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1 Introduction

The theme is CM-periods and Stark units:

CM-periods. Let K a CM-field.

e Take an abelian variety A/Q with CM by K, i.e., End(4) ®; Q = K, and its
differential form w, of the second kind where K acts as o(K) (¢ € Hom(K, C)).

) f,y wy € C is called a CM-period for an arbitrary closed path v with L wy # 0.

e Shimura provided “generators” pg(c,¢’) of the group of all monomials of fv We'S

mod@X which is called Shimura’s period symbol.

Stark units (w.r.t. real places). Let F be a totally real number field, K its abelian
extension where only one real place of F' splits, excepting the case K/F = Q/Q.

e Consider the partial zeta function (s, 7) := Z(L/F _Na™* (7 € Gal(K/F)).

)=
e The assumptions imply ords_o((s,7) = 1.
e “The rank one abelian Stark conjecture” implies exp(2¢'(0,7)) € K* satisfying

the reciprocity law: 7'(exp(2¢'(0,7))) = exp(2¢'(0,7'7)).

e Stark’s conjecture also implies exp(2¢’(0,7)) € O when |Ram(K/F)U Arch(F)| >
2. exp(2¢’(0,7)) is called a Stark unit.

There seems to be a “relation”, in terms of multiple gamma functions.
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The case F=Q. Letn >3, (, := e, Then

e (Each simple factor of) Jacobian variety J(F,,) of Fermat curve F,: 2" +y™ = 1 has
CM by the CM field Q(¢,). s = 2"y" % (0 < r,s < n, r+s # 0) are differential
forms of the second kind.

e Q(¢y + ¢ 1Y) has a real place (hence, the unique real place of Q splits). ((s,0+,) =
((s,n,a) + ¢(s,n,n —a) where 014: ( + (= 0+ ¢ (0<a <, (a,n) =1),
C(s,n,a) = p-o(a+nk)~* denotes the Hurwitz zeta function.

Then we have

Q(¢n)
’ n
a n—a 2
QG+ G exp(20(0,0s,))  m (W)
i

’ ( Euler’s formulas

Rohrlich’s formula
f ¥ 771”,5 -

—— =~ cyclotomic unit
2= =G )
Q

We formulate conjectures which state, roughly speaking,
§2. Monomial relations of CM-periods imply the algebraicity of Stark units.

§3. The absolute Frobenius actions on p-adic CM-periods imply the reciprocity law on
Stark units.

Indeed, when F' = Q, we showed that (K., Fermat curves and a refinement of the
reciprocity law on cyclotomic units, Crelle’s Journal (online version))

e The cup product H'(F,) x H(F,) — H*(F,) = Q(—1) (the Lefschetz motive)
induces “monomial relations”

Rohrlich’s formula —X
r s n—r n—s S — .
B(y,2)B(" =, ") = /m,s/ Tn-rm—s = 20 mod Q
v v

since the period of Q(—1) is 2mi.

e Noting that I'(Z)" = I'(r) - B(Z, ™) (thank to an anonymous referee), we obtain
[(9)0(=2) € 2mi - Q. Tt follows that exp(2('(0,04,)) € Q" by Lerch’s formula,
without Euler’s formulas.

e Furthermore, we see that Coleman’s formula on Frobenius action on F,, implies
DY) | _ TEITS®)
3 3 =

) n n
T )_ 27

, at least modulo the group s of all roots of unity.



2 Yoshida’s conjecture and its slight refinement

2.1 Multiple gamma functions

Recall Lerch’s formula:

I'(z d | s
(@S] )

For a “good” subset Z C R, we put

['(Z) :=exp (% [Z z7°

z€Z

Here we say Z is “good” if > _, 27 converges for Re(s) >> 0, has a meromorphic

continuation, is analytic at s = 0. In particular, for x > 0, w := (wy,...,w,) with
Wi, ...,w, > 0, a “lattice in cone”

Liw: ={z+muw+- - +muw, | 0<my,...,m, €Z}

is “good” and I'(L, ) is called Barnes’ multiple gamma function.

2.2 Shintani’s formula and Yoshida’s class invariants

Let F' be a totally real field, § an integral ideal of F', C} the ideal class group modulo §, in
the narrow sense. Let D be Shintani’s fundamental domain of F'y /O, . Here + denotes
their totally positive parts. For ¢ € C}, we take an ideal a € ¢ and consider a subset:

Z.:={zeDna'|zacc}CF,.

Remark 1. Shintani expressed D as a finite disjoint union of cones and provided an
expression Z, = Hle Ly, w;- In particular «(Z,) is “good” for any ¢ € Hom(F,R).

Yoshida defined a class invariant

T(c,0) :=T((Z,)) x H v(a;) ™) (c € Cy, « € Hom(F,R))

for suitable a;,b; € F'. Although Z,., a;, b; depend on the choices of D, a, we have

e Shintani’s formula states that exp(¢’'(0,¢)) = [ [,cgom(rg) I'(c:0)-

e ['(¢,¢) mod L(O}X;’JF)Q does not depend on D, a: there exist € € O, N € N s.t.

z|~

[(c,i;D,a)/T(c,e; D' a’) = u(e)

We fix id: F' < R and put I'(c) := I'(¢, id).



2.3 Shimura’s period symbol (well-known restatement)

Let K be a CM-field, o,7 € Hom(K,C). We take an algebraic Hecke character x of K7,
which takes values in K, whose infinite type is [ - (77! — p o 771) with [ large enough.
We consider the associated motive M (y)/K™ with coefficients in K. By the de Rham
isomorphism, we define

Hp(M(x)) ®g C= Hagr(M(x)) @+ C, cp® P(x) — car ® 1,
K ®Q C= @ (Ca P(X) - (P(Ua X))UEHom(K,(C)

oc€Hom(K,C)

with ¢, a K or K ®g K"-basis of H,(M(x)). Then we have

1

p(o,7) = (2mi) ¥ P(o,x)% mod Q7

where we put 6., :=1,—1,0 if 0 = 7, p o 7, otherwise, respectively.

2.4 Yoshida’s conjecture

Yoshida formulated a conjecture which expresses Shimura’s period symbol px as a finite
product of rational powers of I'(c)’s. Here we introduce its slight generalization:

Conjecture 2. Assume that the narrow ray class field Hy modulo § contains a CM-field.
Let K be the mazimal CM subfield of H;. Then we have

¢(0,¢") —
I(c) = 7609 H pic(e, ) mod Q.

C/ECf

Here c,c" in pi( ) denotes the images of them under the Artin map Art: C; — Gal(K/F).
Remark 3. e When F = Q, this conjecture holds true by Rohrlich’s formula.

e The original one is equivalent to H LHS = H RHS for o € Gal(K/F).

c€Art~ (o) c€Art~ (o)

o Conjecture 1 implies the algebraicity of Stark units:

“exp(C’(0,0)) € Q" for o € Gal(H/F)
if F'is a totally real field, H has a real place, H/F is abelian”

follows from the monomial relation px (o, o )pk (o, poc’) =1 mod Q~.
e More precisely, we can show that

— Generalized one implies this algebraicity.

— “Original one + this algebraicity” implies generalized one.

(K., On the algebraicity of some products of special values of Barnes’ multiple
gamma function, Amer. J. Math. (online version))



2.5 A numerical example

Let K := Q(v/2V5 :V2v5 =26 = —/—2v/5 — 26 € Hom(K,C), p the com-

plex conjugation. Then Hom(K C) ={id, p,0,po0c}. Let
Cy? = TR0 4 (210 — 2V/41)2® + 102% 4+ L0413 1 (3 — 2v/d1)a? + =80 41,

Then J(C') has CM by (K, {id,c}). (Bouyer and Streng, Examples of CM curves of genus

two defined over the reflex field, LMS J. Comput. Math.) In fact, wiq = 2de + M,

Yy
Wy = @ are differential forms of the first kind where K acts by id, o respectively.

Numerically we have (Maple’s command “periodmatrix”)
mpk (id,id)pk (id, o) = /wid = —0.4929421793 ... — 0.8116152991 . . .4,

mpi(0,id)pk (0, 0) = /% = —0.1395619319 . .. + 0.1323795194 . . .1.

Similarly, we define C’ where J(C’) has CM by (K, {id, p o o}) by replacing v/41 with
—+/41. Then we have

mpx (id, id)pk (id, p o o) = —0.4443866005 . . . — 0.3099403507 . . . i,
mpx(poo,id)pr(po o, poo) =—2.0247186165 . .. + 0.4533729269 . . ..

Let F := Q(V5), f := (B_T‘@) We easily see that C; = {c1 = [(1)],c2 := [3)]} =
Gal(K/F), ¢; <> id, ¢y <> p, (0,¢1) =1, ¢(0,¢c2) = —1. Then we obtain numerically
mpx (id, id)pk (id, p) ™" = 7prc (id, id)px (id, 0)pre (id, id)pr (id, p 0 )

? _1\ 14 4/ —8v/54204+(vV5+15)4/ 2/5—26
= F(Clx\/i 1)41 \/ 30 .




3 p-adic analogues
3.1 p-adic analogue of Yoshida’s class invariant
Assume that

the prime ideal p corresponding to F' — C,, divides f.

We define

y(e) i= Tyl(Z0)) [ exp,(bilog, a)

for the same Z, C F, a;,b; € F as those in the definition of I'(c). Here we put

J

ze€Z

d
I',(Z) == exp, <£ [p—adic interpolation of Z z7°

e We have a p-adic analogue of Shintani’s formula.
e I',(c) mod (OF ,)? does not depend on the choices of D, a.

e The “ratio” [I'(c) : I'y(¢)] mod ps does not depend on a, D, that is,

I'(¢;D,a)/T(¢; D',a’) =Tp(¢; D,y a))/Tp(c; D'y a’) mod pioe.

3.2 p-adic analogue of Shimura’s period symbol
We define
pKdD(U’ 7_) € B;R

by replacing the de Rham isomorphism with comparison isomorphisms of p-adic Hodge
theory, C with Fontaine’s p-adic period ring By, and 27i with the p-adic period (27i), of
the Lefschetz motive. Since abelian varieties with CM have potentially good reductions,
we see that

pK,P<O-7 T) S (ch'sQTp)Q-
Moreover
px(0,7T) : prp(o, 7)] mod fis

is well-defined when we take the same basis cg, cqr of cohomology groups for pg, px p-



3.3 Reciprocity laws

Let W, C Gal(F,/F,) be the Weil group, that is, 7 € W, < T|pur = Frgeg'“T where

deg, T € Z, Fr, denotes the Frobenius automorphism at p. We consider a natural action

W, ~ Bms@ defined by &, := (ab.Fr.)deg”deng Q7.

Conjecture 4. Assume that p | . Under Conjecture 1, we define

¢(0,¢")
2ri)* T] prcple )"
6(0) = (0, T (C) S (Bcris@gv) /,Uoo-
(2mi)*® ] prc(e.¢) e v
C’ECf

Then we have for T € W,
®; (6(c)) = &(crc) mod piee,
where ¢, := At~ (7|n;) € C}.

Conjecture 5. Assume that p {§. Under Conjecture 1, we define

I(¢; D, a) (D ¢(0.¢') .
<0.) (27”);;(07 : HpK,p(Ca ) e (ch'st)Q/Noo'

(Qﬂ_i)((o,c) HpK(Q Cl) [H}:K] o

&(c; D, a) =

Then we have for 7 € Wy, with deg, 7 =1
€(0,[p]e)
+

D,(8(c; D,a)) =

E'—}[p]CGCf
. . . +
where h}. is the narrow class number, T, is a suitable generator of pr.

Remark 6. o When H; does not contain any CM-field, we see that ((0,c) = 0. Hence
we regard px = pi,p = 1 in this case.

o “modus ambiguity” occurs when we take rational powers of periods or consider
exp,, outside of the convergence region. This may be avoidable by “S,T-modified”.



4 Main results

Proposition 7 (Norm relation?). Let ¢ € C}, q a prime ideal, ¢: Csy — Cj the natural
projection. For simplicity assume that p | . Then we have

o= o@sdo™ @tf)
Eechg(g)06< )= {@(C) ql7) d oo

Theorem 8. Conjectures 1, 2, 3 imply the reciprocity law on Stark’s units up to jiso-

Proof. Let H be the maximal subfield of H; where the real place id: F' < R splits. Then
we can show that

H &(c) = exp(¢’(0,0)) mod ps (0 € Gal(H/F)).

c—o

Since @, is 7-semilinear, we obtain 7(exp(¢’(0,0)) = exp(¢’'(0,700)) mod ps for 7 € Wj.
Then we vary p. [l

By a similar argument, we can show that

Theorem 9. Conjectures 1, 8 imply a refinement (by K.-Yoshida) of the rank one abelian
Gross-Stark conjecture.

Sketch of proof. Let H be the maximal subfield of H; where p splits completely. Then,
roughly speaking, we can show that

H ®&(c) = “a Gross-Stark unit” mod po, (0 € Gal(H/F)).

c—o

Theorem 10. Conjecture 2 holds true when Hj; is abelian over Q and p 1 2.

Sketch of proof. The case F' = Q follows from Rohrlich’s formula and Coleman’s formula.
We reduce the problem to this case, by well-known formula on L-functions

Lisx)= [J[ L(sv) (xeG, G:=Gal(H;/Q) D H := Gal(H;/F)).
YeG Plu=x

By this, we can express exp(¢’(0,¢))’s of F' in terms of those of Q. Recall Shintani’s
formula:

exp(¢'(0,0)) = ] Tlew).

t€Hom(F,R)
We need just I'(¢,id), not their product. By definition,
Z.={zeDna'|zaccl

T(c,0) :=T(u(Z.)) x Hb(aiy(bi).



Hence I'(c, ) depends on ¢(c), rather than on c. When H;/Q is abelian, ¢(c) € C; (and
t(f)) do not depend on ¢ € Hom(F,R). Hence, we obtain an expression like

exp(¢’(0,¢)) = F(c)[F 1 explicit correction terms

by Yoshida’s technique. Since the same holds true for exp,(¢/(0,¢)) we have

[exp(¢(0,¢)) : exp,(¢,(0,¢))] = L) DTy ()F ¥ mod i

Similarly we can show that

Theorem 11 (which has not yet written). Conjecture 8 holds true when H; is abelian
over Q and p remains prime in F.



