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Aim

Gras (1973) provided a certain characterization of monogenic cyclic
cubic fields. (next slide)

Today: Provide an alternative proof (and something more).

Focusing on the first cohomology of the unit group.

Joint work with R. Sekigawa.
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Gras’ characterization of monogenic cyclic cubic fields

Theorem

Let K be a cyclic cubic field (that is, Gal(K/Q) ∼= Z/3Z). Then the
following are equivalent.

1 K is monogenic.

2 There exists a unit θ ∈ O×
K satisfying that

N(θ) = 1, T r(θ + θ−1) = −3, T r(θ2 − θ−1)√
dK

∈ N3 := {n3 | n ∈ N},

where dK is the discriminant of K.

Note that dK ∈ N2 for any cyclic cubic field K.
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Main result

Definition (Shanks’ simplest cubic fields)

Let Kt be the splitting field of ft(x) = x3 − tx2 − (t+ 3)x− 1 (t ∈ Z).
Kt is called a simplest cubic field. Each Kt is a cyclic cubic field.

Theorem

A monogenic cyclic cubic field is a simplest cubic field Kt.

Problem

Which Kt is monogenic?

Theorem

Kt is monogenic (except for several t)

⇔ ∆t√
dK
∈ N3 (∆t := t2 + 3t+ 9 =

√
dft)

⇔ t 6≡ 3, 21 mod 27 and vp(∆t) 6≡ 2 mod 3 for all p 6= 3.
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The last condition is easy to check.

Example (non-monogenic Kt (−1 ≦ t ≦ 2000))

21,30,41,48,57,75,84,90,100,102,103,111,129,138,139,152,154,156,165,183,188,
192,201,204,210,219,235,237,246,250,264,269,271,273,291,299,300,318,327,335,
345,348,354,356,372,374,381,384,398,399,404,408,426,433,435,438,446,453,462,
480,482,489,495,507,515,516,531,534,543,544,561,565,570,573,577,580,588,593,
597,602,607,615,624,642,651,669,678,691,696,705,716,723,727,732,742,750,759,
776,777,786,789,804,813,825,831,838,840,844,858,867,874,876,885,887,894,912,
921,923,926,936,939,945,948,966,975,985,992,993,1002,1020,1021,1029,1034,
1047,1056,1070,1074,1080,1083,1096,1101,1110,1114,1119,1128,1132,1137,1155,
1164,1168,1181,1182,1191,1209,1210,1217,1218,1230,1236,1237,1245,1249,1263,
1265,1266,1269,1272,1279,1287,1290,1299,1317,1326,1328,1344,1353,1364,1371,
1377,1380,1398,1407,1413,1418,1425,1434,1452,1461,1462,1475,1479,1488,1497,
1506,1511,1515,1524,1533,1542,1560,1563,1569,1573,1587,1596,1609,1614,1621,
1622,1623,1641,1648,1650,1668,1671,1677,1695,1704,1707,1720,1722,1731,1743,
1749,1756,1758,1776,1785,1790,1803,1805,1812,1818,1830,1839,1854,1857,1866,
1867,1884,1893,1903,1911,1916,1920,1925,1938,1947,1952,1959,1965,1974,1992.
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Proof for [monogenic ⇒ simplest cubic field]

Let K be a cyclic cubic field. There exists a unique integral ideal CK

satisfying NCK =
√
dK .

Assume K is monogenic, i.e., OK = Z[∃γ]
⇒ CK = (γ − γ′), where γ′ is a conjugate of γ

∵ OK = Z[γ] implies dK ∼ ((γ − γ′)(γ − γ′′)(γ′ − γ′′))2 ∼ (γ − γ′)6

⇒ ∃θ ∈ O×
K s.t. 1 + θ + θθ′ = 0. More explicitly, θ := γ′−γ′′

γ−γ′ ∈ O×
K

∵ 1 + θ + θθ′ = 1 + γ′−γ′′

γ−γ′ + γ′−γ′′

γ−γ′
γ′′−γ
γ′−γ′′ =

γ−γ′+γ′−γ′′+γ′′−γ
γ−γ′ = 0,

CK is fixed by the conjugation by definition.

⇒ K = Kt for the parameter t := Tr(θ)

∵ (x− θ)(x− θ′)(x− θ′′) = x3 − Tr(θ)x2 + Tr(θθ′)x− 1
= x3 − tx2 − (t+ 3)x− 1 = ft(x).

i.e., K is a simplest cubic field=
⇒

Need certain additional condition for the opposite direction because there
are non-monogenic simplest cubic fields.
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Theorem

Kt is monogenic (except for several t)

⇔ ∆t√
dKt

∈ N3 := {n3 | n ∈ N}

⇔ t 6≡ 3, 21 mod 27, vp(∆t) 6≡ 2 mod 3 for all p 6= 3.

The second equivalence easily follows since we can write dKt explicitly:

dKt =



∏
vp(∆t)6≡0 mod 3

p2 (3 ∤ t or t ≡ 12 mod 27),

34
∏

p 6=3,vp(∆t)6≡0 mod 3

p2 (otherwise).

Provide a sketch of proof of the first equivalence.
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Preparation

K: a cyclic cubic field, G := Gal(K/Q) ∼= Z/3Z.
PK := {(α) | α ∈ K×}: the group of principal fractional ideals of K

⇒ 1→ O×
K → K× α7→(α)→ PK → 1, with actions by G

⇒ Q× → PG
K → H1(G,O×

K)→ H1(G,K×)→ · · · 1, ∵ Hilbert 90.

⇒ Coker[Q× → PG
K ] = PG

K/PQ ∼= H1(G,O×
K), (α) 7→ α′

α ,

PQ = Image[Q× → PG
K ]: the group of fractional ideals of Q.

IK : the group of fractional ideals of K

⇒ IK
N→ Q× ↠ Q×/(Q×)3, its kernel = PQ

⇒ IK/PQ ↪→ Q×/(Q×)3, a 7→ Na.

H1(G,O×
K) ∼= PG

K/PQ ⊂ IGK/PQ ↪→ Q×/(Q×)3

∈ ∈ ∈ ∈

α′

α ←[ (α) a 7→ Na
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Proof for [OKt
= Z[γ]⇒ ∆t√

dKt

∈ N3]

Let K = Kt, take CKt satisfying NCKt =
√
dKt .

H1(G,O×
Kt

) ∼= PG
Kt

/PQ ⊂ IGKt
/PQ ↪→ Q×/(Q×)3,

∈ ∈ ∈ ∈

θ ←[ (γ − γ′) = CKt 7→
√

dKt

θt ←[ (θt − θ′t) 7−→
√
dft = ∆t

Take a root θt of ft(x) = x3 − tx2 − (t+ 3)x− 1 = 0.

Assume OKt = Z[γ] ⇒ CKt = (γ − γ′), θ := γ′−γ′′

γ−γ′ ∈ O×
K

⇒ [θ] = [θt] ∈ H1(G,O×
Kt

) (strictly speaking, replace t if necessarily)

Key point: a replacement of a generator CKt = (α) = (αε)

does not change its class α′

α = α′ϵ′

αϵ ∈ H1(G,O×
Kt

) =
{u∈O×

K |N (u)=1}{
u′
u
|u∈O×

K

}
⇔ ∆t ≡

√
dKt mod (Q×)3.
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Take a root θt of ft(x) = x3 − tx2 − (t+ 3)x− 1 = 0.

Assume OKt = Z[γ] ⇒ CKt = (γ − γ′), θ := γ′−γ′′

γ−γ′ ∈ O×
K

⇒ [θ] = [θt] ∈ H1(G,O×
Kt

) (strictly speaking, replace t if necessarily)

Key point is: a replacement of a generator CKt = (α) = (αε)

does not change its class α′

α = α′ϵ′

αϵ ∈ H1(G,O×
Kt

) =
{u∈O×

K |N (u)=1}{
u′
u
|u∈O×

K

}

Lemma

Let K be a cyclic cubic field, assume CK = (β) is principle, put

uβ := β′

β ∈ O
×
K . The following statements are equivalent.

1 ∃α ∈ OK s.t. CK = (α), Tr(α) = 0.

2 ∃u ∈ O×
K s.t. 1 + u+ uu′ = 0, uβ = u ∈ H1(G,O×

K).

3 ∃t s.t. K = Kt, uβ = θt ∈ H1(G,O×
K).
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Lemma

Let K be a cyclic cubic field, assume CK = (β) is principle, put

uβ := β′

β ∈ O
×
K . The following statements are equivalent.

1 ∃α ∈ OK s.t. CK = (α), Tr(α) = 0.

2 ∃u ∈ O×
K s.t. 1 + u+ uu′ = 0, uβ = u ∈ H1(G,O×

K).

3 ∃t s.t. K = Kt, uβ = θt ∈ H1(G,O×
K).

Proof.

[(i) ⇔ (ii)]. Write α := βε (ε ∈ O×
K). Then we have

Tr(α) = βε+ (βε)′ + (βε)′′ = βε

(
1 + uβ

ϵ′

ϵ + uβ
ϵ′

ϵ

(
uβ

ϵ′

ϵ

)′
)
.

In particular, Tr(α) = 0 ⇔ u := uβ
ϵ′

ϵ ∈ uβ satisfying 1 + u+ uu′ = 0.
[(ii) ⇐ (iii)] follows from 1 + θt + θtθ

′
t = 0. [(ii) ⇒ (iii)] u is a root of

(x− u)(x− u′)(x− u′′) = x3 − Tr(u)x2 + Tr(uu′)x− 1 = ft(x)

for t = Tr(u). That is, u is one of θt,θ
′
t = θt

θ′t
θt
,θ′′t = θt

(θ′tθt)
′

θ′tθt
∈ θt.
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Proof for [OKt
= Z[γ]⇐ ∆t√

dKt

∈ N3]

We explicitly show that

γ :=
θt − a

3

√
∆t√
dKt

for a ∈ Z with a ≡ t

3
mod 3

√
∆t√
dKt

is a generator of PIB.
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Relation to Gras’ characterization

Theorem

Let K be cyclic cubic fields. Then the following are equivalent.

1 K is monogenic.

2 There exists a unit θ ∈ O×
K satisfying that

N(θ) = 1, Tr(θ + θ−1) = −3, Tr(θ2−θ−1)√
dK

∈ N3.

N(θ) = 1, Tr(θ + θ−1) = −3
⇒ Tr(θ) + Tr(θθ′) + 3 = 0
⇒ (x− θ)(x− θ′)(x− θ′′) = x3 − Tr(θ)x2 + Tr(θθ′)x− 1 = ft(x) with

t = Tr(θ), i.e., K = Kt.
⇒ Tr(θ2 − θ−1) = Tr(θ)2 − 3Tr(θθ′) = t2 + 3t+ 9 = ∆t.

A monogenic cyclic cubic field is a simplest cubic field Kt.

Kt is monogenic ⇔ ∆t√
dK
∈ N3

⇔ t 6≡ 3, 21 mod 27, vp(∆t) 6≡ 2 mod 3 (p 6= 3).
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I believe such arguments can be generalized to other situations.

e.g., Next talk by Sekigawa.

I am interested in other relations between the monogenity and the
unit group.

e.g., Sekigawa� found that a kind of congruences of units imply
non-monogenity:

monogenity ⇔ Diophantine equation(s)
⇒ a unit equation, in some cases
(equation in the form of a1u1 + · · ·+ arur = 0 under ui ∈ O×

K)
⇒ no solution because of certain congruence relations among units in
several settings.

�Relative power integral bases in certain ray class fields of an imaginary quadratic
number field, preprint
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