A period-ring-valued gamma function and a refinement of the reciprocity law on Stark units

Tomokazu Kashio (Tokyo University of Science)

Dec, 6th (Wed), 09:20 - 10:10

References

- K., On a common refinement of Stark units and Gross-Stark units, arXiv:1706.03198.
- H. Yoshida, Absolute CM-Periods, Math. Surveys Monogr. 106, AMS, 2003.

1 Introduction

The theme is **CM-periods** and <u>Stark units</u>:

CM-periods. Let K a CM-field.

- Take an abelian variety $A/\overline{\mathbb{Q}}$ with CM by K, i.e., $\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q} \cong K$, and its differential form ω_{σ} of the second kind where K acts as $\sigma(K)$ ($\sigma \in \operatorname{Hom}(K, \mathbb{C})$).
- $\int_{\gamma} \omega_{\sigma} \in \mathbb{C}$ is called a <u>**CM-period**</u> for an arbitrary closed path γ with $\int_{\gamma} \omega_{\sigma} \neq 0$.
- Shimura provided "generators" $p_K(\sigma, \sigma')$ of the group of all monomials of $\int_{\gamma} \omega_{\sigma}$'s $\operatorname{mod} \overline{\mathbb{Q}}^{\times}$ which is called **Shimura's period symbol**.

Stark units (w.r.t. real places). Let F be a totally real number field, K its abelian extension where only one real place of F splits, excepting the case $K/F = \mathbb{Q}/\mathbb{Q}$.

- Consider the partial zeta function $\zeta(s,\tau) := \sum_{(\frac{K/F}{\sigma})=\tau} N\mathfrak{a}^{-s} \ (\tau \in \operatorname{Gal}(K/F)).$
- The assumptions imply $\operatorname{ord}_{s=0}\zeta(s,\tau) = 1$.
- "The rank one abelian Stark conjecture" implies $\exp(2\zeta'(0,\tau)) \in K^{\times}$ satisfying

the reciprocity law: $\tau'(\exp(2\zeta'(0,\tau))) = \exp(2\zeta'(0,\tau'\tau)).$

• Stark's conjecture also implies $\exp(2\zeta'(0,\tau)) \in \mathcal{O}_K^{\times}$ when $|\operatorname{Ram}(K/F) \cup \operatorname{Arch}(F)| > 2$. $\exp(2\zeta'(0,\tau))$ is called a <u>Stark unit</u>.

There seems to be a "relation", in terms of multiple gamma functions.

The case $F = \mathbb{Q}$. Let $n \ge 3$, $\zeta_n := e^{\frac{2\pi i}{n}}$. Then

- (Each simple factor of) Jacobian variety $J(F_n)$ of Fermat curve $F_n: x^n + y^n = 1$ has CM by the CM field $\mathbb{Q}(\zeta_n)$. $\eta_{r,s} := x^r y^{n-s} \frac{dx}{x} \ (0 < r, s < n, r+s \neq 0)$ are differential forms of the second kind.
- $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$ has a real place (hence, the unique real place of \mathbb{Q} splits). $\zeta(s, \sigma_{\pm a}) = \zeta(s, n, a) + \zeta(s, n, n a)$ where $\sigma_{\pm a} \colon \zeta_n + \zeta_n^{-1} \mapsto \zeta_n^a + \zeta_n^{-a}$ (0 < a < n, (a, n) = 1), $\zeta(s, n, a) := \sum_{k=0}^{\infty} (a + nk)^{-s}$ denotes the Hurwitz zeta function.

Then we have

$$\begin{aligned}
\mathbb{Q}(\zeta_n) & \int_{\gamma} \eta_{r,s} \stackrel{\text{Rohrlich's formula}}{\equiv} & B\left(\frac{r}{n}, \frac{s}{n}\right) := \frac{\Gamma(\frac{r}{n})\Gamma(\frac{s}{n})}{\Gamma(\frac{r+s}{n})} \mod \mathbb{Q}(\zeta_n)^{\times} \\
& | \\
\mathbb{Q}(\zeta_n + \zeta_n^{-1}) \exp(2\zeta'(0, \sigma_{\pm a})) \stackrel{\text{Lerch's formula}}{=} & \left(\frac{\Gamma(\frac{a}{n})\Gamma(\frac{n-a}{n})}{2\pi}\right)^2 \\
& | \\
\mathbb{Q} & \left(\stackrel{\text{Euler's formulas}}{=} & \frac{1}{2 - \zeta_n^a - \zeta_n^{-a}} \approx \text{cyclotomic unit}\right)
\end{aligned}$$

We formulate conjectures which state, roughly speaking,

- §2. Monomial relations of CM-periods imply the algebraicity of Stark units.
- $\S3$. The absolute Frobenius actions on *p*-adic CM-periods imply the reciprocity law on Stark units.

Indeed, when $F = \mathbb{Q}$, we showed that (K., Fermat curves and a refinement of the reciprocity law on cyclotomic units, *Crelle's Journal* (online version))

• The cup product $H^1(F_n) \times H^1(F_n) \to H^2(F_n) = \mathbb{Q}(-1)$ (the Lefschetz motive) induces "monomial relations"

$$B(\frac{r}{n},\frac{s}{n})B(\frac{n-r}{n},\frac{n-s}{n}) \stackrel{\text{Rohrlich's formula}}{\equiv} \int_{\gamma} \eta_{r,s} \int_{\gamma'} \eta_{n-r,n-s} \equiv 2\pi i \mod \overline{\mathbb{Q}}^{\times}$$

since the period of $\mathbb{Q}(-1)$ is $2\pi i$.

- Noting that $\Gamma(\frac{r}{n})^n = \Gamma(r) \prod_{k=1}^{n-1} B(\frac{r}{n}, \frac{kr}{n})$ (thank to an anonymous referee), we obtain $\Gamma(\frac{a}{n})\Gamma(\frac{n-a}{n}) \in 2\pi i \cdot \overline{\mathbb{Q}}^{\times}$. It follows that $\exp(2\zeta'(0, \sigma_{\pm a})) \in \overline{\mathbb{Q}}^{\times}$ by Lerch's formula, without Euler's formulas.
- Furthermore, we see that Coleman's formula on Frobenius action on F_m implies $\sigma_{\pm b}(\frac{\Gamma(\frac{a}{n})\Gamma(\frac{n-a}{n})}{2\pi}) \equiv \frac{\Gamma(\frac{ab}{n})\Gamma(\frac{n-ab}{n})}{2\pi}$, at least modulo the group μ_{∞} of all roots of unity.

2 Yoshida's conjecture and its slight refinement

2.1 Multiple gamma functions

Recall Lerch's formula:

$$\frac{\Gamma(x)}{\sqrt{2\pi}} = \exp\left(\frac{d}{ds} \left[\sum_{m=0}^{\infty} (x+m)^{-s}\right]_{s=0}\right).$$

For a "good" subset $Z \subset \mathbb{R}$, we put

$$\Gamma(Z) := \exp\left(\frac{d}{ds}\left[\sum_{z\in Z} z^{-s}\right]_{s=0}\right)$$

Here we say Z is "good" if $\sum_{z \in Z} z^{-s}$ converges for $\operatorname{Re}(s) >> 0$, has a meromorphic continuation, is analytic at s = 0. In particular, for x > 0, $\boldsymbol{\omega} := (\omega_1, \ldots, \omega_r)$ with $\omega_1, \ldots, \omega_r > 0$, a "lattice in cone"

$$L_{x,\boldsymbol{\omega}} := \{ x + m_1 \omega_1 + \dots + m_r \omega_r \mid 0 \le m_1, \dots, m_r \in \mathbb{Z} \}$$

is "good" and $\Gamma(L_{x,\omega})$ is called **Barnes' multiple gamma function**.

2.2 Shintani's formula and Yoshida's class invariants

Let F be a totally real field, \mathfrak{f} an integral ideal of F, $C_{\mathfrak{f}}$ the ideal class group modulo \mathfrak{f} , in the narrow sense. Let D be Shintani's fundamental domain of $F_+/\mathcal{O}_{F,+}^{\times}$. Here + denotes their totally positive parts. For $c \in C_{\mathfrak{f}}$, we take an ideal $\mathfrak{a} \in c$ and consider a subset:

$$Z_c := \{ z \in D \cap \mathfrak{a}^{-1} \mid z \mathfrak{a} \in c \} \subset F_+.$$

Remark 1. Shintani expressed D as a finite disjoint union of cones and provided an expression $Z_c = \coprod_{i=1}^k L_{x_i,\omega_i}$. In particular $\iota(Z_c)$ is "good" for any $\iota \in \operatorname{Hom}(F, \mathbb{R})$.

Yoshida defined a <u>class invariant</u>

$$\Gamma(c,\iota) := \Gamma(\iota(Z_c)) \times \prod_i \iota(a_i)^{\iota(b_i)} \quad (c \in C_{\mathfrak{f}}, \ \iota \in \operatorname{Hom}(F, \mathbb{R}))$$

for suitable $a_i, b_i \in F$. Although Z_c, a_i, b_i depend on the choices of D, \mathfrak{a} , we have

- <u>Shintani's formula</u> states that $\exp(\zeta'(0,c)) = \prod_{\iota \in \operatorname{Hom}(F,\mathbb{R})} \Gamma(c,\iota).$
- $\Gamma(c,\iota) \mod \iota(\mathcal{O}_{F,+}^{\times})^{\mathbb{Q}}$ does not depend on D, \mathfrak{a} : there exist $\epsilon \in \mathcal{O}_{F,+}^{\times}, N \in \mathbb{N}$ s.t.

$$\Gamma(c,\iota;D,\mathfrak{a})/\Gamma(c,\iota;D',\mathfrak{a}') = \iota(\epsilon)^{\frac{1}{N}}$$

We fix id: $F \hookrightarrow \mathbb{R}$ and put $\Gamma(c) := \Gamma(c, id)$.

2.3 Shimura's period symbol (well-known restatement)

Let K be a CM-field, $\sigma, \tau \in \text{Hom}(K, \mathbb{C})$. We take an algebraic Hecke character χ of K^{τ} , which takes values in K, whose infinite type is $l \cdot (\tau^{-1} - \rho \circ \tau^{-1})$ with l large enough. We consider the associated motive $M(\chi)/K^{\tau}$ with coefficients in K. By the de Rham isomorphism, we define

$$H_B(M(\chi)) \otimes_{\mathbb{Q}} \mathbb{C} \cong H_{dR}(M(\chi)) \otimes_{K^{\tau}} \mathbb{C}, \quad c_B \otimes P(\chi) \to c_{dR} \otimes 1,$$

$$K \otimes_{\mathbb{Q}} \mathbb{C} \cong \bigoplus_{\sigma \in \operatorname{Hom}(K,\mathbb{C})} \mathbb{C}, \quad P(\chi) \to (P(\sigma,\chi))_{\sigma \in \operatorname{Hom}(K,\mathbb{C})}$$

with c_* a K or $K \otimes_{\mathbb{Q}} K^{\tau}$ -basis of $H_*(M(\chi))$. Then we have

$$p_K(\sigma,\tau) \equiv (2\pi i)^{-\frac{\delta_{\sigma\tau}}{2}} P(\sigma,\chi)^{\frac{1}{2l}} \mod \overline{\mathbb{Q}}^{\times},$$

where we put $\delta_{\sigma\tau} := 1, -1, 0$ if $\sigma = \tau, \rho \circ \tau$, otherwise, respectively.

2.4 Yoshida's conjecture

Yoshida formulated a conjecture which expresses Shimura's period symbol p_K as a finite product of rational powers of $\Gamma(c)$'s. Here we introduce its slight generalization:

Conjecture 2. Assume that the narrow ray class field $H_{\mathfrak{f}}$ modulo \mathfrak{f} contains a CM-field. Let K be the maximal CM subfield of $H_{\mathfrak{f}}$. Then we have

$$\Gamma(c) \equiv \pi^{\zeta(0,c)} \prod_{c' \in C_{\mathfrak{f}}} p_K(c,c')^{\frac{\zeta(0,c')}{[H_{\mathfrak{f}}:K]}} \mod \overline{\mathbb{Q}}^{\times}.$$

Here c, c' in $p_K()$ denotes the images of them under the Artin map $\operatorname{Art}: C_{\mathfrak{f}} \to \operatorname{Gal}(K/F)$.

Remark 3. • When $F = \mathbb{Q}$, this conjecture holds true by Rohrlich's formula.

- The original one is equivalent to $\prod_{c \in \operatorname{Art}^{-1}(\sigma)} LHS \equiv \prod_{c \in \operatorname{Art}^{-1}(\sigma)} RHS \text{ for } \sigma \in \operatorname{Gal}(K/F).$
- Conjecture 1 implies the algebraicity of Stark units:

$$\operatorname{exp}(\zeta'(0,\sigma)) \in \overline{\mathbb{Q}}^{\times} \text{ for } \sigma \in \operatorname{Gal}(H/F)$$

if F is a totally real field, H has a real place, H/F is abelian'

follows from the monomial relation $p_K(\sigma, \sigma')p_K(\sigma, \rho \circ \sigma') \equiv 1 \mod \overline{\mathbb{Q}}^{\times}$.

- More precisely, we can show that
 - Generalized one implies this algebraicity.
 - "Original one + this algebraicity" implies generalized one.

(K., On the algebraicity of some products of special values of Barnes' multiple gamma function, Amer. J. Math. (online version))

2.5 A numerical example

Let $K := \mathbb{Q}(\sqrt{2\sqrt{5}-26}), \sigma : \sqrt{2\sqrt{5}-26} \mapsto -\sqrt{-2\sqrt{5}-26} \in \operatorname{Hom}(K, \mathbb{C}), \rho$ the complex conjugation. Then $\operatorname{Hom}(K, \mathbb{C}) = \{\operatorname{id}, \rho, \sigma, \rho \circ \sigma\}$. Let

$$C: y^2 = \frac{7+\sqrt{41}}{2}x^6 + (-10 - 2\sqrt{41})x^5 + 10x^4 + \frac{41+\sqrt{41}}{2}x^3 + (3 - 2\sqrt{41})x^2 + \frac{7-\sqrt{41}}{2}x + 1.$$

Then J(C) has CM by $(K, \{id, \sigma\})$. (Bouyer and Streng, Examples of CM curves of genus two defined over the reflex field, *LMS J. Comput. Math.*) In fact, $\omega_{id} = \frac{2dx}{y} + \frac{(\sqrt{5}-1)xdx}{y}$, $\omega_{\sigma} = \frac{(-\sqrt{5}+\sqrt{41})xdx}{y}$ are differential forms of the first kind where K acts by id, σ respectively. Numerically we have (Maple's command "periodmatrix")

$$\pi p_K(\mathrm{id}, \mathrm{id}) p_K(\mathrm{id}, \sigma) := \int \omega_{\mathrm{id}} = -0.4929421793... - 0.8116152991...i,$$
$$\pi p_K(\sigma, \mathrm{id}) p_K(\sigma, \sigma) := \int \omega_{\sigma} = -0.1395619319... + 0.1323795194...i.$$

Similarly, we define C' where J(C') has CM by $(K, \{id, \rho \circ \sigma\})$ by replacing $\sqrt{41}$ with $-\sqrt{41}$. Then we have

$$\pi p_K(\mathrm{id}, \mathrm{id}) p_K(\mathrm{id}, \rho \circ \sigma) = -0.4443866005 \dots - 0.3099403507 \dots i,$$

$$\pi p_K(\rho \circ \sigma, \mathrm{id}) p_K(\rho \circ \sigma, \rho \circ \sigma) = -2.0247186165 \dots + 0.4533729269 \dots i.$$

Let $F := \mathbb{Q}(\sqrt{5}), f := (\frac{13-\sqrt{5}}{2})$. We easily see that $C_{\mathfrak{f}} = \{c_1 := [(1)], c_2 := [(3)]\} \cong \operatorname{Gal}(K/F), c_1 \leftrightarrow \operatorname{id}, c_2 \leftrightarrow \rho, \zeta(0, c_1) = 1, \zeta(0, c_2) = -1$. Then we obtain numerically

$$\pi p_K(\mathrm{id}, \mathrm{id}) p_K(\mathrm{id}, \rho)^{-1} \equiv \pi p_K(\mathrm{id}, \mathrm{id}) p_K(\mathrm{id}, \sigma) p_K(\mathrm{id}, \mathrm{id}) p_K(\mathrm{id}, \rho \circ \sigma)$$

$$\stackrel{?}{=} \Gamma(c_1) (\frac{\sqrt{5}-1}{2})^{\frac{14}{41}} \frac{\sqrt{-8\sqrt{5}+20+(\sqrt{5}+15)\sqrt{2\sqrt{5}-26}}}{80}.$$

3 *p*-adic analogues

3.1 *p*-adic analogue of Yoshida's class invariant

Assume that

the prime ideal \mathfrak{p} corresponding to $F \hookrightarrow \mathbb{C}_p$ divides \mathfrak{f} .

We define

$$\Gamma_p(c) := \Gamma_p(Z_c)) \times \prod_i \exp_p(b_i \log_p a_i)$$

for the same $Z_c \subset F$, $a_i, b_i \in F$ as those in the definition of $\Gamma(c)$. Here we put

$$\Gamma_p(Z) := \exp_p\left(\frac{d}{ds}\left[p\text{-adic interpolation of } \sum_{z \in Z} z^{-s}\right]_{s=0}\right).$$

- We have a *p*-adic analogue of Shintani's formula.
- $\Gamma_p(c) \mod (\mathcal{O}_{F,+}^{\times})^{\mathbb{Q}}$ does not depend on the choices of D, \mathfrak{a} .
- The "ratio" $[\Gamma(c):\Gamma_p(c)] \mod \mu_{\infty}$ does not depend on \mathfrak{a}, D , that is,

$$\Gamma(c; D, \mathfrak{a}) / \Gamma(c; D', \mathfrak{a}') \equiv \Gamma_p(c; D, \mathfrak{a})) / \Gamma_p(c; D', \mathfrak{a}') \mod \mu_{\infty}.$$

3.2 *p*-adic analogue of Shimura's period symbol

We define

$$p_{K,p}(\sigma,\tau) \in B_{dR}^{\times}$$

by replacing the de Rham isomorphism with comparison isomorphisms of p-adic Hodge theory, \mathbb{C} with Fontaine's p-adic period ring B_{dR} , and $2\pi i$ with the p-adic period $(2\pi i)_p$ of the Lefschetz motive. Since abelian varieties with CM have potentially good reductions, we see that

$$p_{K,p}(\sigma,\tau) \in (B_{cris}\overline{\mathbb{Q}_p})^{\mathbb{Q}}.$$

Moreover

$$[p_K(\sigma, \tau) : p_{K,p}(\sigma, \tau)] \mod \mu_{\infty}$$

is well-defined when we take the same basis c_B, c_{dR} of cohomology groups for $p_K, p_{K,p}$.

3.3 Reciprocity laws

Let $W_{\mathfrak{p}} \subset \operatorname{Gal}(\overline{F_{\mathfrak{p}}}/F_{\mathfrak{p}})$ be the Weil group, that is, $\tau \in W_{\mathfrak{p}} \Leftrightarrow \tau|_{F_{\mathfrak{p}}^{ur}} = \operatorname{Fr}_{\mathfrak{p}}^{\deg_{\mathfrak{p}}\tau}$ where $\deg_{\mathfrak{p}}\tau \in \mathbb{Z}$, $\operatorname{Fr}_{\mathfrak{p}}$ denotes the Frobenius automorphism at \mathfrak{p} . We consider a natural action $W_{\mathfrak{p}} \curvearrowright B_{cris}\overline{\mathbb{Q}_p}$ defined by $\Phi_{\tau} := (\operatorname{ab.Fr.})^{\deg_{\mathfrak{p}} \operatorname{deg_{\mathfrak{p}}} \tau} \otimes \tau$.

Conjecture 4. Assume that $\mathfrak{p} \mid \mathfrak{f}$. Under Conjecture 1, we define

$$\mathfrak{G}(c) := \frac{\Gamma(c)}{(2\pi i)^{\zeta(0,c)} \prod_{c' \in C_{\mathfrak{f}}} p_{K}(c,c')^{\frac{\zeta(0,c')}{[H_{\mathfrak{f}}:K]}}} \frac{(2\pi i)_{p}^{\zeta(0,c)} \prod_{c' \in C_{\mathfrak{f}}} p_{K,p}(c,c')^{\frac{\zeta(0,c')}{[H_{\mathfrak{f}}:K]}}}{\Gamma_{p}(c)} \in (B_{cris}\overline{\mathbb{Q}_{p}})^{\mathbb{Q}}/\mu_{\infty}.$$

Then we have for $\tau \in W_{\mathfrak{p}}$

$$\Phi_{\tau}\left(\mathfrak{G}(c)\right) \equiv \mathfrak{G}(c_{\tau}c) \bmod \mu_{\infty},$$

where $c_{\tau} := \operatorname{Art}^{-1}(\tau|_{H_{\mathfrak{f}}}) \in C_{\mathfrak{f}}.$

Conjecture 5. Assume that $\mathfrak{p} \nmid \mathfrak{f}$. Under Conjecture 1, we define

$$\mathfrak{G}(c;D,\mathfrak{a}) := \frac{\Gamma(c;D,\mathfrak{a})}{(2\pi i)^{\zeta(0,c)} \prod_{c'} p_K(c,c')^{\frac{\zeta(0,c')}{[H_{\mathfrak{f}}:K]}}} (2\pi i)_p^{\zeta(0,c)} \prod_{c'} p_{K,p}(c,c')^{\frac{\zeta(0,c')}{[H_{\mathfrak{f}}:K]}} \in (B_{cris}\overline{\mathbb{Q}_p})^{\mathbb{Q}}/\mu_{\infty}.$$

Then we have for $\tau \in W_{\mathfrak{p}}$ with $\deg_{\mathfrak{p}} \tau = 1$

$$\Phi_{\tau}(\mathfrak{G}(c; D, \mathfrak{a})) \equiv \frac{\pi_{\mathfrak{p}}^{\frac{\zeta(0, [\mathfrak{p}]c)}{h_{F}^{+}}} \mathfrak{G}([\mathfrak{p}]c; D, \mathfrak{pa})}{\prod_{\tilde{c} \mapsto [\mathfrak{p}]c \in C_{\mathfrak{f}}} \Gamma_{p}(\tilde{c}; D, \mathfrak{pa})} \mod \mu_{\infty},$$

where h_F^+ is the narrow class number, $\pi_{\mathfrak{p}}$ is a suitable generator of $\mathfrak{p}^{h_F^+}$.

Remark 6. • When $H_{\mathfrak{f}}$ does not contain any CM-field, we see that $\zeta(0,c) = 0$. Hence we regard $p_K = p_{K,p} = 1$ in this case.

 "modµ_∞ ambiguity" occurs when we take rational powers of periods or consider exp_p outside of the convergence region. This may be avoidable by "S, T-modified".

4 Main results

Proposition 7 (Norm relation?). Let $c \in C_{\mathfrak{f}}$, \mathfrak{q} a prime ideal, $\phi: C_{\mathfrak{fq}} \to C_{\mathfrak{f}}$ the natural projection. For simplicity assume that $\mathfrak{p} \mid \mathfrak{f}$. Then we have

$$\prod_{\tilde{c}\in C_{\mathfrak{fq}},\ \phi(\tilde{c})=c}\mathfrak{G}(\tilde{c}) \equiv \begin{cases} \mathfrak{G}(c)\mathfrak{G}([\mathfrak{q}]c)^{-1} & (\mathfrak{q}\nmid\mathfrak{f})\\ \mathfrak{G}(c) & (\mathfrak{q}\mid\mathfrak{f}) \end{cases} \mod \mu_{\infty}$$

Theorem 8. Conjectures 1, 2, 3 imply the reciprocity law on Stark's units up to μ_{∞} .

Proof. Let H be the maximal subfield of $H_{\mathfrak{f}}$ where the real place id: $F \hookrightarrow \mathbb{R}$ splits. Then we can show that

$$\prod_{c \mapsto \sigma} \mathfrak{G}(c) \equiv \exp(\zeta'(0, \sigma)) \mod \mu_{\infty} \quad (\sigma \in \operatorname{Gal}(H/F)).$$

Since Φ_{τ} is τ -semilinear, we obtain $\tau(\exp(\zeta'(0,\sigma)) \equiv \exp(\zeta'(0,\tau\circ\sigma)) \mod \mu_{\infty}$ for $\tau \in W_{\mathfrak{p}}$. Then we vary \mathfrak{p} .

By a similar argument, we can show that

Theorem 9. Conjectures 1, 3 imply a refinement (by K.-Yoshida) of the rank one abelian Gross-Stark conjecture.

Sketch of proof. Let H be the maximal subfield of $H_{\mathfrak{f}}$ where \mathfrak{p} splits completely. Then, roughly speaking, we can show that

$$\prod_{c \mapsto \sigma} \mathfrak{G}(c) \equiv \text{``a Gross-Stark unit''} \mod \mu_{\infty} \quad (\sigma \in \operatorname{Gal}(H/F)).$$

Theorem 10. Conjecture 2 holds true when $H_{\mathfrak{f}}$ is abelian over \mathbb{Q} and $\mathfrak{p} \nmid 2$.

Sketch of proof. The case $F = \mathbb{Q}$ follows from Rohrlich's formula and Coleman's formula. We reduce the problem to this case, by well-known formula on *L*-functions

$$L(s,\chi) = \prod_{\psi \in \widehat{G}, \psi|_{H} = \chi} L(s,\psi) \quad (\chi \in \widehat{G}, \ G := \operatorname{Gal}(H_{\mathfrak{f}}/\mathbb{Q}) \supset H := \operatorname{Gal}(H_{\mathfrak{f}}/F)).$$

By this, we can express $\exp(\zeta'(0,c))$'s of F in terms of those of \mathbb{Q} . Recall Shintani's formula:

$$\exp(\zeta'(0,c)) = \prod_{\iota \in \operatorname{Hom}(F,\mathbb{R})} \Gamma(c,\iota).$$

We need just $\Gamma(c, id)$, not their product. By definition,

$$Z_c := \{ z \in D \cap \mathfrak{a}^{-1} \mid z \mathfrak{a} \in c \},\$$

$$\Gamma(c,\iota) := \Gamma(\iota(Z_c)) \times \prod_i \iota(a_i)^{\iota(b_i)}.$$

Hence $\Gamma(c, \iota)$ depends on $\iota(c)$, rather than on c. When $H_{\mathfrak{f}}/\mathbb{Q}$ is abelian, $\iota(c) \in C_{\iota(\mathfrak{f})}$ (and $\iota(\mathfrak{f})$) do not depend on $\iota \in \operatorname{Hom}(F, \mathbb{R})$. Hence, we obtain an expression like

 $\exp(\zeta'(0,c)) = \Gamma(c)^{[F:\mathbb{Q}]} \times \text{ explicit correction terms}$

by Yoshida's technique. Since the same holds true for $\exp_p(\zeta_p'(0,c))$ we have

$$\left[\exp(\zeta'(0,c)):\exp_p(\zeta'_p(0,c))\right] \equiv \left[\Gamma(c)^{[F:\mathbb{Q}]}:\Gamma_p(c)^{[F:\mathbb{Q}]}\right] \mod \mu_{\infty}.$$

Similarly we can show that

Theorem 11 (which has not yet written). Conjecture 3 holds true when $H_{\mathfrak{f}}$ is abelian over \mathbb{Q} and p remains prime in F.