Algebraic automorphic forms and Hilbert-Siegel modular forms

Tamotsu Ikeda (Kyoto university)

Sep. 17, 2018, at Hakuba

1 Positive definite even unimodular lattices

Let F be a totally real number field of degree d. Let $n>0$ be an integer such that $d n$ is even. Then, by Minkowski-Hasse theorem, there exists a quadratic space $\left(V_{n}, Q\right)$ of rank $4 n$ with the following properties:
(1) (V, Q) is unramified at any non-archimedean place.
(2) (V, Q) is positive definite ai any archimedean place.

Definition 1. An algebraic automorphic form on the orthogonal group O_{Q} is a locally constant function on $\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(\mathbb{A})$.

Put

$$
(x, y)_{Q}=\frac{1}{2}(Q(x+y)-Q(x)-Q(y)) \quad x, y \in V
$$

Let L be a \mathfrak{o}-lattie in $V(F)$. The dual lattice L^{*} is defined by

$$
L^{*}=\left\{x \in V_{n}(F) \mid(x, L)_{Q} \subset \mathfrak{o}\right\} .
$$

Then L is an integral lattice if and only if $L \subset L^{*}$. An integral lattice L is called an even lattice if

$$
Q(x) \subset 2 \mathfrak{o} \quad{ }^{\forall} x \in L
$$

Moreover, an integral lattice L is unimodular if $L=L^{*}$. By the assumption (1) and (2), there exists a positive definite even unimodular latice L_{0} in $V(F)$.

Two integral lattices L_{1} and L_{2} are equivalent if there exists an element $g \in \mathrm{O}_{Q}(F)$ such that $g \cdot L_{1}=L_{2}$. Two integral lattices L_{1} and L_{2} are in the same genus if there
exists an element $g_{v} \in \mathrm{O}_{Q}\left(F_{v}\right)$ such that $g \cdot L_{1, v}=L_{2, v}$ for any finite place v. The set of positive definite even unimodular lattices in $V(F)$ form a genus. Let \mathscr{G} be the set of equivalence classes in this genus. In this article, we focus on even unimodular lattices.

Choose a positive definite even unimodular lattiece L_{0} in $V(F)$. Let \mathbf{K}_{0} be the stabilezer of L_{0} in $\mathrm{O}_{Q}(\mathbb{A})$. Then \mathbf{K}_{0} is a maximal compact subgroup of $\mathrm{O}_{Q}(\mathbb{A})$. The set $\mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}$ can be identified with the set of all even unimodular lattices. For $\xi \in \mathrm{O}_{Q}(\mathbb{A})$, let $L \subset V$ be the unique lattice such that $L_{v}=\xi L_{0, v} \xi^{-1}$ for any nonarchimedean place v. Then L is a positive definite even unimodular lattice, and any positive definite even unimodular lattice in V is obtained in this way. Moreover, the isomorphism class $[L]$ is determined by the double coset $\mathrm{O}_{Q}(F) \xi \mathbf{K}_{0}$. Thus one can think of

$$
\mathcal{G}=\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0} .
$$

In fact, the set $\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}$ can be identified with $\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}\left(\mathbb{A}_{\mathrm{fin}}\right) / \mathbf{K}_{0, \text { fin }}$, where $\mathbf{K}_{0, \text { fin }}$ is the finite part of \mathbf{K}_{0} and $\mathrm{O}_{Q}(F)$ is considered as a subgroup of $\mathrm{O}_{Q}\left(\mathbb{A}_{\mathrm{fin}}\right)$. Choose a double coset $\mathrm{O}_{Q}(F) \xi \mathbf{K}_{0, \text { fin }}$ corresponding to an even unimodular lattice $L \subset V$. Then the automorphism group $\mathrm{O}(L)$ can be identified with

$$
\mathrm{O}_{Q}(F) \cap \xi \mathbf{K}_{0, \mathrm{fin}} \xi^{-1}
$$

In particular, the volume of the set

$$
\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(F) \xi \mathbf{K}_{0, \text { fin }} \simeq \xi \cdot\left(\mathrm{O}(L) \backslash \mathbf{K}_{0, \text { fin }}\right)
$$

is equal to $E(L)^{-1}$, where $E(L)$ is the order of $\mathrm{O}(L)$.
Put

$$
\mathbb{C}[\mathscr{G}]:=\oplus_{L \in \mathscr{G}} \mathbb{C} \cdot[L], \quad \mathbb{Z}[\mathscr{G}]:=\oplus_{L \in \mathscr{G}} \mathbb{Z} \cdot[L] .
$$

Then $\mathbb{C}[\mathcal{G}]$ can be identified the the space of \mathbf{K}_{0}-invariant algegraic automorphic forms on O_{Q}. This correspondence is given by

$$
[L] \mapsto \text { the characteristic function on } \mathrm{O}_{Q}(F) \xi \mathbf{K}_{0} \text { corresponding to } L
$$

Thus we identify $\mathbb{C}[\mathscr{G}]$ with $L^{2}\left(\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}\right)$.
Definition 2. Let $K, L \subset V(F)$ be even unimodular lattices. Let \mathfrak{p} be a prime ideal of F. Then K is a \mathfrak{p}-neighbor of L if

$$
L /(L \cap K) \simeq K /(L \cap K) \simeq \mathfrak{o} / \mathfrak{p}
$$

The number of \mathfrak{p}-neighbors of L which is isomorphic to K is denoted by $N(L, K, \mathfrak{p})$. This is determied by the isomorphism classes of K and L.

Definition 3. The operator

$$
K(\mathfrak{p}):[L] \mapsto \sum_{K \in \mathscr{G}} N(L, K, \mathfrak{p})[K]
$$

on $\mathbb{Z}[\mathscr{G}]$ is called the Kneser \mathfrak{p}-neighbor operator. We also define the dual Kneser \mathfrak{p}-neighbor operator $K(\mathfrak{p})^{\vee}$ by

$$
K(\mathfrak{p})^{\vee}:[L] \mapsto \sum_{K \in \mathscr{G}} N(K, L, \mathfrak{p})[K] .
$$

It is known that

$$
\frac{N(L, K, \mathfrak{p})}{N(K, L, \mathfrak{p})}=\frac{E(L)}{E(K)}
$$

It follows that $K(\mathfrak{p})$ and $K(\mathfrak{p})^{\vee}$ are conjugate. Here, we work with the dual \mathfrak{p}-neighbor operator $K(\mathfrak{p})^{\vee}$. This convension is different from [2], [8], or [5].

Let $\mathcal{H}=\mathcal{H}\left(\mathbf{K}_{0} \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}\right)$ be the Hecke algebra on $\mathbf{K}_{0} \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}$. Then \mathcal{H} acts on $L^{2}\left(\mathrm{O}_{Q}(F) \backslash \mathrm{O}_{Q}(\mathbb{A}) / \mathbf{K}_{0}\right)$ as Hecke operators. The dual Kneser \mathfrak{p}-neighbor operator $K(\mathfrak{p})^{\vee}$ can be considered as a Hecke operator. Let $f=\sum_{[L]} c_{L}[L] \in \mathbb{C}[\mathscr{G}]$ be a Hecke eigenform with \mathfrak{p}-Satake parameter $\left\{\beta_{\mathfrak{p}, 1}^{ \pm 1}, \ldots, \beta_{\mathfrak{p}, 2 n}^{ \pm 1}\right\}$. Then the eigenvalue of f with respect to $K(\mathfrak{p})^{\vee}$ is given by

$$
q_{\mathfrak{p}}^{2 n-1} \sum_{i=1}^{2 n}\left(\beta_{\mathfrak{p}, i}+\beta_{\mathfrak{p}, i}^{-1}\right)
$$

2 Theta functions

Let $m \geq 1$ is an integer. For $L \in \mathscr{G}$, we define a theta function $\theta_{L}^{(m)}(Z)$ by

$$
\theta_{L}^{(m)}(Z)=\sum_{x \in L^{m}} \mathbf{e}(\operatorname{tr}((x, x) Z)) .
$$

Then $\theta_{L}^{(m)}(Z) \in M_{2 n}\left(\Gamma_{m}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$. Here, \mathfrak{d} is the different of F and

$$
\Gamma_{m}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]:=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}_{n}(F) \left\lvert\, \begin{array}{l}
A \in \mathrm{M}_{m}(\mathfrak{o}), B \in \mathrm{M}_{m}\left(\mathfrak{d}^{-1}\right) \\
C \in \mathrm{M}_{m}(\mathfrak{d}), D \in \mathrm{M}_{m}(\mathfrak{o})
\end{array}\right.\right\} .
$$

For $f=\sum_{L \in \mathscr{G}} c_{L} \cdot L \in \mathbb{C}[\mathscr{G}]$, we set

$$
\Theta^{(m)}(f)=\sum_{L \in \mathscr{G}} \frac{c_{L}}{E(L)} \theta_{L}^{(m)}(Z) .
$$

(This convension is also different from [2], [8], and [5].) For a Hecke eigenvector $f \in \mathbb{C}[\mathscr{G}]$, the degree $\operatorname{deg} f$ is defined by

$$
\operatorname{deg} f=\min \left\{m \mid \Theta^{(m)}(f) \neq 0\right\}
$$

Let $f \in \mathbb{C}[\mathscr{G}]$ be a Hecke eigenvector with $\operatorname{deg} f=m_{0}$. By the theory of theta correspondence, one can prove

- For $m \geq m_{0}, \Theta^{(m)}(f) \in M_{2 n}\left(\Gamma_{m}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ is a Hecke eigenform.
- We have $\Theta^{\left(m_{0}\right)}(f) \in S_{2 n}\left(\Gamma_{m_{0}}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$.
- For $m>m_{0}, \Theta^{(m)}(f)$ is orthogonal with $S_{2 n}\left(\Gamma_{m}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ with respect to the Petersson inner product.

Suppose that $f \in \mathbb{C}[\mathscr{G}]$ is a Hecke eigenform such that $\operatorname{deg} f=m<2 n$. Let the \mathfrak{p}-Satake parameter of $\Theta^{(m)}(f) \in S_{2 n}\left(\Gamma_{m}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ be

$$
\left\{\beta_{1, \mathfrak{p}}^{ \pm 1}, \ldots, \beta_{m, \mathfrak{p}}^{ \pm 1}\right\} .
$$

Then the \mathfrak{p}-Satake parameter of $f \in \mathbb{C}[\mathscr{G}]$ is given by

$$
\left\{1, \beta_{1, \mathfrak{p}}^{ \pm 1}, \ldots, \beta_{m, \mathfrak{p}}^{ \pm 1}\right\} \cup\left\{q_{\mathfrak{p}}^{ \pm j}(0 \leq j \leq 2 n-m-1)\right\} .
$$

Here, $q_{\mathfrak{p}}$ is the order of the residue field of \mathfrak{p}.

3 Niemeirer lattices

In this section, we take $F=\mathbb{Q}$. A Niemeier lattice is a positive definite even unimodular lattice of rank 24 . There are 24 isomorphism classes of Niemeier lattices. They are classified by the root system formed by vectors of norm 2. (See Conway and Sloan [3].)

L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}	L_{8}
\emptyset	A_{1}^{24}	A_{2}^{12}	A_{3}^{8}	A_{4}^{6}	$A_{5}^{4} D_{4}$	D_{4}^{6}	A_{6}^{4}

L_{9}	L_{10}	L_{11}	L_{12}	L_{13}	L_{14}	L_{15}	L_{16}
$A_{7}^{2} D_{5}^{2}$	A_{8}^{3}	$A_{9}^{2} D_{6}$	D_{6}^{4}	$A_{11} D_{7} E_{6}$	E_{6}^{4}	A_{12}^{2}	D_{8}^{3}

L_{17}	L_{18}	L_{19}	L_{20}	L_{21}	L_{22}	L_{23}	L_{24}
$A_{15} D_{9}$	$D_{10} E_{7}^{2}$	$A_{17} E_{7}$	D_{12}^{2}	A_{24}	$D_{16} E_{8}$	E_{8}^{3}	D_{24}

The order $E(L)$ of the automorphism group $O(L)$ can be found in Conway-Sloan [3].

	$E(L)$			$E(L)$
L_{1}	15570572852330496000		L_{2}	31522712171959008000000
L_{3}	312927932591898624000000		L_{4}	437599241673834240000000
L_{5}	180674574584719324741632		L_{6}	52278522738634063872000
L_{7}	1196560426451890500000		L_{8}	8361079854908571648000
L_{9}	2700612462901377024000		L_{10}	225800767686574080000
L_{11}	106690862731906252800		L_{12}	19144966823230248000
L_{13}	8082641116053504000		L_{14}	373503391765504000
L_{15}	834785957117952000		L_{16}	156983146327507500
L_{17}	33307587016704000		L_{18}	4134535541136000
L_{19}	3483146354688000		L_{20}	67271626831500
L_{21}	4173688995840		L_{22}	271057837050
L_{23}	63804560820		L_{24}	24877125

The dual Kneser neighbor operator $K(2)$ and the eigenvectors were calculated by Nebe and Venkov [8]. Let $f_{i}(i=1,2, \ldots, 24)$ be the eigenvectors.

The degree of f_{i} is defined by

$$
n_{i}=\min \left\{n \mid \Theta^{(n)}\left(\mathrm{d}_{i}\right) \neq 0\right\} .
$$

Nebe-Venkov [8] and Chnevier-Lannes [2] determined the degrees:

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}	f_{11}	f_{12}
0	1	2	3	4	4	5	5	6	6	6	7
f_{13}	f_{14}	f_{15}	f_{16}	f_{17}	f_{18}	f_{19}	f_{20}	f_{21}	f_{22}	f_{23}	f_{24}
8	7	8	7	8	8	9	9	10	10	11	12

Put $F_{i}=\Theta^{\left(n_{i}\right)}\left(\mathrm{d}_{i}\right)$.

Recall that

$$
\operatorname{dim}_{\mathbb{C}} S_{2 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=1, \quad 2 k=12,16,18,20,22
$$

Let

$$
\phi_{2 k}=\sum_{n=1}^{\infty} a_{2 k}(n) \mathbf{e}(n z) \in S_{2 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right), \quad(2 k=12,16,18,20,22)
$$

be the normalized Hecke eigenform. ϕ_{12} is also denoted by $\Delta(\tau)$. For a prime l, there exists a l-adic representation $\boldsymbol{\rho}_{2 k}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{l}\right)$ such that

$$
L\left(s, \phi_{2 k}\right)=\prod_{p} \operatorname{det}\left(1-\rho_{2 k}\left(\operatorname{Frob}_{p}\right) \cdot p^{-s}\right)
$$

up to bad Euler factors.
$f_{1}=\sum_{i=1}^{24}$ is a constant function on $\mathrm{O}_{Q}(\mathbb{A})$ and $\Theta^{(n)}$ is the Siegel Eisenstein series for any n by Siegel's main theorem. $F_{2}=\Theta^{(1)}\left(f_{2}\right) \in S_{12}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is equal to $\Delta(z)$ up to constant. $F_{3}=\Theta^{(2)}\left(f_{3}\right) \in S_{12}\left(\operatorname{Sp}_{2}(\mathbb{Z})\right)$ is the Saito-Kurokawa lift of ϕ_{22}. It follows that

$$
L\left(s, F_{3}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right)
$$

$F_{5}=\Theta^{(4)}\left(f_{5}\right) \in S_{12}\left(\operatorname{Sp}_{4}(\mathbb{Z})\right)$ is the DII lift of ϕ_{20} to degree $S_{12}\left(\operatorname{Sp}_{4}(\mathbb{Z})\right)$. Hence we have

$$
L\left(s, F_{5}, \mathrm{st}\right)=\zeta(s) \prod_{8 \leq i \leq 11} L\left(s+i, \phi_{20}\right),
$$

$F_{4}=\Theta^{(3)}\left(f_{4}\right) \in S_{12}\left(\operatorname{Sp}_{4}(\mathbb{Z})\right)$ is the Miyawaki lift of $\Delta(z)$ with respect to F_{4}. Hence we have

$$
L\left(s, F_{4}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{20}\right)
$$

$F_{24}=\Theta^{(12)}\left(f_{24}\right) \in S_{12}\left(\operatorname{Sp}_{12}(\mathbb{Z})\right)$ is the DII lift of $\Delta(z)$ to degree 12 , which is investigated in Borcherds-Freitag-Weissauer [1].

Let $\rho_{j, k}$ be the holomorphic representation of $\mathrm{GL}_{2}(\mathbb{C})$ given by $\rho_{j, k}=\operatorname{Sym}^{j} \otimes \operatorname{det}^{k}$. The highset weight of $\rho_{j, k}$ is $(j+k, k)$. Let $S_{j, l}\left(\mathrm{Sp}_{2}(\mathbb{Z})\right)$ be the space of modular form of vector weight $\rho_{j, k}$. For a Hecke eigenform $\phi \in S_{j, k}\left(\operatorname{Sp}_{2}(\mathbb{Z})\right)$, the spin L-function has a functional equation

$$
\begin{aligned}
\Lambda(s, \phi, \text { spin }) & =\Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{C}}(s-k+2) L(s, \phi, \text { spin }), \\
\Lambda(2 k+j-2-s, \phi, \text { spin }) & =(-1)^{k} \Lambda(s, \phi, \text { spin }) .
\end{aligned}
$$

This is proved by Schmidt [9]. For a prime l, there exists a l-adic representation $\boldsymbol{\rho}_{j, k}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{l}\right)$ such that

$$
L\left(s, \phi_{j, k}, \operatorname{spin}\right)=\prod_{p} \operatorname{det}\left(1-\rho_{j, k}\left(\operatorname{Frob}_{p}\right) \cdot p^{-s}\right)
$$

up to bad Euler factors. The eigenvalue $\phi_{i, j}$ with respect to the Hecke operator $T(p)$ is denoted by $\tau_{j, k}(p)$.

By Tsusima's dimension formula [10], we have $\operatorname{dim}_{\mathbb{C}} S_{j, k}\left(\operatorname{Sp}_{2}(\mathbb{Z})\right)=1$ for

$$
(j, k)=(4,10),(6,8),(8,8),(12,6)
$$

Let $\phi_{i, k}$ be a generator of $S_{j, k}\left(\operatorname{Sp}_{2}(\mathbb{Z})\right)$ for $(j, k)=(4,10),(6,8),(8,8),(12,6)$.
Note that

$$
\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{12,6}, \mathrm{spin}\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right)
$$

has a gamma factor

$$
\Gamma_{\mathbb{R}}(s) \prod_{6 \leq i \leq 11} \Gamma_{\mathbb{C}}(s+i)
$$

which is the same as the gamma factor of the standard L-function of $S_{12}\left(\operatorname{Sp}_{6}(\mathbb{Z})\right)$. By the Arthur endoscopic classification, one can show that there exists a Hecke eigenform $F \in S_{12}\left(\operatorname{Sp}_{6}(\mathbb{Z})\right)$ such that

$$
L(s, F, \mathrm{st})=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{12,6}, \text { spin }\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right) .
$$

comparing the Satake parameter, we have F is equal to F_{10} up to a non-zero constant. By a similar argument, we have
$L\left(s, F_{15}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{8,8}\right.$, spin $) \prod_{6 \leq i \leq 9} L\left(s+i, \phi_{16}\right)$,
$L\left(s, F_{19}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{6,8}, \mathrm{spin}\right) \prod_{7 \leq i \leq 8} L\left(s+i, \phi_{16}\right) \prod_{5 \leq i \leq 6} L\left(s+i, \phi_{12}\right)$,
$L\left(s, F_{21}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{4,10}, \mathrm{spin}\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right) \prod_{4 \leq i \leq 7} L(s+i, \Delta)$.
In this way, we have the following list.

$$
\begin{aligned}
& L\left(s, F_{3}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right), \\
& L\left(s, F_{4}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{20}\right), \\
& L\left(s, F_{5}, \mathrm{st}\right)=\zeta(s) \prod_{8 \leq i \leq 11} L\left(s+i, \phi_{20}\right), \\
& L\left(s, F_{6}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right), \\
& L\left(s, F_{7}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{20}\right) \prod_{7 \leq i \leq 8} L\left(s+i, \phi_{16}\right), \\
& L\left(s, F_{8}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{7 \leq i \leq 10} L\left(s+i, \phi_{18}\right), \\
& L\left(s, F_{9}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right) \prod_{6 \leq i \leq 9} L\left(s+i, \phi_{16}\right), \\
& L\left(s, F_{10}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{12,6}, \text { spin }\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right), \\
& L\left(s, F_{11}, \mathrm{st}\right)=\zeta(s) \prod_{6 \leq i \leq 11} L\left(s+i, \phi_{18}\right), \\
& L\left(s, F_{12}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{5 \leq i \leq 10} L\left(s+i, \phi_{16}\right), \\
& L\left(s, F_{14}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{20}\right) \prod_{7 \leq i \leq 8} L\left(s+i, \phi_{16}\right) \prod_{5 \leq i \leq 6} L(s+i, \Delta), \\
& L\left(s, F_{16}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{7 \leq i \leq 10} L\left(s+i, \phi_{18}\right) \prod_{5 \leq i \leq 6} L(s+i, \Delta), \\
& L\left(s, F_{13}, \mathrm{st}\right)=\zeta(s) \prod_{4 \leq i \leq 11} L\left(s+i, \phi_{16}\right), \\
& L\left(s, F_{17}, \mathrm{st}\right)=\zeta(s) \prod_{8 \leq i \leq 11} L\left(s+i, \phi_{20}\right) \prod_{4 \leq i \leq 7} L(s+i, \Delta), \\
& L\left(s, F_{18}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right) \prod_{4 \leq i \leq 7} L(s+i, \Delta), \\
& L\left(s, F_{15}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{8,8}, \text { spin }\right) \prod_{6 \leq i \leq 9} L\left(s+i, \phi_{16}\right), \\
& L\left(s, F_{20}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{20}\right) \prod_{3 \leq i \leq 8} L(s+i, \Delta), \\
& L\left(s, F_{19}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{9 \leq i \leq 10} L\left(s+i, \phi_{6,8}, \mathrm{spin}\right) \prod_{7 \leq i \leq 8} L\left(s+i, \phi_{16}\right) \prod_{5 \leq i \leq 6} L\left(s+i, \phi_{12}\right), \\
& L\left(s, F_{22}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{22}\right) \prod_{2 \leq i \leq 9} L(s+i, \Delta), \\
& L\left(s, F_{21}, \mathrm{st}\right)=\zeta(s) \prod_{10 \leq i \leq 11} L\left(s+i, \phi_{4}, 10, \text { spin }\right) \prod_{8 \leq i \leq 9} L\left(s+i, \phi_{18}\right) \prod_{4 \leq i \leq 7} L(s+i, \Delta), \\
& L\left(s, F_{23}, \mathrm{st}\right)=L(s, \Delta, \mathrm{st}) \prod_{i=1}^{10} L(s+i, \Delta), \\
& L\left(s, F_{24}, \text { st }\right)=\zeta(s) \prod_{i=0}^{11} L(s+i, \Delta) .
\end{aligned}
$$

Now we look at f_{18} and f_{21}. The coefficients of f_{18} and f_{21} are as follows:

	f_{18}	f_{21}
L_{1}	-497296800	-10443232800
L_{2}	4598528	133745920
L_{3}	-1339173	-47191815
L_{4}	1079296	47645696
L_{5}	-979625	-59665625
L_{6}	-1587744	-62532000
L_{7}	18238464	181232640
L_{8}	5882107	454089125
L_{9}	-1874432	304192000
L_{10}	42770511	-1585714725
L_{11}	-52307360	-6844516000
L_{12}	-33873920	-775168000
L_{13}	43287552	18627840000
L_{14}	1733363712	-100776960000
L_{15}	-1236612377	89553839375
L_{16}	456902656	67945830400
L_{17}	5926176256	-486566080000
L_{18}	-22766026752	113799168000
L_{19}	8836315488	-270161892000
L_{20}	100908408832	139639808000
L_{21}	149286312175	12525735096875
L_{22}	-817169633280	45429576192000
L_{23}	8013000038400	-64332092160000
L_{24}	-873155271532544	-4104432876544000

We follow the argument of Chenevier-Lannes [2]. The standard L-function of $F_{18} \in$ $S_{12}\left(\mathrm{Sp}_{8}(\mathbb{Z})\right)$ is associated to the l-adic Galois representation

$$
\mathbf{1}+\left(\chi^{-10}+\chi^{-11}\right) \boldsymbol{\rho}_{22}+\left(\chi^{-8}+\chi^{-9}\right) \boldsymbol{\rho}_{18}+\left(\chi^{-4}+\chi^{-5}+\chi^{-6}+\chi^{-7}\right) \boldsymbol{\rho}_{12}
$$

Here, $\chi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{Q}_{l}^{\times}$is the cyclotomic character. It follows that the eigenvalue $\mathrm{ev}_{18} K(p)^{\vee}$ of f_{18} with respect to $K(p)^{\vee}$ is equal to

$$
\begin{gathered}
p^{11}\left(1+\left(p^{-10}+p^{-11}\right) a_{22}(p)+\left(p^{-8}+p^{-9}\right) a_{18}(p)+\left(p^{-4}+p^{-5}+p^{-6}+p^{-7}\right) a_{12}(p)\right. \\
\left.+p^{-4}+p^{-3}+p^{-2}+p^{-1}+1+p+p^{2}+p^{3}+p^{4}\right)
\end{gathered}
$$

Similarly, The standard L-function of $F_{21} \in S_{12}\left(\mathrm{Sp}_{11}(\mathbb{Z})\right)$ is associated to

$$
\mathbf{1}+\left(\chi^{10}+\chi^{11}\right) \boldsymbol{\rho}_{4,10}+\left(\chi^{8}+\chi^{9}\right) \boldsymbol{\rho}_{18}+\left(\chi^{4}+\chi^{5}+\chi^{6}+\chi^{7}\right) \boldsymbol{\rho}_{12}
$$

It follows that the eigenvalue $\operatorname{ev}_{21} K(p)^{\vee}$ of f_{21} with respect to $K(p)^{\vee}$ is equal to

$$
\begin{aligned}
p^{11}(1+ & \left(p^{-10}+p^{-11}\right) \tau_{4,10}(p)+\left(p^{-8}+p^{-9}\right) a_{18}(p)+\left(p^{-4}+p^{-5}+p^{-6}+p^{-7}\right) a_{12}(p) \\
& \left.+p^{-2}+p^{-1}+1+p+p^{2}\right)
\end{aligned}
$$

By an explicit calculation, we have

$$
f_{18}-2 \cdot f_{21} \in 41 \mathbb{Z}[\mathscr{G}] .
$$

Hence we have

$$
\operatorname{ev}_{18} K(p)^{\vee} \equiv \operatorname{ev}_{21} K(p)^{\vee} \bmod 41
$$

It follows that

$$
(p+1)\left(\tau_{4,10}(p)-a_{22}(p)-p^{13}-p^{8}\right) \equiv 0 \bmod 41
$$

Put $l=41$. By the argument as above, we have

$$
(1+\bar{\chi})\left(\overline{\boldsymbol{\rho}}_{4,14}-\left(\overline{\boldsymbol{\rho}}_{22}+\bar{\chi}^{13}+\bar{\chi}^{8}\right)\right)=0
$$

in the Grothendieck group of mod l Galois representations with coefficient \mathbb{F}_{l}. Here, bar means the reduction mod l. After a little argument, one can show

$$
\overline{\boldsymbol{\rho}}_{4,14}=\overline{\boldsymbol{\rho}}_{22}+\bar{\chi}^{13}+\bar{\chi}^{8} .
$$

It follows that

$$
\tau_{4,10}(p) \equiv a_{22}(p)+p^{13}+p^{3} \bmod 41
$$

for $p \neq 41$. This is a special case of the Harder conjecture.

4 Positive definite even unimodular lattices of rank 8 over $\mathbb{Q}(\sqrt{2})$

Now, we set $F=\mathbb{Q}(\sqrt{2})$. By the result of Hsia and Hung [4], there are six isomorphism classes of positive definite even unimodular lattices of rank 8 over F. Let \mathscr{G} be the set of isomorphism classes. They are labeled as

$$
\mathcal{G}=\left\{E_{8}, 2 \Delta_{4}^{\prime}, \Delta_{8}, 2 D_{4}, 4 \Delta_{2}, \emptyset\right\} .
$$

- The order $E(L)=\sharp \mathrm{O}(L)$ of the automorphism group of L is as follows.

L	E_{8}	$2 \Delta_{4}^{\prime}$	Δ_{8}	$2 D_{4}$	$4 \Delta_{2}$	\emptyset
$E(L)$	$2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$	$2^{17} \cdot 3^{4}$	$2^{15} \cdot 3^{2} \cdot 5 \cdot 7$	$2^{14} \cdot 3^{3}$	$2^{18} \cdot 3$	$2^{14} \cdot 3^{2} \cdot 5 \cdot 7$

- The Kneser \mathfrak{q}-neighbor matrix $N(L, K, \mathfrak{q})$ is as follows:

$L \backslash K$	E_{8}	$2 \Delta_{4}^{\prime}$	Δ_{8}	$2 D_{4}$	$4 \Delta_{2}$	\emptyset
E_{8}	0	0	135	0	0	0
$2 \Delta_{4}^{\prime}$	0	18	36	0	81	0
Δ_{8}	2	35	28	70	0	0
$2 D_{4}$	0	0	3	96	36	0
$4 \Delta_{2}$	0	6	0	64	49	16
\emptyset	0	0	0	0	105	30

- The coefficients of eigenvectors $f_{i} \in \mathbb{C}[\mathscr{G}]$ of the dual Kneser \mathfrak{q}-neighbor operator $K(\mathfrak{q})^{\vee}$ are given by

	E_{8}	$2 \Delta_{4}^{\prime}$	Δ_{8}	$2 D_{4}$	$4 \Delta_{2}$	\emptyset
f_{1}	1	1	1	1	1	1
f_{2}	135	36	-30	3	-8	14
f_{3}	-14175	-216	840	81	-304	840
f_{4}	-135	-36	-58	-3	8	30
f_{5}	$5775-525 \sqrt{73}$	$-88+104 \sqrt{73}$	560	$-81-13 \sqrt{73}$	$16+16 \sqrt{73}$	560
f_{6}	$5775+525 \sqrt{73}$	$-88-104 \sqrt{73}$	560	$-81+13 \sqrt{73}$	$16-16 \sqrt{73}$	560

- The eigenvalue of $f_{i}(i=1, \ldots, 6)$ with respect to $K(\mathfrak{q})^{\vee}$:

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
135	-30	-8	58	$33+3 \sqrt{73}$	$33-3 \sqrt{73}$

Note that these eigenvalues are distinct.

5 Hecke eigenforms for $S_{4}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ and $S_{6}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$

Let $k \geq 1$ be an integer. For an integral ideal \mathfrak{b} of F, we put $\sigma_{k}(\mathfrak{b})=\sum_{\mathfrak{a} \mid \mathfrak{b}} \mathfrak{N}(\mathfrak{a})^{k}$. The Eisenstein series $G_{2 k}(z) \in M_{2 k}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ is defined by

$$
G_{2 k}(z)=2^{-d} \zeta_{F}(1-2 k)+\sum_{\xi \in \mathfrak{o} \cap F_{+}^{\times}} \sigma_{2 k-1}((\xi)) \mathbf{e}(\xi z) \in M_{2 k}\left(\Gamma\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right) .
$$

Then

$$
\bigoplus_{k \geq 0} M_{2 k}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)=\mathbb{C}\left[G_{2}, G_{4}, G_{6}\right] .
$$

In particular, we have

$$
\operatorname{dim} S_{4}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)=1, \quad \operatorname{dim} S_{6}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)=2 .
$$

Let

$$
\phi_{4}(Z)=44 G_{4}(Z)-\frac{5}{6} G_{2}(Z)^{2}=\mathbf{q}-2 \mathbf{q}^{2-\sqrt{2}}-4 \mathbf{q}^{2}+\cdots, \quad \mathbf{q}^{\xi}:=\mathbf{e}(\xi z)
$$

be a normalized Hecke eigenform of $S_{4}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$.
The L-function $L\left(s, \phi_{4}\right)$ of $\phi_{4}(Z)=\sum_{\xi \in \mathfrak{o} \cap F_{+}^{\times}} a(\xi) \mathbf{q}^{\xi}$ is defined by

$$
L\left(s, \phi_{4}\right)=\prod_{\mathfrak{p}}\left(1-a\left(\varpi_{\mathfrak{p}}\right) q_{\mathfrak{p}}^{-s}+q_{\mathfrak{p}}^{3-2 s}\right)^{-1} .
$$

Here, $\varpi_{\mathfrak{q}}$ is a positive definite generator of the ideal \mathfrak{q}. Then the functional equation of ϕ_{4} is given by

$$
\Lambda\left(4-s, \phi_{4}\right)=\Lambda\left(s, \phi_{4}\right), \quad \Lambda\left(s, \phi_{4}\right)=8^{-s} \Gamma_{\mathbb{C}}(s)^{2} L\left(s, \phi_{4}\right) .
$$

Put $\mathfrak{q}=(\sqrt{2})$. Then the \mathfrak{q}-Satake parameter of ϕ_{4} is determined by

$$
2^{3 / 2}\left(\beta_{\mathfrak{q}}+\beta_{\mathfrak{q}}^{-1}\right)=a\left(\varpi_{\mathfrak{q}}\right)=-2 .
$$

It follows that the $\left\{\beta_{\mathfrak{q}}, \beta_{\mathfrak{q}}^{-1}\right\}=\{\mathbf{e}(3 / 8), \mathbf{e}(5 / 8)\}$. The standard L-fuction $L\left(s, \phi_{4}\right.$, st) is given by

$$
L\left(s, \phi_{4}, \mathrm{st}\right)=\prod_{\mathfrak{q}}\left(1-q_{\mathfrak{q}}^{-s}\right)\left(1-\beta_{\mathfrak{q}} q_{\mathfrak{q}}^{-s}\right)\left(1-\beta_{\mathfrak{q}}^{-1} q_{\mathfrak{q}}^{-s}\right) .
$$

There are two normalized Hecke eigenforms $\left\{\phi_{6}^{+}, \phi_{6}^{-}\right\}$for $S_{6}\left(\Gamma_{1}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$.

$$
\begin{aligned}
& \phi_{6}^{ \pm}(Z)= \frac{-48240 G_{2}(Z) G_{4}(Z)+2824320 G_{2}(Z)^{3}-7 G_{6}(Z)}{1560} \\
& \quad \pm \frac{\sqrt{73}\left(14160 G_{2}(Z) G_{4}(Z)-470400 G_{2}(Z)^{3}-7 G_{6}(Z)\right)}{1560} \\
&=\mathbf{q}+(-1 \pm \sqrt{73}) \mathbf{q}^{2-\sqrt{2}}+\cdots .
\end{aligned}
$$

The L-function $L\left(s, \phi_{6}\right)$ has a functional equation

$$
\Lambda\left(6-s, \phi_{6}\right)=\Lambda\left(s, \phi_{6}\right), \quad \Lambda\left(s, \phi_{6}\right)=8^{-s} \Gamma_{\mathbb{C}}(s)^{2} L\left(s, \phi_{6}\right)
$$

The \mathfrak{q}-Satake parameter of $\phi_{6}^{ \pm}$is also determined by

$$
2^{5 / 2}\left(\gamma_{\mathfrak{q}}^{ \pm}+\left(\gamma_{\mathfrak{q}}^{ \pm}\right)^{-1}\right)=-1 \pm \sqrt{73} .
$$

The standard L－fuction $L\left(s, \phi_{6}^{ \pm}, \mathrm{st}\right)$ is given by

$$
L\left(s, \phi_{4}, \text { st }\right)=\prod_{\mathfrak{q}}\left(1-q_{\mathfrak{q}}^{-s}\right)\left(1-\gamma_{\mathfrak{q}}^{ \pm} q_{\mathfrak{q}}^{-s}\right)\left(1-\left(\gamma_{\mathfrak{q}}^{ \pm}\right)^{-1} q_{\mathfrak{q}}^{-s}\right) .
$$

6 Hilbert－Siegel modular form arising from $\mathbb{C}[\mathscr{G}]$

－The degree of $f_{i} \in \mathbb{C}[\mathscr{G}]$ is given by

$$
\operatorname{deg} f_{1}=0, \quad \operatorname{deg} f_{2}=4, \quad \operatorname{deg} f_{4}=1, \quad \operatorname{deg} f_{5}=\operatorname{deg} f_{6}=2
$$

Here，the degree $\operatorname{deg} f_{i}$ of f_{i} is defined by

$$
\operatorname{deg} f_{i}=\min \left\{m \mid \Theta^{(m)}\left(f_{i}\right) \neq 0\right\} .
$$

We have
（1）$\Theta^{(4)}\left(f_{2}\right)$ is a DII lift of ϕ_{4} to $S_{4}\left(\Gamma^{(4)}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ ．
（2）$\Theta^{(1)}\left(f_{4}\right)$ is equal to ϕ_{4} up to a non－zero constant．
（3）$\Theta^{(3)}\left(f_{3}\right)$ is a Miyawaki lift of ϕ_{4} to $S_{4}\left(\Gamma^{(3)}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ with respect to $\Theta^{(4)}\left(f_{2}\right)$ ．
（4）$\Theta^{(2)}\left(f_{5}\right)$（resp．$\left.\Theta^{(2)}\left(f_{6}\right)\right)$ is a DII lift of ϕ_{6}^{+}（resp．to ϕ_{6}^{-}）to $S_{4}\left(\Gamma^{(2)}\left[\mathfrak{d}^{-1}, \mathfrak{d}\right]\right)$ ．
The standard L－functions are given by

$$
\begin{aligned}
& L\left(s, \Theta^{(4)}\left(f_{2}\right), \mathrm{st}\right)=\zeta_{F}(s) \prod_{i=1}^{4} L\left(s+4-i, \phi_{4}\right) \\
& L\left(s, \Theta^{(1)}\left(f_{4}\right), \mathrm{st}\right)=L\left(s, \phi_{4}, \mathrm{st}\right) \\
& L\left(s, \Theta^{(3)}\left(f_{3}\right), \mathrm{st}\right)=L\left(s, \phi_{4}, \mathrm{st}\right) \prod_{i=1}^{2} L\left(s+3-i, \phi_{4}\right), \\
& L\left(s, \Theta^{(2)}\left(f_{5}\right), \mathrm{st}\right)=\zeta_{F}(s) \prod_{i=1}^{2} L\left(s+4-i, \phi_{6}^{+}\right) \\
& L\left(s, \Theta^{(2)}\left(f_{6}\right), \mathrm{st}\right)=\zeta_{F}(s) \prod_{i=1}^{2} L\left(s+4-i, \phi_{6}^{-}\right)
\end{aligned}
$$

参考文献

［1］R．E．Borcherds，E．Freitag，and R．Weissauer，A Siegel cusp form of degree 12 and weight 12，J．Reine Angew．Math． 494 （1998），141－153．
[2] G. Chenevier and J. Lannes, Formes automorphes et voisins de Kneser des réseaux de Niemeier arXiv:1409.7616, (An English version will be published soon.)
[3] J. H. Conway and N. J. A.Sloan, Sphere Packings, Lattices, and Groups, 3rd edition, Springer-Verlag, 1998
[4] J. S. Hsia and D. C. Hung, Even unimodular 8-dimensional quadratic forms over $\mathbb{Q}(\sqrt{2})$, Math. Ann. 283 (1989), 367-374.
[5] T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki's conjecture, Duke Math. J. 131 (2006), 469-497.
[6] T. Ikeda and S. Yamana, On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms, arXiv:1512.08878, preptint.
[7] D. Loeffler, Computing with algebraic automorphic form on "Computations in Modular Forms", Springer
[8] G. Nebe and B. Venkov, On Siegel modular forms of weight 12, J. Reine Angew. Math. 531 (2001), 49-60.
[9] R. Schmidt, Archimedean aspects of Siegel modular forms of degree 2, Rocky Mountain J. Math. 47 (2017), no. 7, 2381-2422.
[10] R. Tsushima, An explicit dimension formula for the spaces of generalized automorphic forms with respect to $S p(2, Z)$, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 4, 139-142.

