On periods and the absolute Frobenius on Fermat curves

Tomokazu Kashio* (Tokyo University of Science) L-functions and Motives in Niseko 2024

This slide \Rightarrow

This talk is related to these papers, particularly [K2].

- [K1] Fermat curves and a refinement of the reciprocity law on cyclotomic units. J. Reine Angew. Math. 741 (2018), 255–273
- [K2] Note on Coleman's formula for the absolute Frobenius on Fermat curves, Annales de l'Institut Fourier (2024)
- [K3] On a common refinement of Stark units and Gross-Stark units, preprint (arXiv:1706.03198)

^{*}E-mail: tomokazu_kashio@rs.tus.ac.jp

Two formulas concerning Fermat curves F_n : $x^n + y^n = 1$

Rohrlich's formula (in Appendix by Rohrlich of Gross' paper)

Consider differential forms $\eta_{r,s} = x^{r-1}y^{s-n}dx$ ($0 < r, s < n, r+s \neq n$) of the first and second kind on F_n .

$$\int_{\gamma} \eta_{r,s} \equiv \frac{\Gamma(\frac{r}{n})\Gamma(\frac{s}{n})}{\Gamma(\frac{r+s}{n})} = B(\frac{r}{n}, \frac{s}{n}) \mod \mathbb{Q}(\zeta_n)^{\times}$$

for any closed path γ with $\int_{\gamma} \eta_{r,s} \neq 0$, $\zeta_n := e^{\frac{2\pi i}{n}}$.

Coleman's formula (Frobenius matrix)

Consider the absolute Frobenius action $\operatorname{Fr}_p \curvearrowright H^1_{dR}(F_n, \mathbb{Q}_p)$.

$$\operatorname{Fr}_p(\eta_{r,s}) \equiv \frac{\Gamma_p(\frac{r'+s'}{n})}{\Gamma_n(\frac{r'}{n})\Gamma_n(\frac{s'}{n})} \cdot \eta_{r',s'} \mod \mathbb{Q}^{\times} \mu_{\infty}$$

for $p \nmid n$, $pr \equiv r' \mod n$, μ_{∞} : group of roots of unity

Two formulas concerning Fermat curves F_n : $x^n + y^n = 1$

Rohrlich's formula

$$\int_{\gamma} \eta_{r,s} \equiv \frac{\Gamma(\frac{r}{n})\Gamma(\frac{s}{n})}{\Gamma(\frac{r+s}{n})} = B(\frac{r}{n}, \frac{s}{n}) \mod \mathbb{Q}(\zeta_n)^{\times}$$

 $\eta_{r,s} = x^{r-1}y^{s-n}dx \ (0 < r, s < n, \ r+s \neq n), \ \gamma$: closed path.

Coleman's formula

$$\operatorname{Fr}_p(\eta_{r,s}) \equiv \frac{\Gamma_p(\frac{r'+s'}{n})}{\Gamma_p(\frac{r'}{n})\Gamma_p(\frac{s'}{n})} \cdot \eta_{r',s'} \mod \mathbb{Q}^{\times} \mu_{\infty}$$

abs.Frob.Fr $_p \curvearrowright H^1_{dR}(F_n, \mathbb{Q}_p)$, $p \nmid n$, $pr \equiv r' \mod n$, μ_∞ : roots of unity

- Similar phenomenon occurs between Chowla-Selberg formula for the eta-function and Ogus' formula for Fr_p on elliptic curves with CM. In these cases, $\prod_{a=1}^{d-1} \Gamma_*(\frac{a}{d})^{\chi_d(a)}$ (* = \emptyset , p) appears.
- The theme of my talk is "why does such a similarity occur?"

Period symbol

- Before we begin the main discussion, we introduce Shimura's period symbol, obtained by decomposing period integrals.
- Then we can "decompose" Rohrlich's formula $\int_{\gamma} \eta_{r,s} \equiv \frac{\Gamma(\frac{r}{n})\Gamma(\frac{s}{n})}{\Gamma(\frac{r+s}{n})}$ into (single) Γ -function version.
- (by CM-theory, solve linear simultaneous equations $\{\log\Gamma(\frac{r}{n}) + \log\Gamma(\frac{s}{n}) \log\Gamma(\frac{r+s}{n}) \coloneqq \log\int_{\gamma}\eta_{r,s}\}_{r,s} \Rightarrow \log\Gamma(\frac{r}{n}) \coloneqq ?)$

Definition (Shimura's period symbol)

K: CM-field of degree 2n, $A/\overline{\mathbb{Q}}$: abelian variety with CM by K. Then

$$K \cong \operatorname{End}(A) \otimes \mathbb{Q} \curvearrowright H^1_{dR}(A, \overline{\mathbb{Q}}) = \bigoplus_{\sigma \in \operatorname{Hom}(K, \mathbb{C})} \overline{\mathbb{Q}} \cdot \eta_{\sigma},$$

where K acts η_{σ} through σ . CM type $\Xi_A := \{ \sigma \mid \eta_{\sigma} \text{ is holom.} \}$, $|\Xi_A| = n$.

$$\exists p_K(\sigma,\tau) \in \mathbb{C}^\times/\overline{\mathbb{Q}}^\times \text{ s.t. } \prod_{\tau \in \Xi_A} p_K(\sigma,\tau) \equiv \pi^{-1} \int_{\gamma} \eta_\sigma \mod \overline{\mathbb{Q}}^\times.$$

Period symbol

Definition (Shimura's period symbol)

K: CM-field, $A/\overline{\mathbb{Q}}$: ab.var. with CM by K.

$$\exists p_K(\sigma,\tau) \in \mathbb{C}^\times/\overline{\mathbb{Q}}^\times \text{ s.t. } \prod_{\tau \in \Xi_A} p_K(\sigma,\tau) \equiv \pi^{-1} \int_{\gamma} \eta_\sigma \mod \overline{\mathbb{Q}}^\times.$$

e.g,
$$K = \mathbb{Q}(\zeta_n)$$
, $\zeta_n \curvearrowright F_n : x^n + y^n = 1$, $\sigma_a : \mathbb{Q}(\zeta_n) \to \mathbb{C}$, $\zeta_n \mapsto \zeta_n^a$
Any CM-type is in the form $\Xi_{r,s} := \{\sigma_a \mid \langle \frac{ar}{n} \rangle + \langle \frac{as}{n} \rangle + \langle \frac{a(n-r-s)}{n} \rangle = 1\}$

$$\prod_{\tau \in \Xi_{r,s}} p_{\mathbb{Q}(\zeta_n)}(\mathrm{id}, \tau) \equiv \pi^{-1} \int_{\gamma} \eta_{r,s} \mod \overline{\mathbb{Q}}^{\times} \quad (r + s < n).$$

Yoshida and K. "solved" Rohrlich's formula: $\int_{\gamma} \eta_{r,s} \equiv \frac{\Gamma(\frac{r}{n})\Gamma(\frac{s}{n})}{\Gamma(\frac{r+s}{n})}$ for $\Gamma(\frac{r}{n})$:

$$\Gamma(\frac{a}{n}) \equiv \pi^{1-\langle \frac{a}{n} \rangle} \prod_{b \bmod n \in (\mathbb{Z}/n\mathbb{Z})^{\times}} p_{\mathbb{Q}(\zeta_n)}(\mathrm{id}, \sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n} \rangle} \mod \overline{\mathbb{Q}}^{\times}.$$

p-adic analogue

- We may regard period integral: $H_1^{sing} \times H_{dR}^1 \to \mathbb{C}$, $(\gamma, \eta) \mapsto \int_{\gamma} \eta$ as the dual of de Rham isom.: $H_{sing}^1 \otimes \mathbb{C} \cong H_{dR}^1 \otimes \mathbb{C}$
- Define "p-adic period integral" and "p-adic period symbol"

$$\int_{\gamma,p} \eta \in B_{dR}, \quad p_{K,p}(\sigma,\tau) \in B_{dR}^{\times}/\overline{\mathbb{Q}}^{\times}$$

by replacing de Rham isom. with the composite of comparison isom.'s

$$H^1_{sing} \otimes B_{dR} \cong H^1_{et} \otimes B_{dR} \cong H^1_{dR} \otimes B_{dR}$$

- (In [K3], we used motives associated to alg.Hecke char.s instead of ab.var.s with CM, to avoid problems with "field of definition")
- Each symbol has ambiguity of $\operatorname{mod}\overline{\mathbb{Q}}^{\times}$ since $\int_{\gamma,*}\eta$ (* = \emptyset,p) depends on the choices of γ,η . Assuming that we take the same γ,η for both symbols, the following "ratio" is well-defined up tp μ_{∞} .

$$[p_K(\sigma,\tau):p_{K,p}(\sigma,\tau)]\in (\mathbb{C}^\times\times B_{dR}^\times)/\overline{\mathbb{Q}}^\times$$

- CM \Rightarrow pot.good $\Rightarrow \int_{\gamma,p} \eta \in B_{cris}\overline{\mathbb{Q}_p} \Rightarrow p_{K,p}(\sigma,\tau) \land \mathsf{abs}.\mathsf{Frob}. \ \mathrm{Fr}_p$
- ullet Since ${
 m Fr}_p$ acts trivially on H^1_{et} , the action on $\eta=$ that on $\int_{\gamma,p}\eta,p_{K,p}$

p-adic analogue

- We defined $p_{K,p}(\sigma,\tau) \in B_{dR}^{\times}/\overline{\mathbb{Q}}^{\times}$ with the action of Fr_p
- The "ratio" $[p_K(\sigma,\tau):p_{K,p}(\sigma,\tau)]\in (\mathbb{C}^{\times}\times B_{dR}^{\times})/\overline{\mathbb{Q}}^{\times}$ is well-defined up tp μ_{∞}

We can "solve" Coleman's formula

$$\operatorname{Fr}_p(\eta_{r,s}) \equiv \frac{\Gamma_p(\frac{r'+s'}{n})}{\Gamma_p(\frac{r'}{n})\Gamma_p(\frac{s'}{n})} \cdot \eta_{r',s'} \mod \mathbb{Q}^{\times} \mu_{\infty} \quad (p \nmid n)$$

for $\Gamma_p(z)$, by a similar manner to the case of Rohrlich's formula:

Corollary ([K2, K3])

We put
$$P(\frac{a}{n}) := \frac{\Gamma(\frac{a}{n})\pi_p^{\frac{1}{2}-\langle \frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n),p}(\mathrm{id},\sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n}\rangle}}{\pi^{1-\langle \frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n)}(\mathrm{id},\sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n}\rangle}} \in B_{dR}^\times/\mu_\infty.$$
 Then

$$\Gamma_p(\frac{a'}{n}) \equiv p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(P(\frac{a}{n}))} \mod \mu_{\infty}. \quad (a' \equiv pa \mod n)$$

summary 1

By "linear algebra", we may rewrite two formulas as follows:

Rohrlich's formula (in terms of period symbol)

$$\Gamma(\frac{a}{n}) \equiv \pi^{1-\langle \frac{a}{n} \rangle} \prod_{b} p_{\mathbb{Q}(\zeta_n)}(\mathrm{id}, \sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n} \rangle} \mod \overline{\mathbb{Q}}^{\times}.$$

$$\Rightarrow P(\frac{a}{n}) := \frac{\Gamma(\frac{a}{n})\pi_p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \prod_b p_{\mathbb{Q}(\zeta_n),p}(\mathrm{id},\sigma_b)^{\frac{1}{2} - \langle \frac{ab}{n} \rangle}}{\pi^{1 - \langle \frac{a}{n} \rangle} \prod_b p_{\mathbb{Q}(\zeta_n)}(\mathrm{id},\sigma_b)^{\frac{1}{2} - \langle \frac{ab}{n} \rangle}} \in B_{dR}^{\times}/\mu_{\infty}$$

Coleman's formula (in terms of period symbols)

$$\Gamma_p(\frac{a'}{n}) \equiv p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(P(\frac{a}{n}))} \mod \mu_{\infty}.$$

- These also imply Chowla-Selberg formula and Ogus' formula up to $\operatorname{mod} \overline{\mathbb{O}}^{\times}$.
- Why Γ and Γ_n appear?

functional equations vs. monomial relations

 Γ -function is characterized by some functional equations and smoothness:

$$(D) \ \Gamma(z+1) = z\Gamma(z) \quad \text{(Difference equation)}$$

$$(M) \ \Gamma(dz) = \tfrac{d^{dz-\frac{1}{2}}}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} \Gamma(z+\tfrac{k}{d}) \ (d\in\mathbb{N}) \quad \text{(Multiplication formula)}$$

characterized by $[C^1,\,(D),\,(M)]$ or $[C^1,\,(M),\,\lim_{z\to 0}z\Gamma(z)=1]$ or \cdots .

 C^1 : a function with continuous derivatives.

Proposition

RHS of Rohrlich's formula $\Gamma(\frac{a}{n}) \equiv \pi^{1-\langle \frac{a}{n} \rangle} \prod_b p_{\mathbb{Q}(\zeta_n)}(\mathrm{id}, \sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n} \rangle} =: G(\frac{a}{n})$ satisfies the "same fun.eq." as (M):

$$(M')$$
 $G(\frac{da}{n}) \equiv \frac{1}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} G(\frac{a}{n} + \frac{k}{d}) \mod \overline{\mathbb{Q}}^{\times}$

It is trivial since LHS \equiv RHS. I mean we can provide an alternative proof.

functional equations vs. monomial relations

(D)
$$\Gamma(z+1) = z\Gamma(z)$$

(M)
$$\Gamma(dz) = \frac{d^{dz-\frac{1}{2}}}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} \Gamma(z+\frac{k}{d}) \ (d \in \mathbb{N})$$

characterized by $[C^1, (D), (M)]$ or $[C^1, (M), \lim_{z\to 0} z\Gamma(z) = 1]$ or \cdots .

Rohrlich:
$$\Gamma(\frac{a}{n}) \equiv G(\frac{a}{n}) := \pi^{1-\langle \frac{a}{n} \rangle} \prod_b p_{\mathbb{Q}(\zeta_n)}(\mathrm{id}, \sigma_b)^{\frac{1}{2}-\langle \frac{ab}{n} \rangle} \mod \overline{\mathbb{Q}}^{\times}$$

$$(M')$$
 $G(\frac{da}{n}) \equiv \frac{1}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} G(\frac{a}{n} + \frac{k}{d}) \mod \overline{\mathbb{Q}}^{\times}$

(Proof) Period (symbol) satisfies some monomial relations including

(E)
$$p_K(\widetilde{\sigma}|_K, \tau) \equiv \prod_{\widetilde{\tau}|_K = \tau} p_L(\widetilde{\sigma}, \widetilde{\tau}) \mod \overline{\mathbb{Q}}^{\times}$$
 for extension $K \subset L$

The case of $\mathbb{Q}(\zeta_n) \subset \mathbb{Q}(\zeta_{dn})$ relates $G(\frac{*}{nd})$ to $G(\frac{*}{n})$.

•
$$(E) \Leftrightarrow L(s, \chi \circ N_{L/K}) = L(s, \chi), M(\chi \circ N_{L/K}) = M(\chi) \otimes_K L(s, \chi)$$

- ullet We may say(?) Γ -function, characterized by (M), appears naturally
- p-adic case is more concrete

Main result ([K2])

(D)
$$\Gamma(z+1) = z\Gamma(z)$$

(M)
$$\Gamma(dz) = \frac{d^{dz-\frac{1}{2}}}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} \Gamma(z+\frac{k}{d}) \ (d \in \mathbb{N})$$

characterized by $[C^1$, (D), (M)] or $[C^1$, (M), $\lim_{z\to 0} z\Gamma(z)=1]$ or \cdots .

The following p-adic analogues are well-known:

$$(D_p) \Gamma_p(z+1) = z^*\Gamma_p(z), z^* = -z (p \nmid z), -1 (p \mid z)$$

$$(M_p) \Gamma_p(dz) = i_{p,d} \cdot d^{dz - (dz)_1 - 1} \prod_{k=0}^{d-1} \Gamma_p(z + \frac{k}{d}) \ (p \nmid d, i_{p,d} \in \mu_4)$$
 characterized by $[C^0, (D_p), \Gamma_p(1) = -1]$.

 C^0 : a continuous function in the p-adic topology For $z \in \mathbb{Z}_p$, we define $z_0 \in \{1, \ldots, p\}$, $z_1 \in \mathbb{Z}_p$ by $z = z_0 + pz_1$.

Main result ([K2])

$$\begin{array}{ll} (D_p) \ \Gamma_p(z+1) = z^*\Gamma_p(z), \ z^* = -z \ (p\nmid z), \ -1 \ (p\mid z) \\ (M_p) \ \Gamma_p(dz) = i_{p,d} \cdot d^{dz-(dz)_1-1} \prod_{k=0}^{d-1} \Gamma_p(z+\frac{k}{d}) \ (p\nmid d, \ i_{p,d} \in \mu_4) \\ \text{characterized by } [C^0, \ (D_p), \ \Gamma_p(1) = -1]. \end{array}$$

The following provides another characterization:

Proposition

$$f \in C^0(\mathbb{Z}_p), \ f(dz) = \prod_{k=0}^{d-1} f(z + \frac{k}{d}) \ (p \nmid d), \ \frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})} \ (k \in \mathbb{N})$$

 $\Rightarrow f(z) = a^{z - \frac{1}{2}} b^{z_1 + \frac{1}{2}} \ (\exists a, b: \text{ constants}).$

- Namely, (M_p) and $\frac{\Gamma_p(p^k+1)}{\Gamma_p(p^k)}=-1$ $(k\geq 1)$ characterize $\Gamma_p(z)$ up to "p-adic exp-functions"
- $\frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})}$ corresponds to "p-multiplication formula"

• $\frac{f(p^k+1)}{f(p^k)}=\frac{f(p^{k+1}+1)}{f(p^{k+1})}$ corresponds to "p-multiplication formula" Let us assume p-multiplication formula holds,

$$f(pz) = \prod_{k=0}^{p-1} f(z + \frac{k}{p})$$

although it doesn't actually make sense because k/p are not p-adic integers.

However, if it were to hold, shifting the equation by 1/p would give us the next equation.

$$f(p(z+\frac{1}{p})) = \prod_{k=1}^{p} f(z+\frac{k}{p})$$

Then, by dividing both sides, we obtain this equation.

$$\frac{f(pz)}{f(pz+1)} = \frac{f(z)}{f(z+1)},$$

which do make sense since $pz, pz+1, z, z+1 \in \mathbb{Z}_p$. So the condition $\frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})}$ may be regarded as a modification of p-multiplication formula.

Main result ([K2])

Proposition

 $f \in C^0(\mathbb{Z}_p)$ satisfying

- prime-to-p multiplication formula: $f(dz) = \prod_{k=0}^{d-1} f(z + \frac{k}{d}) \; (p \nmid d)$
- "p-multiplication formula": $\frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})}$ $(k \in \mathbb{N})$
- $\Rightarrow f(z) = a^{z \frac{1}{2}} b^{z_1 + \frac{1}{2}} \ (\exists a, b: \text{ constants}).$

Coleman's formula: $\Gamma_p(\frac{a'}{n}) \equiv p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(P(\frac{a}{n}))} \mod \mu_{\infty}.$

Theorem

Under an assumption of "p-adic continuity of Frobenius action" (\equiv the RHS of Coleman's formula is continuous in p-adic topology, including the case of $p\mid n$), Coleman's formula holds automatically, up to p-adic exp-functions.

Proposition

$$f \in C^0(\mathbb{Z}_p)$$
 satisfying

- prime-to-p multiplication formula: $f(dz) = \prod_{k=0}^{d-1} f(z + \frac{k}{d}) \; (p \nmid d)$
- "p-multiplication formula": $\frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})}$ $(k \in \mathbb{N})$
- $\Rightarrow f(z) = a^{z-\frac{1}{2}}b^{z_1+\frac{1}{2}} (\exists a, b: \text{ constants}).$

Coleman's formula:
$$\Gamma_p(\frac{a'}{n}) \equiv p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(p(\frac{a'}{n}))} \mod \mu_{\infty}.$$

Theorem

Under an assumption of "p-adic continuity of Frobenius action", we have

- $f(\frac{a'}{n}) := RHS/LHS$ satisfies conditions of Proposition.
- ② In particular, (without using Coelman's formula) we see that $\exists a, b$ s.t.

$$\Gamma_p(\frac{a}{n}) \equiv a^{\frac{a}{n} - \frac{1}{2}} b^{(\frac{a}{n})_1 + \frac{1}{2}} \cdot p^{\frac{1}{2} - \langle \frac{a}{n} \rangle} \frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(P(\frac{a}{n}))} \bmod \mu_{\infty}.$$

(proof) Every part of
$$P(\frac{a}{n}) = \frac{\Gamma(\frac{a}{n})\pi_p^{\frac{1}{2}-\langle\frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n),p}(\mathrm{id},\sigma_b)^{\frac{1}{2}-\langle\frac{ab}{n}\rangle}}{\pi^{1-\langle\frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n)}(\mathrm{id},\sigma_b)^{\frac{1}{2}-\langle\frac{ab}{n}\rangle}}$$
 and LHS satisfy multiplication formula or its variants: (M) or (M_n) or (M') .

summary 2

- **1** $\Gamma(z)$ is characterized by (M) $\Gamma(dz) = \cdots \prod_{k=0}^{d-1} \Gamma(z+\frac{k}{d})$ and \cdots .
- $\textbf{3} \quad (E) \text{ transforms into } (M') \quad G(\frac{da}{n}) \equiv \frac{1}{(2\pi)^{\frac{d-1}{2}}} \prod_{k=0}^{d-1} G(\frac{a}{n} + \frac{k}{d}) \text{ for }$ $G(\frac{a}{n}) := \pi^{1-\langle \frac{a}{n} \rangle} \prod_b p_{\mathbb{Q}(\zeta_n)} (\mathrm{id}, \sigma_b)^{\frac{1}{2} \langle \frac{ab}{n} \rangle}$
- $\textbf{ 1 Thus it is natural (?) that } \Gamma(z) \text{ appears in Rohrlich's formula for } G(z).$
- $\Gamma_p(z) \text{ is almost characterized by "multiplication formulas" } (M_p), \\ \frac{f(p^k+1)}{f(p^k)} = \frac{f(p^{k+1}+1)}{f(p^{k+1})}.$
- $oldsymbol{0}$ p-adic period symbol also satisfies (E) and (M')
- $\begin{array}{l} \bullet \quad \text{Hence $\Gamma_p(z)$ appears automatically in Coleman's formula for} \\ p^{\frac{1}{2}-\langle\frac{a}{n}\rangle}\frac{P(\frac{a'}{n})}{\operatorname{Fr}_p(P(\frac{a}{n}))} \text{ with } P(\frac{a}{n}) = \frac{\Gamma(\frac{a}{n})\pi_p^{\frac{1}{2}-\langle\frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n),p}(\operatorname{id},\sigma_b)^{\frac{1}{2}-\langle\frac{ab}{n}\rangle}}{\pi^{1-\langle\frac{a}{n}\rangle}\prod_b p_{\mathbb{Q}(\zeta_n)}(\operatorname{id},\sigma_b)^{\frac{1}{2}-\langle\frac{ab}{n}\rangle}}, \end{array}$
 - under the assumption of "p-adic continuity of Frobenius action".
- **3** A more canonical formulation (and its proof) of "p-adic continuity of \cdots " in a general setting seems to be an interesting problem.

p-adic continuity of Frobenius action

For Fermat curves,

- $H^1_{dR}(F_n, \mathbb{Q}_p) = \langle \eta_{r,s,n} = x^{r-1}y^{s-n}dx \mid 0 < r, s < n, \ r+s \neq n \rangle_{\mathbb{Q}_p}$
- $\operatorname{Fr}_p \curvearrowright H^1_{dR}(F_n, \mathbb{Q}_p)$, $\exists \alpha_{r,s,n} \in \mathbb{Q}_p$ s.t. $\operatorname{Fr}_p(\eta_{r,s,n}) = \alpha_{r,s,n}\eta_{r',s',n}$ $(r' \equiv pr \mod n)$

"p-adic continuity of Frobenius action":

$$\left| \frac{r_1'}{n_1} - \frac{r_2'}{n_2} \right|_p, \left| \frac{s_1'}{n_1} - \frac{s_2'}{n_2} \right|_p \to 0 \Rightarrow \left| \alpha_{r_1, s_1, n_1} - \alpha_{r_2, s_2, n_2} \right|_p \to 0$$

 \therefore Coefficients of Laurent series' expansions of $\eta_{r_1,s_1,n_1},\eta_{r_2,s_2,n_2}$ are close.

Can these be generalized in the following cases?

- (A certain family of) algebraic curves C with J(C) having CM
- Abelian varieties with CM
- Motives for Algebraic Hecke characters

- [K1] Fermat curves and a refinement of the reciprocity law on cyclotomic units. J. Reine Angew. Math. 741 (2018), 255–273
- [K2] Note on Coleman's formula for the absolute Frobenius on Fermat curves, Annales de l'Institut Fourier (2024)
- [K3] On a common refinement of Stark units and Gross-Stark units, preprint (arXiv:1706.03198)
- [Y] H.Yoshida, Absolute CM-Periods, Math.Surveys Monogr.106, (2003)

summary of [K1]

1 Define a p-adic-period-ring-valued beta function by

$$\mathfrak{B}(\frac{r}{n},\frac{s}{n}) := \frac{B(\frac{r}{n},\frac{s}{n}) \times \int_{\gamma,p} \eta_{r,s}}{\int_{\gamma} \eta_{r,s}}$$

- ② Write a cyclotomic unit: $u_{a \bmod n} := (2\sin(\frac{a}{n}\pi))^2$ as a product of \mathfrak{B} .
- **3** Colman's formula is a refinement of the reciprocity law on cyclotomic units: $\sigma_p(u_{a \bmod n}) = u_{pa \bmod n}$.

summary of [Y], [K3]

Conjectural generalization, form $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ to CM-field / totally real field.