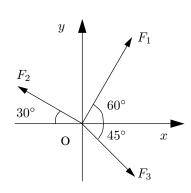
2019年度物理学I 宿題 (第2回)

学	7,2	番		氏	
科	年	号		名	


- 1. 単位に関する以下の問いに答えなさい。
 - (a) 電気量(電荷量)Q の単位について、次元式を用いて表しなさい。ただし、長さ、質量、時間、電流の表示記号 L, M, T, A として用いて良いものとする。ヒント:導線に 1 [A] の電流が 1 [s] 間流れたとすると、その時、1 [Q] の電気量が流れたとする。(Q はクーロンと呼ぶ電気量の単位である)

(答)

(b) コンデンサーに蓄えられる静電エネルギー E が、コンデンサーに印加する電圧 V と蓄えられる電気量 Q で表せるとする。次元解析の手法で、静電エネルギー E を、印加電圧 V と電気量 Q を組み合わせて、どのように表せるか答えなさい。

(答)

2. xy 平面上の原点 O にある物体に対して、図に示したように 3 つの方向 へ、力の大きさがそれぞれ F_1, F_2, F_3 と表せる力を加えたとする。いま、この 3 つの力を足し合わせた力(合力と呼ぶ)を \vec{F} とすると、合力 \vec{F} を成分表示で表したものと、合力 \vec{F} の大きさ $|\vec{F}|$ を、それぞれ答えなさい。

(成分表示)	(大きさ)	

	井から2本の糸で物体が吊下げられてい 張力とよび,図に示すように2つの張力			
. ,	x,y 方向に分解し,その力の大きさをそは $,f_2, heta$ を用いるものとする.	されぞれ答えよ.	y f_1 x	$\theta_1 \mid \theta_2$ $f_1 f_2$ $g_2 g_3 g_4$ $g_4 g_4$
(答)		(答) y 成分		
(b) 2本の糸の張力 ない.	f_1 と f_2 をそれぞれ答えよ。ただし,解	2答には $g,m, heta_1, heta_2$	を用いるものとし、 f_1	$,f_{2}$ を用いてはなら
	(f1)	(f2)		
	(0,0) で止まっているものとする。以下 解答には速度を成分表示 $(2 次元 (v_x,v_y))$			
` '	いら動き出し,車 B は原点に静止したま 一定速度になったとする。 $ec{v_{ m A}}=(60,0)$			定時間経過後の速度

(速さ)

(速さ)

(b) 原点 (0,0) から 2 台の車 A, B が出発し,一定時間経過後,速度がそれぞれ $\vec{v_A}$, $\vec{v_B}$ の一定速度になったとする。いま,

 $\vec{v_{\rm A}}=(60,0),\,\vec{v_{B}}=(0,80)$ だったとすると,A から見た B の速度を求めよ。

(成分表示)

(成分表示)