgα(1− πgα)

µγ(1− 2πgγ)

(πgγ)2(1− πgγ)2
G1(α)G2(α)G1(γ)

3σ3αγ ,

B6 =
N∑

α=1

N∑
γ=1

µα
πgα(1− πgα)

µγ
πgγ(1− πgγ)

G1(α)G2(α)G1(γ)G2(γ)σ
3
αγ ,

B7 =

N∑
α=1

N∑
γ=1

µα(1− 2πgα)

(πgα)2(1− πgα)2
µγ(1− 2πgγ)

(πgγ)2(1− πgγ)2
G1(α)

3G1(γ)
3σαασαγσγγ ,
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B8 =
N∑

α=1

N∑
γ=1

µα
πgα(1− πgα)

µγ(1− 2πgγ)

(πgγ)2(1− πgγ)2
G1(α)G2(α)G1(γ)

3σαασαγσγγ ,

B9 =
N∑

α=1

N∑
γ=1

µα
πgα(1− πgα)

µγ
πgγ(1− πgγ)

G1(α)G2(α)G1(γ)G2(γ)σαασαγσγγ ,

Gi(α) = u(i)(x′
αβ) (α = 1, . . . , N, i = 1, 2),

u(x) = g−1(x),

σαγ =

p∑
l=1

p∑
m=1

κl,mxαlxγm (α, γ = 1, . . . , N),

κl,m =
N∑

λ=1

µλ{πgλ(1− πgλ)}
−1G1(λ)

2xλlxλm (l,m = 1, . . . , p),

where u(i) is the i-th derivative of u and κl,m is the (l,m)-element of the
inverse matrix K−1 of K = (κl,m).

Proof of Theorem 2.1 is shown in Appendix. From Theorem 2.1, we can
verify the following. The coefficients vg,ϕϕ

∗

j (j = 0, 1, 2, 3) satisfy the relation∑3
j=0 v

g,ϕϕ∗

j = 0. The coefficients vg,ϕϕ
∗

0 and vg,ϕϕ
∗

3 are not dependent on ϕ∗.
When ϕ∗ = ϕ0, coefficients coincide with those for the family of statistics Cϕ

shown in Theorem 1 of Taneichi et al. [21].

If we apply ϕa as ϕ and ϕb as ϕ∗ in Theorem 2.1, we obtain the following
corollary for the statistic Ra,b based on power divergence.

Corollary 2.1. When the statistic is Ra,b given by (1.5) and g−1 is a fourth

time continuously differentiable function, under Assumption 2.1, the Jg,ϕϕ∗

1 (x)
term is evaluated as

Jg,ϕϕ∗

1 (x) = Pr{χ2
N−p ≤ x}+ 1

n

3∑
j=0

v
g,(a,b)
j Pr{χ2

N−p+2j ≤ x}+O(n−2),

where v
g,(a,b)
j (j = 0, 1, 2, 3) are defined as vg,ϕϕ

∗

j (j = 0, 1, 2, 3) in the case of

ϕ′′′(1) = a− 1, ϕ∗
′′′
(1) = b− 1 and ϕ(4)(1) = (a− 1)(a− 2), respectively.
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§3. Transformed statistics based on the Jg,ϕϕ∗

1 (x) term

In this section, we first describe the idea of transformation for improving
small-sample accuracy of χ2 approximation of the distribution of a random
variable.

Suppose that a nonnegative random variable T has an asymptotic expansion
such that

Pr{T ≤ x} = Pr{χ2
f ≤ x}+ 1

n

m∑
j=0

aj Pr{χ2
f+2j ≤ x}+O(n−2),

where m is a positive integer. Also suppose that the coefficients aj (j =
0, 1, . . . ,m) do not depend on the parameter n(> 0) and must satisfy the
relation

∑m
j=0 aj = 0.

For m = 1, in order to increase the accuracy of χ2 approximation of a
random variable T , we consider transformed random variable TB defined by

(3.1) TB =

(
1 +

2a0
fn

)
T.

Then, it holds that

Pr{TB ≤ x} = Pr{χ2
f ≤ x}+O(n−2).

This result is known as a Bartlett adjustment. Lawley [8], Barndorff-Nielsen
and Cox [2], and Barndorff-Nielsen and Hall [3] discussed Bartlett adjustment
for the log-likelihood ratio statistic.

For m = 3, in order to increase the accuracy of χ2 approximation of a
random variable T , we consider transformed random variable TI defined by

(3.2) TI = (nα+ β)2 log

[
1 + 1

(nα)2

{
T + 1

nα(T
2 + γT 3)

+ 1
(nα)2

(
1

3
T 3 +

3γ

4
T 4 +

9γ2

20
T 5

)}]
,

where α = −f(f + 2){2(a2 + a3)}−1, β = −(f + 2)a0{2(a2 + a3)}−1 and
γ = a3{(f +4)(a2 + a3)}−1. Then, it holds that

Pr{TI ≤ x} = Pr{χ2
f ≤ x}+O(n−2).

The proof of the results for transformation of TI is given by Yanagihara [22].
The proof is derived by applying the idea of Kakizawa [6] to the theory of
improved transformation given by Fujikoshi [5].
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Applying the evaluation (2.4) given by Theorem 2.1 to the above trans-
formed statistics TB given by (3.1) and TI given by (3.2), we construct trans-
formations for improving small-sample accuracy of the χ2 approximation of
the distribution of Cϕ under Hg

0 .
When ϕ and ϕ∗ satisfy

(3.3) ϕ′′′(1) = −1, ϕ(4)(1) = 2 and ϕ∗
′′′
(1) = −1,

equations vg,ϕϕ
∗

1 = −vg,ϕϕ
∗

0 and vg,ϕϕ
∗

2 = vg,ϕϕ
∗

3 = 0 hold in Theorem 2.1.
Then, we can consider Bartlett-type adjustment

CB
ϕϕ∗ =

{
1 +

2vg,ϕϕ
∗

0

n(N − p)

}
Cϕϕ∗ .

On the other hand, when ϕ does not satisfy (3.3), we can consider the
transformed statistic

CI
ϕϕ∗ = (nα+ β)2 log (1 + ζ) ,

where

ζ = 1
(nα)2

[
Cϕϕ∗ +

1

nα
{(Cϕϕ∗)2 + γ(Cϕϕ∗)3}

+
1

(nα)2

{1
3
(Cϕϕ∗)3 +

3γ

4
(Cϕϕ∗)4 +

9γ2

20
(Cϕϕ∗)5

}]
,

α = −(N−p)(N−p+2){2(vg,ϕϕ
∗

2 +vg,ϕϕ
∗

3 )}−1, β = −(N−p+2)vg,ϕϕ
∗

0 {2(vg,ϕϕ
∗

2

+vg,ϕϕ
∗

3 )}−1 and γ = vg,ϕϕ
∗

3 {(N − p+ 4)(vg,ϕϕ
∗

2 + vg,ϕϕ
∗

3 )}−1.

Practically, we may use estimate v̂g,ϕϕ
∗

j (j = 0, 2, 3) obtained by substi-

tuting minimum ϕ∗-divergence estimate β̂
gϕ∗

for true value β in vg,ϕϕ
∗

j (j =

0, 2, 3). Therefore, when ϕ and ϕ∗ satisfy (3.3), we propose the statistic C̃B
ϕϕ∗

that is obtained by substituting v̂g,ϕϕ
∗

0 for vg,ϕϕ
∗

0 in CB
ϕϕ∗ , that is,

(3.4) C̃B
ϕϕ∗ =

{
1 +

2v̂g,ϕϕ
∗

0

n(N − p)

}
Cϕϕ∗ .

Similarly, when ϕ and ϕ∗ do not satisfy (3.3), we also propose the statistic

C̃I
ϕϕ∗ that is obtained by substituting v̂g,ϕϕ

∗

j (j = 0, 2, 3) for vg,ϕϕ
∗

j (j = 0, 2, 3)

in CI
ϕϕ∗ .

In the case of power divergence statistic Ra,b = Cϕaϕb
using the minimum

power divergence estimator, condition (3.3) is satisfied if and only if a = 0
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and b = 0 (log likelihood ratio statistic). Then, we consider the transformed
statistic given by (3.4) when a = 0 and b = 0 and put R̃0,0

B = C̃B
ϕ0ϕ0

. When the

link function g is a logit link function, statistic R̃0,0
B coincides with the statistic

D̃ proposed by (3.4) of Taneichi et al. [20]. On the other hand, we consider

statistic C̃I
ϕaϕb

when a ̸= 0 or b ̸= 0 and put R̃a,b
I = C̃I

ϕaϕb
(a ̸= 0 or b ̸= 0).

We summarize the difference and relation between TB and TI . Transformed
statistic TB is a simple monotone transformation of Cϕ constructed by a linear
function whose intercept is zero. On the other hand, transformed statistic TI is
a monotone transformation of Cϕ constructed by logarithm of quintic function.
It is much more complicated than TB. Then, from point of view of stability, TI
seems to be inferior to TB. However, for Cressie and Read family of statistics
Ra,b, TB increases the speed of convergence to chi-square distribution only for
the statistic in the case of a = b = 0, that is, the log-likelihood ratio statistic.
Therefore, for improving the other statistics, statistic TI is developed.

§4. Performance of transformed statistics

In this section, we compare the performance of transformed statistics R̃a,b
I (a ̸=

0 or b ̸= 0) with that of the original power divergence statistics Ra,b using the
minimum power divergence estimator by the Monte Carlo procedure. The
performance of transformed statistic R̃0,0

B for complementary log-log link g0
and probit link gP is shown in Fig.1, Fig.2 and Fig.3 of Taneichi et al. [21].
We consider a generalized linear model given by (1.1) with p = 2 and xα1 = 1
and xα2 = xα (α = 1, . . . , N).

Let the true values of parameters β1 and β2 be β∗1 and β∗2 , respectively.
Then, the true value of πgα (α = 1, . . . , N) is

(4.1) πg∗α = g−1(β∗1 + β∗2xα) (α = 1, . . . , N).

As a link function g, we consider the family of link functions given by Aranda-
Ordaz [1],

g(t) = gc(t) = log

{
(1− t)−c − 1

c

}
,

that depend on parameter c. gc include the logit link g1 and complementary
log-log link g0 as a limit. We also consider the probit link gP (t) = Φ−1(t),
where Φ is the cumulative distribution function of a standard normal distri-
bution.

We give a design matrix

X =

(
1 · · · 1
x1 · · · xN

)′
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and execute the following procedure.
For each α, we generate nα (α = 1, . . . , N) binomial random numbers

that are distributed according to B(1, πg∗α ) (α = 1, . . . , N). From them, we
calculate the number of successes Yα (α = 1, . . . , N) and the minimum ϕb-

divergence estimates β̂gϕb
1 and β̂gϕb

2 for the parameters β1 and β2. Using the

estimates, we calculate the values πα(β̂
gϕb

) (α = 1, . . . , N), where β̂
gϕb

=

(β̂gϕb
1 , β̂gϕb

2 )′, and observed values of the statistics Ra,b, R̃a,b
I (a ̸= 0 or b ̸= 0).

This process is repeated D times.
Among D times, let V be the number of times that the observed values of

the statistic exceed the upper ε point of the χ2 distribution with degrees of
freedom N − p, that is, χ2

N−p(ε). The performance of χ2 approximation for
the distribution of each statistic can be evaluated on the basis of the index

I =
V

D
− ε.

We consider the following two true parameters

(i) β∗1 = −0.1, β∗2 = 0.1,

(ii) β∗1 = 0.1, β∗2 = −0.1,

and investigate the performance of the following four cases of design matrix
when N = 8.

(I)

X =

(
1 1 1 1 1 1 1 1
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8

)′
.

(II)

X =

(
1 1 1 1 1 1 1 1

2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25

)′
.

(III)

X =

(
1 1 1 1

log(2.7) log(3.0) log(3.3) log(3.6)

1 1 1 1
log(3.9) log(4.2) log(4.5) log(4.8)

)′
.

(IV)

X =

(
1 1 1 1

log(2.85) log(3.05) log(3.25) log(3.45)

1 1 1 1
log(3.65) log(3.85) log(4.05) log(4.25)

)′
.
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For each case, we consider a sample design n1 = · · · = n8 = n∗.
We investigate the performance for all combinations of the two true param-

eters (i) and (ii), four design matrices (I), (II), (III) and (IV), and the sample
design with n∗ = 20. Some of the results of the investigations are shown in
figures as follows.

Fig.1 shows the absolute values of index I when the test statistic is R0.2,0.2

and models are given by link functions g0 (complementary log-log model),
g1/2, g1 (logistic regression model) and gP (probit model) in the case of true
parameters (i) and (ii), design matrices (I)–(IV), and significance level ε =
0.01, 0.05 and 0.10. Fig.2 and Fig.3 show the absolute values of index I when
the test statistics are R0.0,1.0 and R1.0,1.0 in the same models and situations
as those in the explanation of Fig.1, respectively.

From Fig.1 and Fig.2, we find that the performance of transformed statis-
tics R̃0.2,0.2

I and R̃0.0,1.0
I is better than that of original statistics R0.2,0.2 and

R0.0,1.0, respectively, when the models are given by the link functions g0 (com-
plementary log-log model), g1/2, g1 (logistic regression model) and gP (probit
model) for the two true parameters, all design matrix cases, and sample design
n∗ = 20. From Fig.3, we find that the performance of transformed statistic
R̃1.0,1.0

I is better than that of original statistic R1.0,1.0 when the true parameter
is type (i). However, when the true parameter is type (ii), the performance of
the transformed statistic is not better than that of the original statistic.

Consequently, from Figs.1–3 and other simulation results, we conclude as
follows. The performance of R̃a,b

I (0 < a ≤ 1, 0 < b ≤ 1) is usually better
than that of original statistic Ra,b (0 < a ≤ 1, 0 < b ≤ 1) when the models
are given by the link functions g0 (complementary log-log model), g1/2, g1
(logistic regression model) and gP (probit model) under the conditions of the
simulation. However, as shown in Fig.3, when the chi-square approximation
of the original statistic performs very well, approximation of the transformed
statistic sometimes does not perform better than the original statistic. That
is, when the chi-square approximation of the original statistic already performs
very well, the transformed statistic sometimes cannot improve the performance
of chi-square approximation.

Next, we compare the power of transformed statistics R̃a,b
I (a ̸= 0 or b ̸= 0)

with that of the original statistics Ra,b. The power of transformed statistic
R̃0.0,0.0

B for complementary log-log link g0 and probit link gP is shown in Fig.6
and Fig.7 of Taneichi et al. [21]. Against the null model given by (4.1), we
consider an alternative model:

(4.2) Hg
1 : πg∗α = g−1(β∗1 + β∗2xα) + δα (α = 1, . . . , 8),

where

(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) = (−0.1, 0.1, −0.1, 0.1, −0.1, 0.1, −0.1, 0.1).
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We calculate the simulated average power P against the alternative model
(4.2) by using simulated exact critical values of statistics. We investigate the
average power for all combinations of the two true parameters (i) and (ii), four
design matrices (I)–(IV), and sample design n∗ = 20. In the investigation, the
number of repetitions is D = 106. Some of the results of the investigations
are shown in figures as follows. Figs.4, 5 and 6 show the power of statistics
corresponding to the cases in Figs.1, 2 and 3, respectively.

From Figs.4–6 and other simulation results, we conclude that the power
against Hg

1 given by (16) of the transformed statistics R̃a,b
I (0 < a ≤ 1, 0 <

b ≤ 1) is not so different from that of the original power divergence statistic
Ra,b in the models based on link functions gc (c = 0, 1/2, 1) and gP .
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Figure 1: Absolute value of index I when the original test statistic is R0.2,0.2 and models are

given by link functions g0, g1/2, g1 and gP for true parameters (i) and (ii) and sample design

n∗ =20: ◦, ♢ and △ are the values for R0.2,0.2 when ε =0.01, 0.05 and 0.10, respectively,

and •,♦ and ▲ are the values for R̃0.2,0.2
I when ε =0.01, 0.05 and 0.10, respectively. The 1st

column is for design matrix (I), the 2nd column is for design matrix (II), the 3rd column is

for design matrix (III), and the 4th column is for design matrix (IV).
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Figure 2: Absolute value of index I when the original test statistic is R0.0,1.0.
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Figure 3: Absolute value of index I when the original test statistic is R1.0,1.0.
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Figure 4: Simulated average power P against an alternative model (4.2) when the original

test statistic is R0.2,0.2 and models are given by link functions g0, g1/2, g1 and gP for true

parameters (i) and (ii) and sample design n∗ = 20: ◦, ♢ and △ are the values for R0.2,0.2

when ε =0.01, 0.05 and 0.10, respectively, and •,♦ and ▲ are the values for R̃0.2,0.2
I when

ε =0.01, 0.05 and 0.10, respectively. The 1st column is for design matrix (I), the 2nd column

is for design matrix (II), the 3rd column is for design matrix (III), and the 4th column is for

design matrix (IV).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 g 0  g 1/2  g 1  g P  g 0  g 1/2  g 1  g P

 (i)  (ii)

P
o

w
e

r

Value for R
0.0,1.0

(ε=0.01)

Value for R
0.0,1.0

(ε=0.01)I
~

Value for R
0.0,1.0

(ε=0.05)

Value for R
0.0,1.0

(ε=0.05)I
~

Value for R
0.0,1.0

(ε=0.10)

Value for R
0.0,1.0

(ε=0.10)I
~

Figure 5: Simulated average power P against an alternative model (4.2) when the original

test statistic is R0.0,1.0.
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Figure 6: Simulated average power P against an alternative model (4.2) when the original

test statistic is R1.0,1.0.

§5. Appendix: Proof of Theorem 2.1

By transformation (2.1), statistic Cϕϕ∗ can be rewitten as

Cϕϕ∗(W ) = 2

N∑
α=1

nα

{
π̂gϕ

∗
α (W )ϕ

(
πgα +Wα(

√
nα)

−1

π̂gϕ
∗

α (W )

)
+
(
1− π̂gϕ

∗
α (W )

)
ϕ

(
1− πgα −Wα(

√
nα)

−1

1− π̂gϕ
∗

α (W )

)}
.

If we regard

hg(w)

{
1 +

1√
n
hg1(w) +

1

n
hg2(w) +

1

n
√
n
hg3(w)

}
as the continuous density function of W , then we can regard

Jg,ϕϕ∗

1 (x) =

∫
· · ·
∫
Ug
ϕϕ∗ (x)

hg(w)
{
1 +

1√
n
hg1(w) +

1

n
hg2(w)

+
1

n
√
n
hg3(w)

}
dw
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as the distribution function of Cϕϕ∗(W ), where

Ug
ϕϕ∗(x) = {w = (w1, . . . , wN )′ : Cϕϕ∗(w) ≤ x}.

So, the characteristic function of Cϕϕ∗(W ) is calculated as

(A1) ψg
ϕϕ∗(u) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
[exp{iuCϕϕ∗(w)}]hg(w)

×
{
1 +

1√
n
hg1(w) +

1

n
hg2(w) +

1

n
√
n
hg3(w)

}
dw.

We can expand Cϕϕ∗(w) as

(A2) Cϕϕ∗(w) = τ g0 (w)+
1√
n
τ g,ϕ1 (w)+

1

n
τ g,ϕϕ

∗

2 (w)+
1

n
√
n
τ g,ϕϕ

∗

3 (w)+O(n−2),

where

τ g0 (w) = w′(Ω−1 − Ξ)w,

Ξ = (ξαβ) is a N ×N matrix,

ξαβ =

√
µαG1(α)

πgα(1− πgα)

√
µβG1(β)

πgβ(1− πgβ)
σαβ (α, β = 1, . . . , N),

τ g,ϕ1 (w) =
3∑

a=0

(
N∑

α=1

B1
a+1(α)C1(α)(w)3−awa

α

)
,

τ g,ϕϕ
∗

2 (w) =
2∑

a=0

(
N∑

α=1

B2
a+1(α)C

ϕ∗

2(α)(w)2−aC1(α)(w)2a

)

+
1∑

a=0

(
N∑

α=1

B2
a+4(α)C

ϕ∗

2(α)(w)1−aC1(α)(w)1+2awα

)

+
1∑

a=0

(
N∑

α=1

B2
a+6(α)C

ϕ∗

2(α)(w)1−aC1(α)(w)2aw2
α

)

+
N∑

α=1

B2
8(α)C1(α)(w)w3

α +
N∑

α=1

B2
9(α)w

4
α,

B1
1(α) =

µα
3(πgα)

2(1− πgα)
2

{
3πgα(1− πgα)G1(α)G2(α)

−(3 + ϕ′′′(1))(1− 2πgα)G1(α)
3
}
,

B1
2(α) =

√
µα

(πgα)
2(1− πgα)

2

{
−πgα(1− πgα)G2(α)

+(2 + ϕ′′′(1))(1− 2πgα)G1(α)
2
}
,
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B1
3(α) = −

(
1 + ϕ′′′(1)

)
(1− 2πgα)G1(α)

(πgα)
2(1− πgα)

2 , B1
4(α) =

ϕ′′′(1)(1− 2πgα)

3
√
µα(π

g
α)

2(1− πgα)
2 ,

B2
1(α) =

µαG1(α)
2

πgα(1− πgα)
, B2

2(α) = 3B1
1(α),

B2
3(α) =

µα
12(πgα)

3(1− πgα)
3 {(π

g
α)2(1− πgα)2(3G2(α)

2 + 4G1(α)G3(α))

−6(3 + ϕ′′′(1))πgα(1− πgα)(1− 2πgα)G1(α)
2G2(α)

+(12 + 8ϕ′′′(1) + ϕ(4)(1))(1− 3πgα + 3(πgα)2)G1(α)
4},

B2
4(α) = 2B1

2(α),

B2
5(α) =

√
µα

3(πgα)
3(1− πgα)

3 {−(πgα)2(1− πgα)2G3(α)

+3(2 + ϕ′′′(1))πgα(1− πgα)(1− 2πgα)G1(α)G2(α)

−(6 + 6ϕ′′′(1) + ϕ(4)(1))(1− 3πgα + 3(πgα)2)G1(α)
3},

B2
6(α) = B1

3(α),

B2
7(α) = 1

2(πgα)
3(1− πgα)

3 {−(1 + ϕ′′′(1))πgα(1− πgα)(1− 2πgα)G2(α)

+(2 + 4ϕ′′′(1) + ϕ(4)(1))(1− 3πgα + 3(πgα)2)G1(α)
2},

B2
8(α) = −(2ϕ′′′(1) + ϕ(4)(1))(1− 3πgα + 3(πgα)

2)G1(α)

3
√
µα(π

g
α)

3(1− πgα)
3 ,

B2
9(α) =

ϕ(4)(1)(1− 3πgα + 3(πgα)
2)

12µα(π
g
α)

3(1− πgα)
3 ,

C1(α)(w) =

p∑
m=1

xαm

(
p∑

k=1

κm,kMk(w)

)
(α = 1, . . . , N),

Cϕ∗

2(α)(w) =

p∑
m=1

xαm

{
p∑

k=1

Mm,k(w)Mk(w) +

p∑
k=1

κm,kSϕ∗

k (w)

+
1

2

p∑
k1=1

· · ·
p∑

k5=1

κm,k3κk1,k4κk2,k5κϕ
∗

k3,k4,k5
Mk1(w)Mk2(w)

}
(α = 1, . . . , N),

Mk(w) =

N∑
λ=1

√
µλxλkG1(λ){πgλ(1− πgλ)}

−1wλ (k = 1, . . . , p),

Qϕ∗

i,j(w) =
N∑

λ=1

√
µλxλixλj

{
−(2 + ϕ∗

′′′
(1))

(1− 2πgλ)G1(λ)
2

(πgλ)
2(1− πgλ)

2

+
G2(λ)

πgλ(1− πgλ)

}
wλ (i, j = 1, . . . , p),
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κϕ
∗

i,j,k =
N∑

λ=1

µλxλixλjxλk

{
(3 + ϕ∗

′′′
(1))

(1− 2πgλ)G1(λ)
3

(πgλ)
2(1− πgλ)

2

−3
G1(λ)G2(λ)
πgλ(1− πgλ)

}
(i, j, k = 1, . . . , p),

Sϕ∗

k (w) =
1

2
{1 + ϕ∗

′′′
(1)}

N∑
λ=1

xλk
(1− 2πgλ)G1(λ)

(πgλ)
2(1− πgλ)

2
w2
λ (k = 1, . . . , p),

Gi(α) = u(i)(x′
αβ) (α = 1, . . . , N, i = 1, 2, 3),

Qϕ∗
(w) = (Qϕ∗

i,j(w)) is a p× p matrix, M i,j(w) is the (i, j)-element of matrix

K−1Qϕ∗
(w)K−1, Ω is defined by (2.3), σαβ and K−1 = (κi,j) are defined in

Theorem 2.1, and τ g,ϕϕ
∗

3 (w) is a homogeneous polynomial of degree 5 with
respect to variables w1, . . . , wN . Then, from (2.2), (A1) and (A2), we obtain

(A3) ψg
ϕϕ∗(u) = (1− 2iu)−(N−p)/2

×
∫ ∞

−∞
· · ·
∫ ∞

−∞
(2π)−N/2|Λ|−1/2

{
exp

(
−1

2
w′Λ−1w

)}
×

{
1 +

1√
n
D1(w) +

1

n
D2(w) +

1

n
√
n
D3(w)

}
dw

+O(n−2),

where Λ = (1− 2iu)−1(Ω− 2iuΩΞΩ),

D1(w) = hg1(w) + (iu)τ g,ϕ1 (w),

D2(w) = hg2(w) + (iu)τ g,ϕ1 (w)hg1(w) + (iu)τ g,ϕϕ
∗

2 (w) +
1

2
(iu)2

{
τ g,ϕ1 (w)

}2
,

and degrees of all terms of polynomial D3(w) are odd. Therefore, by carrying
out the integration of (A3), the characteristic function ψg

ϕϕ∗(u) is expanded as

(A4) ψg
ϕϕ∗(u) = (1− 2iu)−(N−p)/2

1 + 1

n

3∑
j=0

(1− 2iu)−jvg,ϕϕ
∗

j +O(n−2)

 .
By inverting (A4), we obtain (2.4). We have completed the proof of Theorem
2.1.

Acknowledgments

This research is partially supported by the Grants-in-aid for Scientific Research
of Japan Society for the Promotion of Science (C) 24540133.



IMPROVED TRANSFORMATION FOR GLIM 213

References

[1] Aranda-Ordaz, F. J. (1981). On two families of transformations to additivity for
binary response data, Biometrika, 68, 357–363.

[2] Barndorff-Nielsen, O. E. and Cox, D. R. (1984). Bartlett adjustments to the
likelihood ratio statistic and the distribution of maximum likelihood estimator,
J. R. Statist. Soc. B, 46, 483–495.

[3] Barndorff-Nielsen, O. E. and Hall, P. (1988). On the level-error after Bartlett
adjustment of the likelihood ratio statistic, Biometrika, 75, 374–378.

[4] Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests, J. R.
Statist. Soc. B, 46, 440–464.

[5] Fujikoshi, Y. (2000). Transformations with improved chi-squared approxima-
tions, J. Multivariate Anal., 72, 249–263.

[6] Kakizawa, Y. (1996). Higher order monotone Bartlett-type adjustment for some
multivariate test statistics, Biometrika, 83, 923–927.

[7] Kullback, S. (1959). Information Theory and statistics, New York Wiley.

[8] Lawley, D. N. (1956). A general method for approximating to the distribution of
the likelihood ratio criteria, Biometrika, 43, 295–303.

[9] Menéndez, M. L., Pardo, J. A., Pardo, L. and Pardo, M. C. (1997). Asymp-
totic approximations for the distributions of the (h, ϕ)-divergence goodness-of-fit
statistics: application to Renyi’s statistic, Kybernetes, 26(4), 442–452.

[10] Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models, J.
R. Statist. Soc. A, 135, 370–384.

[11] Pardo, L. (2006). Statistical inference based on divergence measures, Chapman
& Hall/CRC.

[12] Pardo, J. A. and Pardo, M. C. (2008). Minimum ϕ-divergence estimator and
ϕ-divergence statistics in generalized linear models with binary data, Methodol.
Comput. Appl. Probab., 10, 357–379.

[13] Read, T. R. C. (1984). Closer asymptotic approximations for the distributions
of the power divergence goodness-of-fit statistics, Ann. Inst. Statist. Math., 36,
59–69.

[14] Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-fit statistics for discrete
multivariate data, Springer.

[15] Sekiya, Y. and Taneichi, N. (2004). Improvement of approximations for the dis-
tributions of multinomial goodness-of-fit statistics under nonlocal alternatives,
J. Multivariate Anal., 91, 199–223.



214 N. TANEICHI, Y. SEKIYA AND J. TOYAMA

[16] Siotani, M. and Fujikoshi Y. (1984). Asymptotic approximations for the distribu-
tions of multinomial goodness-of-fit statistics, Hiroshima Math. J., 14, 115–124.

[17] Taneichi, N., Sekiya, Y. and Suzukawa, A. (2001). An asymptotic approximation
for the distribution of ϕ-divergence multinomial goodness-of-fit statistic under
local alternatives, J. Japan Statist. Soc., 31(2), 207–224.

[18] Taneichi, N., Sekiya, Y. and Suzukawa, A. (2002). Asymptotic approximations
for the distributions of the multinomial goodness-of-fit statistics under local al-
ternatives, J. Multivariate Anal., 81, 335–359.

[19] Taneichi, N. and Sekiya, Y. (2007). Improved transformed statistics for the test
of independence in r×s contingency tables, J. Multivariate Anal., 98, 1630–1657.

[20] Taneichi, N., Sekiya, Y. and Toyama, J. (2011). Improved transformed deviance
statistic for testing a logistic regression model, J. Multivariate Anal., 102, 1263–
1279.

[21] Taneichi, N., Sekiya, Y. and Toyama, J. (2014). Transformed goodness-of-fit
statistics for a generalized linear model of binary data, J. Multivariate Anal.,
123, 311–329.

[22] Yanagihara, H. (1998). Transformations for improving normal and chi-squared
approximations, Master’s thesis, Hiroshima University, (in Japanese).

[23] Yarnold, J. K. (1972). Asymptotic approximations for the probability that a sum
of lattice random vectors lies in a convex set, Ann. Math. Statist., 43, 1566–1580.

Nobuhiro Taneichi
Department of Mathematics and Computer Science,
Graduate School of Science and Engineering, Kagoshima University
1-21-35 Korimoto, Kagoshima 890-0065, Japan
E-mail : taneichi@sci.kagoshima-u.ac.jp

Yuri Sekiya
Kushiro Campus, Hokkaido University of Education
Kushiro 085-8580, Japan
E-mail : sekiya.yuri@k.hokkyodai.ac.jp

Jun Toyama
The Institute for the Practical Application of Mathematics
Sapporo 063-0001, Japan
E-mail : mandheling@nifty.com


