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First recall “CM periods” and “Stark units” shortly.

Let K be a CM field (that is, an imaginary quadratic extension of a totally
real field). For two complex embeddings o, € Hom(K, C),
Shimura’s period symbol (or, CM period symbol)

pK(UaT) € CX/@Xa
is defined in terms of periods of abelian varieties with CM by K.

Note that their values are well-defined only up to multiplication by an
algebraic number.
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CM periods

Example

Let K be an imaginary quadratic field. We consider an elliptic curve
E:y?>=x3+ax+bwith a,bc Q, K= End(E) ®z Q. Let p be the
complex conjugation. Then there are 4 CM periods, which are defined as
the integral of suitable differential forms on E:

A _ dx —
pr(id,id) = px(p,p) =71 [ — mod Q”,
4
. . xdx —x
pK(p7 ld) = pK(lda P) = 7 mod Q )
g

where v C E(C) is an arbitrary non-trivial closed path. Note that
Hig(E) = (5, %6¢)

vy

When [K : Q] > 2, we consider an abelian variety A/Q with CM by K,
take a suitable w € HdR(A,@), and need to “decompose” fvw.
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CM periods are closely related to the theme of this workshop:
By using the symbol pk, we can express the transcendental parts of

@ critical values of L-functions associated with algebraic Hecke
characters of K.

@ special values of Hilbert modular forms at CM-points € K.

Let f be an elliptic modular form of weight k whose Fourier coefficients
€ Q. For any imaginary quadratic field K = Q(7) (Im(7) > 0), we have

f(1)/pk(id,id)* € Q.
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Stark units (w.r.t. real places)

Let H/F be an abelian extension of number fields. We consider the partial
zeta function:

((s,0) = > Na=* (o € Gal(H/F)).

aCOF, (H/F) =0

a

We assume that F is totally real and that H has a real place t: H — R.
(In particular, a real place of F splits completely in H/F.) Then
Stark’s conjecture states that

exp(2¢'(0,0)) € H* (in fact, € (H™)),
T(exp(2¢’(0, 7)) = exp(2¢'(0, 70)) (o,7 € Gal(H/F)),

“exp(2¢’(0,)) is a unit in many cases”, “"H(exp(¢'(0,0)))/F is abelian”.

exp(2¢’(0,0)) is called a Stark unit. )
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When abelian over Q.

Let n >3, ¢, = e’s . We consider a CM field Q(¢n) and its maximal real
subfield Q(¢, + ¢, 1). These are abelian over Q. Write

[0a: Cn = (5] € Gal(Q(Cr)/Q) = Hom(Q((r), C)  (a € (Z/nZ)7).

By Rohrlich’s formula (reformulated by Yoshida) and Lerch’s formula,
we can write them explicitly:

n(a~'be)
5, )X L(0, n)(n)
= Q(¢n) p(oa,op)=n~ 2 [ T(E)"™"
c€(Z/nZ)*
| 2
r(2)r(=2
Hi= Qo+ G ep(20 (0.l = (12507 )
‘ Euler's formulas 1
N 2-G—Gn”
Q
Here 6,5, :=1,—1,0 if a = b, a = —b, otherwise, respectively.
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When abelian over Q. Relation via Gamma function

Problem
o Robhrlich’s formula: py (0., 0p) in terms of ['(2)'s.
o Lerch’s formula: exp(2¢’(0,0,[y)) in terms of T(2)'s.

By using these, without using Euler's formulas, can we derive Stark's
conjecture with F = Q7

Since CM periods are defined only up to @X, we can only derive the
algebraicity of Stark units with F = Q: roughly speaking,

monomial relations on CM periods

Rohrlich’s formula . .
~ monomial relations on '(2)'s

Lerch’'s formula
s

the algebraicity of exp(2¢'(0, 04|n)).
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When abelian over Q. Relation via Gamma function

Let F,: x" 4+ y" =1 be the nth Fermat curve. J(F,) has CM by Q(¢y).
HiR(J(Fn)) = Hip(Fn) = (s == xTy" S |0 < r,s<n, r+s=n).
rGIr;)

F(%) mod Q(Cn)><

Rohrlich’s formula. /n,’s =B(%,2) =
g

The cup product induces a correspondence
HY(F,) x HY(F,) — H?(F,) = Q(—1) (the Lefschetz motive).

Since the period of Q(—1) is 27/, we obtain “monomial relations”
B(Z, $)B(2r, =) = /n/ Morn s =2mi mod Q.
gl ¥

Noting that ['(£)" =T(r) | B(%, %), we obtain

M(2)r("2) € 2ni-Q", that is, exp(¢'(0,04|)) =
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When abelian over Q. Relation via Gamma function

When F = Q, the algebraicity exp(2¢’(0, 4|n)) € Q" follows from

Rohrlich’s formul
= Q(Cn) f Nr,s e _s ° ° r((2+£)) mod Q(Cn)><
\

erch’'s formula r(2yr(e=2 2
Hi= QG+ G exp(20(0, 0,l)) M =™ (()())

2

and monomial relations on CM periods f7 Nr.s |- Mn—r.n—s = 2mi mod Q.
Moreover, in [K1], we show that Coleman’s formula on the absolute
Frobenius action on Fermat curves implies the reciprocity law

7 (exp(2¢’(0,04|1))) = exp(2¢/(0,7 0 04|H)) mod pse (7 € Gal(Q/Q)).

Here 110, denotes the group of all roots of unity.
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When abelian over Q. Relation via Gamma function

p-adic periods are defined by comparison isomorphisms of p-adic Hodge
theory (instead of the de Rham isomorphism):

HE (Fn) x Hgr(Fn) — Bar, (%77)%/ 1.
Py

Here Byr denotes Fontaine's p-adic period ring. Since abelian varieties
with CM have potentially good reduction, we have fpvn € BerisQp. The

Weil group W, C Gal(Q,/Q,) acts this subring as:
O = 0T, @7 B 80y Ty = BusTy (7 € Wp).

Assume p # 2, p | n, p{rs(r+s). (A similar argument works when p { n.)
Then Coleman’s formula on O 46 Frop. ™ HéR(F,,/Qp) implies that

o, < fp’7 Nr,s > _ pde% fp,y Nr(r),r(s) q foe

S m
Boli: ) Bp(". 7

)
n’n n

where we define 7(r) by 7(C5) = 7", By(a, B) = T2l
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When abelian over Q. Relation via Gamma function

Now by using Rohrlich’s formula again, we can define the
period-ring-valued beta function

B(%v %) fp,w Mlr.s

= <~ € Bcrl's@‘
Jynrs Bo(5:7) P

Then Coleman'’s formula implies the reciprocity law on ‘B:

deg 7

@ (B(4,2)) = p*

n’n

B(XD 7)) mod poy (T € W,).

n >’ n

Then, by using these formulas, we obtain the reciprocity law on Stark’s

a n—a 2
units exp(2¢’(0, 04|n)) = <r(n)2£rn)>

up to peo as follows:
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When abelian over Q. Relation via Gamma function

. B(£,2) Jpq s . dir o(n)
Bod) = s Enyy OB =P B,
r,s p n’n

By the correspondence H(F,) x HY(F,) — Q(—

o (2ri), B(%,2)B n;,n;S) _
B3 B2 25 = SRS A e (2mi), O
G 2B ) 2ri Bp(y, 5)Bp(™ 5, 50) (@m)p - Qo

deg T ; deg T
O, = > , @7 acts on Qp as T, on (2mi), as pce

(1 BB ) \ U 1 B TR)B(U, T
27” B (,rﬂ s)Bp(nnr’ s) 27” B (T(I’) TS))B (T(n r) 7(n— s))

n I

n ' n

(7) = r(r) HZ %’ % ( :,P). rP(% rp(%) € Moo
<1WJ&J)_1NTWMT%
" \2ri BASE£EE) ) T 2ni gy e

only for 7 € W, C Gal(Q,/Qp) C Gal(Q/Q). Then we vary p. Q.E.D.

mod fieo
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Why mod 17
: for p| n, pfrs(r+s). So we can not use

We need By(5, 3) i= oA
AN

Morita's p-adic gamma function:

r . X H _1\n .
p(2): Zp — 7, z»—>N$|£lz( 1) H k
1<k<n—1, ptk
Recall Lerch’s formula:
(x) d | o s
—= =exp| — X+ m

We need to put

o(5) = exp, <pj [Z(; m) S (pre)

m=0

2~

p

p-adic interpolation] )
s=0

for some N € N since exp,(z) := > 2, i—f converges only on a
neighborhood of 0. To be honest there is one more reason: the “uq.-part”

of Coleman’s formula is very complicated and | gave up calculating.
14 / 29

Sep. 19, 2017

T. Kashio, Tokyo Univ. of Sci. CM periods, Stark units & mult. M-functions



When abelian over an arbitrary totally real field F

Summary. In [K1], studying classical or p-adic CM periods for CM fields

abelian over Q, we prove the reciprocity law on ®B(+, 2) and provide an

alternative proof of a part of Stark’s conjecture with F = Q.

Note that not only an alternative proof, but also a refinement since
r(2)r(=2 .

exp(2¢/(0, 0aln)) = (%)2 is a finite product of B(+, %)'s.

Motivation. Generalize this to totally real fields F.

We have some good Guidelines.

@ We have Shimura’s period symbol px(o,7), which is a
generalization of periods f7 nr,s of Fermat curves.

@ We have Shintani’s formula on partial zeta functions of totally real
fields, which is a generalization of Lerch's formula

/ rHrs%)

exp(¢’(0, 0a1)) = 75—

@ We have Yoshida’s conjecture on “absolute CM periods”, which is a

conjectural generalization of Rohrlich's formula f7 Nrs = r(r?gg)
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multiple gamma functions

Now we explain multiple gamma functions. Recall Lerch's formula:

(x) d | = .
s 4[] )

m=0

For a “good” subset Z C R, we put
M(Z) :=exp q [Z z_s]
' ds
zeZ s=0

Here we say Z is “good” if ), , z~° converges for Re(s) >> 0, has a
meromorphic continuation, is analytic at s = 0. In particular, for x > 0,
w = (wi,...,w,) with wy,...,w, > 0, the lattice-like set

Lyw ={x+muwi+ - +muw |0<m,...,m €Z}

is “good” and I'(Ly,) is called Barnes’ multiple gamma function.
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Yoshida's class invariant

Let F be a totally real field, § an integral ideal of f, C; the ideal class group
modulo §, in the narrow sense. Let D be Shintani's fundamental domain of
F+/(’),§+. For c € Cf, we take an ideal a € ¢ and consider a subset:

Z.o={zeDnal|zacc}CF,.

Shintani provided an expression Z, = Hfle Ly ;- In particular ¢(Zc) is

“good” for any « € Hom(F,R). Yoshida defined a class invariant

M(c,0) == T((Z)) x Hb(a,-y(bf) (c € G, « € Hom(F,R))

for certain a;, b; € F. Although Z., a;, b; depend on D, a, we have
® [ enom(rr) T(c,t) = exp(¢’(0, ¢)): Shintani’s formula, which is a
generalization of Lerch's formula.
e [(¢,t) mod L(O;JF)Q does not depend on the choices of D, a,
that is, I'(c,¢; D,a)/T(c,; D', d') = L(G)% with e € Of |, N €N,
We fix id: F < R and put '(¢) := (¢, id).
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Yoshida's class invariant

Example (F = Q)
o F1/OfF , =Q4/{1}, D=Q4.
o Cry={ld]|1<a<f, (af) =1} =(Z/fZ)* (f €N).
o Ziay ={z€Qyn(a)!|(za) e [(]} ={=HL |0 < ke Z}.

F([(a)]) := T (Zja)) x a correction term
— exp di a+kf % 55
k>0 <0
= %)f%*% )2
= exp(¢'(0, [(a)]))

Note that Hom(Q, R) = {id}.
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Yoshida's conjecture

Example ([F : Q] =2)
°© F1/OF , =Fy/(e), D={a+be|a,beQ, a>0, b>0}.

oletce G acc, Zc:={ze Dna!|zae c}. We defined
M(c) :=T(Z) x correction terms. In this case, it can be expressed in
terms of Barnes’ double gamma function:

d
M (x, (w1, w2)) 1= exp( | > (x+ kawr + kowz)"*ls=0).
ki,ko>0

J a finite set R C D, an element a € F, a generator 7q; of (af)h; s.t.

_¢(0,0)
r@qzﬂmwuu@»mwwxwmhﬂ
xER
ep(C'(0,0))= [ Tle0).
t€Hom(F,R)
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Yoshida's conjecture

Yoshida formulated a conjecture in [Y] which expresses Shimura's period
symbol pk as a finite product of rational powers of I'(¢)’s. Here we
introduce its slight generalization: The original conjecture in [Y] is
equivalent to

Conjecture

Assume that the narrow ray class field H; modulo f contains a CM field.
Let K be the maximal CM subfield of H;. Then we have for o € Gal(K/F)

¢(0,c) o
I[I r@o= JI =] pxle.c)" ™ mod Q"
ceArt—1(o) ceArt~1(o) c’'eC

Strictly speaking, ¢, ¢’ in pk(c, c’) are the images of ¢, ¢’ under the Artin
map Art: GG — Gal(K/F).

When F = Q, this conjecture holds true by Rohrlich's formula.
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Yoshida's class invariant

Let p be the prime ideal corresponding to the p-adic topology on F.
Let D be Shintani's fundamental domain of F}*/O7. For ¢ € G with p | f,
we take an ideal a € ¢ and put

ZC::{zeDﬁa’1|za€c}CF£>]R.
For c € C;, we define

Mp(c) :=Tp(Ze) x Hexpp(b,- log,a;) (ai,bi € F),

Mp(Zc) :==exp, % Z z

analytic continuation | p-adic interpolation
zeZ,

s=0
for some a;, b; € F satisfying that

M,(c) mod ((9,§7+)(Q does not depend on a, D.

Moreover the “ratio” [[(c) : [p(c)] mod o does not depend on a, D,
e, I'(¢;D,a)/T(c; D' a")=Tp(c; D,a))/Tp(c; D', a") mod piso.
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Shimura’s period symbol

Let K be a CM field, 0,7 € Hom(K, C). We take a suitable algebraic
Hecke character x of K™:
e the infinite type of x = £- (77! — po 771) with £ large enough.
@ x(a) € K for all a C Ok~ relatively prime to the conductor of .

and consider the associated motive M(x)/K™ with coefficients in K.
By comparison isomorphisms of p-adic Hodge theory, we define

Hg(M(x)) ®q Bar = Har(M(x)) @K+ Bar, ¢ ® Pp(x) — cdr @ 1,

K ®q Bdr = @ Bar,  Pp(X) = (Po(0.X))sectom(K,Bur)
oc€Hom(K,Byr)

with ¢, a K or K ®g K7-basis of H,(M(x)). Then we define
pr.p(0,7) = (2m1),~ "5 Py(0, x)% mod T,

where we put d,, :=1,—1,0 if 0 = 7, p o T, otherwise, respectively.
Moreover [pi(o,T) : pk,p(0, T)] mod fi is well-defined.
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Main results in [K2]

So far, | have explained the following things: For a totally real field F,
c € G with p | f, we defined the ratio of two class invariants

[F(c) : To(e)] € (C* /oo X CFf /1100)/(OF ).
For a CM field K, 0,7 € Hom(K, C), we defined the ratio of periods
[Pk (0.7) : Prp(0,7)] € (C* /1o % Blig/1100)/Q .

Then (a slight generalization of) Yoshida's conjecture implies that

(0,c"
(27”-)g(075) H prp(c, C/) [H; K1

I =Te"
®(c) = e ¢(0,c") : EFT
(27”-)((0,c) H pK(C7C/)[Hf7’:K] p(C)
C’ECf

€ BdXR/uOo is well-defined. Furthermore, by CM,

B(c) € (BerisQp — {0})%/ oo where 7 € W, acts as &, = ¢SZ§}mb_ ®T.
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Main results in [K2]

Now we can state the main result in [K2].

Assume that p | f. For c € G, 7 € W, C Gal(F,/F,), we have the
following reciprocity law on this period-ring-valued function:

®, (6(c)) = B(crc) mod fie Where ¢, 1= AI‘t_l(T’Hf) € G.

In [K2], we proved the following:

Conjecture holds true when H; is abelian over Q and p { 2.

The case F = QQ follows from Rohrlich’s formula and Coleman’s formula as
we have seen. We reduce the problem to the case F = Q, as follows:
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Reducing the problem to the case F = Q

¢(0,¢")

1 ¢(0,¢) NG
®(C) — I'(c) (2mi)p Hc/ecf Pk, p(c,c’) Recall
: ¢(0,c) Ip(c) :

(r)C [eq, pr(ee) 7
that exp(C'(0, €)) = [T, crtom(r ) (> ¢). When Hi/Q is abelian, ¢(F), «(f)
and ((c) € Cyj) do not depend on ¢ € Hom(F,R). Hence, we obtain an
expression like exp(¢’(0, ¢)) = I(c)lF* @x (correction terms) by Yoshida's
technique. Since the same holds true for exp,(¢,(0, c)) we have

[exp(¢'(0, €)) = exp,(G5(0, )] = [F()F = Tp(e) U] mod prcc.

Put G := Gal(H;/Q) and consider GG = Gal(H;/F) C G. Then we have

Yox(e)(se)=Lssx)=  [[ Lls¥) (xeG, x=0,p).

G weG vl =x

Hence we obtain an explicit relation between [[(c) : ['5(c)]'s of H;/F and
those of H;/Q. The part of [pk(...) : pkp(..-)] is simpler. Q.E.D.
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Main results in [K2]

@ We also formulated a conjecture in the case p 1 f, which is rather
complicated since we do not have I',(c) with p 1 f.

@ Our conjecture is consistent with Stark’s conjecture w.r.t. real places
and Gross' p-adic analogue:
o Slight generalization of Yoshida's conjecture “implies” the algebraicity
of Stark's units:
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Yoshida's conjecture vs. Stark's conjecture

Conjecture ( of Yoshida's conjecture)

Assume that the narrow ray class field H; modulo § contains a CM field.
Let K be the maximal CM subfield of H;. Then we have for o € Gal(K/F)

[I m@= II =9 ]I ple;e)™ mod Q"

ceArt~1(o) ceArt~1(o) c'eC

This “difference” is equivalent to the algebraicity of Stark’s units:

exp(¢’(0,0)) € Q" for o € Gal(H/F)
if F is a totally real field, H has a real place, H/F is abelian.

Namely, we have

@ Generalized version implies this algebraicity.

@ "Original version + this algebraicity” implies generalized version.
(K., On the algebraicity of some products of special values of Barnes'
multiple gamma function, to appear in Amer. J. Math.)
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Main results in [K2]

@ We also formulated a conjecture in the case p 1 f, which is rather
complicated since we do not have I',(c) with p 1 f.

@ Our conjecture is consistent with Stark’s conjecture w.r.t. real places
and Gross' p-adic analogue:

o Slight generalization of Yoshida's conjecture “implies” the algebraicity
of Stark's units.

o Our conjectures in both cases p | f, p 1§ imply the reciprocity law on
Stark’s units up to fico.

o Our conjecture in the case p { f implies Gross' p-adic analogue which
was proved by Dasgupta-Darmon-Pollack and Ventullo, and its
refinements by K.-Yoshida under a certain assumption.
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Main results in [K2]

Assume that p { f. We put for c € G

I(c; D ) ¢(0,c")
6(c; D,a) = 00 ri)S® T psle, ) P
@2ri) O] pr(c, /) 7 ¢
C/

€ (BeisQp — {0})@/ 1. Then we have for 7 € W, with deg, 7 =1

<€(0,[p]c)
ht

m ~ &([p]c; D, pa)

IT zec, Tp(& D, pa)
&—[plceC

& (&(c; D,a)) = mod fiso-

v

The truth of Conjecture does not depend on the choices of D, a. The case
F = Q follows from Rohrlich’s formula and Coleman's (other) formula.
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