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1 Positive definite even unimodular lattices

Let F' be a totally real number field of degree d. Let n > 0 be an integer such
that dn is even. Then, by Minkowski-Hasse theorem, there exists a quadratic space

(Vn, Q) of rank 4n with the following properties:

(1) (V,Q) is unramified at any non-archimedean place.

(2) (V,Q) is positive definite ai any archimedean place.

Definition 1. An algebraic automorphic form on the orthogonal group Og is a locally

constant function on Og(F)\Og(A).

Put
(r.9)q = 5(Qr+1) ~ Q@) ~ QW)  wyeV.

Let L be a o-lattie in V(F'). The dual lattice L* is defined by
L*={x € V,(F)| (z,L)g C o}.

Then L is an integral lattice if and only if L. C L*. An integral lattice L is called an

even lattice if
Q(z) C 20 Vo e L.

Moreover, an integral lattice L is unimodular if L = L*. By the assumption (1) and
(2), there exists a positive definite even unimodular latice Lo in V' (F).
Two integral lattices L; and Ly are equivalent if there exists an element g € Og(F)

such that g - L1 = Ly. Two integral lattices L1 and Ly are in the same genus if there
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exists an element g, € Og(F,) such that g- Ly, = Lo, for any finite place v. The
set of positive definite even unimodular lattices in V(F') form a genus. Let ¢ be the
set of equivalence classes in this genus. In this article, we focus on even unimodular
lattices.

Choose a positive definite even unimodular lattiece Ly in V(F'). Let Ky be the
stabilezer of Ly in Og(A). Then Ky is a maximal compact subgroup of Og(A). The
set Og(A)/Ko can be identified with the set of all even unimodular lattices. For
£ € Og(A), let L C V be the unique lattice such that L, = £Lg & ! for any non-
archimedean place v. Then L is a positive definite even unimodular lattice, and any
positive definite even unimodular lattice in V' is obtained in this way. Moreover, the
isomorphism class [L] is determined by the double coset Og(F)(Ky. Thus one can
think of

§ = Oq(F)\Oq(A)/Ko.
In fact, the set Og(F)\Og(A)/Ko can be identified with Og(F)\Og(Afn)/Ko fin,
where Ko, is the finite part of Ky and Og(F) is considered as a subgroup of
O¢(Afn). Choose a double coset Og(F)(K an corresponding to an even unimod-
ular lattice L C V. Then the automorphism group O(L) can be identified with

Og(F) N Ko &
In particular, the volume of the set
Oq(F)\Oq(F)§Ko,in ~ & - (O(L)\Ko,fin)

is equal to E(L)™!, where E(L) is the order of O(L).

Put
Cl9]:=@LeyC-[L],  Z|Y]:=DLeyZ-[L].

Then C[G] can be identified the the space of K-invariant algegraic automorphic forms

on Og. This correspondence is given by

[L] — the characteristic function on Og(F'){K( corresponding to L
Thus we identify C[¥¢] with L?(Og(F)\Og(A)/Ko).

Definition 2. Let K, L C V(F') be even unimodular lattices. Let p be a prime ideal
of F. Then K is a p-neighbor of L if

L/(LNK)~K/(LONK)~o/p.
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The number of p-neighbors of L which is isomorphic to K is denoted by N (L, K, p).
This is determied by the isomorphism classes of K and L.

Definition 3. The operator

K(p): [L]= Y N(L K, p)K]
Ke9

on Z[¥4] is called the Kneser p-neighbor operator. We also define the dual Kneser
p-neighbor operator K (p)¥ by

K(p)":[L] = Y N(K,Lp)K].

Kev

It is known that
N(L,K,p) FE(L)

N(K,L,p) FE(K)

It follows that K (p) and K(p)¥ are conjugate. Here, we work with the dual p-neighbor
operator K (p)Y. This convension is different from [2], [8], or [5].

Let H = H(Kp\Og(A)/Kp) be the Hecke algebra on Ko\Og(A)/Ky. Then H acts
on L?(0g(F)\Og(A)/Ky) as Hecke operators. The dual Kneser p-neighbor operator
K(p)Y can be considered as a Hecke operator. Let f = > culL] € C[¥] be a Hecke
eigenform with p-Satake parameter {6;%, e 75,::%71}- Then the eigenvalue of f with
respect to K(p)¥ is given by

2n
QEn_l Z(ﬁp,i + B;:,zl)
=1
2 Theta functions

Let m > 1 is an integer. For L € ¢, we define a theta function H(Lm)(Z) by

07 (2) = e(tr((z,2)2)).

zeLm

Then Hém)(Z) € My, (T,,[071,0]). Here, 0 is the different of F' and

o= (2 ) esnan[ A BE0)



For f =3, ycr L € C[¥], we set

"N =3 Fih" @

Le¥

(This convension is also different from [2], [8], and [5].) For a Hecke eigenvector
f € C[¥], the degree deg f is defined by

deg f = min{m | " (f) # 0}.

Let f € C[¥4] be a Hecke eigenvector with deg f = mg. By the theory of theta

Correspondence, one can prove

e For m > mg, O (f) € My, (I',,[071,0]) is a Hecke eigenform.
e We have ©(™0)(f) € Sy, (T, [071,0]).
e For m > mg, O™ (f) is orthogonal with Sa,(T',,[0~",9]) with respect to the

Petersson inner product.

Suppose that f € C[¥4] is a Hecke eigenform such that deg f = m < 2n. Let the
p-Satake parameter of @) (f) € Sy, (I',,[071,0]) be

{Bip - BT
Then the p-Satake parameter of f € C[¥] is given by
{1,855 Byt U{g” (0<j<2n—m—1)}

Here, gy is the order of the residue field of p.

3 Niemeirer lattices

In this section, we take F' = Q. A Niemeier lattice is a positive definite even
unimodular lattice of rank 24. There are 24 isomorphism classes of Niemeier lattices.

They are classified by the root system formed by vectors of norm 2. (See Conway and
Sloan [3].)



Ly L, Ls Ly Ls Le L7 | Lg

0 AT Ay | A5 Af AiDy | D§ | Aj
Ly Lqo L1y L L3 Ly Lis | Lie
AZD? AR AjDs | Dg | AuD7Es | E; | Al, | D§
L7 Lqg Lqg Loy Loy Lo Los | Loy
AysDg | D1gE2 | Ai7E; | D, Asy DiFEs | E3 | Doy

The order E(L) of the automorphism group O(L) can be found in Conway-Sloan

3].

E(L) E(L)
I 15570572852330496000 | | Ly | 31522712171959008000000
Ly | 312927932591808624000000 | | Ly | 437599241673334240000000
Ls | 180674574584719324741632 | | Ls | 52278522738634063872000
L; | 1196560426451890500000 | | Ls |  8361079854908571648000
Lo | 2700612462901377024000 | | Lo | 225800767686574080000
L, 106690862731906252800 | | L1» 19144966823230248000
L1s 8082641116053504000 | | Lya 373503391765504000
Lis 834785957117952000 | | Lug 156983146327507500
L7 33307587016704000 | | Lis 4134535541136000
Lo 3483146354683000 | | Lao 67271626831500
Lo 4173688995840 | | Las 271057837050
Los 63304560820 | | Lo 24877125

The dual Kneser neighbor operator K(2) and the eigenvectors were calculated by
Nebe and Venkov [8]. Let f; (i =1,2,..
The degree of f; is defined by

.,24) be the eigenvectors.

n; = min{n | 0™ (4;) # 0}.

Nebe-Venkov [8] and Chnevier-Lannes [2] determined the degrees:

Ji | S| f3 | fa |l s | fe | fr | fs | fo | fio | f11 | fi2
0 1 2 3 4 4 5 5 6 6 6 7
fi3 | fia | fi5 | fi6 | fir | fis | fio | foo | for | fo2 | fo3 | fou
8 7 8 7 8 8 9 9 10 10 11 12

Put F; = (") (4;).



Recall that
dimeSox (SLe(Z)) = 1, 2k =12, 16, 18, 20, 22.

Let
Po = Za% e(nz) € Sou(SLa(Z)),  (2k = 12, 16, 18, 20, 22)

be the normalized Hecke eigenform. ¢15 is also denoted by A(7). For a prime [, there

exists a [-adic representation pgy : Gal(Q/Q) — GL2(Q;) such that

L(s, par) = Hdet(l — pai(Frob,) - p™?%)

p
up to bad Euler factors.

fi= Z?il is a constant function on Og(A) and O™ is the Siegel Eisenstein series
for any n by Siegel’s main theorem. Fy = O (fy) € S15(SLa(Z)) is equal to A(2) u
to constant. 3 = O (f3) € S12(Spy(Z)) is the Saito-Kurokawa lift of ¢op. It follows

that

L(s, F3,st) = H L(s +1, ¢22),
10<i<11

Fs = OW(f5) € S12(Sp4(Z)) is the DII lift of ¢og to degree S12(Sp,(Z)). Hence we

have
L(s, Fs,st) = H L(s +1i,$2),

8<:i<11

Fy = 0G)(f,) € S12(Sp4(Z)) is the Miyawaki lift of A(z) with respect to Fy. Hence
we have
L(s, Fy,st) = L(s,A,st) [[ L(s+1i,62)
9<i<10

Foy = OU2)(fyy) € S12(Spy5(Z)) is the DII lift of A(z) to degree 12, which is investi-
gated in Borcherds-Freitag-Weissauer [1].

Let p; 1 be the holomorphic representation of GL2(C) given by p; 1 = Sym’ @ det”.
The highset weight of p;  is (j +k, k). Let S;;(Spy(Z)) be the space of modular form
of vector weight p; . For a Hecke eigenform ¢ € S, 1(Spy(Z)), the spin L-function

has a functional equation

A(s, ¢,spin) =I'c(s)Tc(s — k + 2)L(s, ¢, spin),
A2k +j — 2 — s,¢,spin) =(—1)"A(s, ¢, spin).



This is proved by Schmidt [9]. For a prime [, there exists a [-adic representation
pik : Gal(Q/Q) — GL4(Q;) such that

L(s, ¢;x,spin) = Hdet(l — pj.x(Frob,) - p™%)
P
up to bad Euler factors. The eigenvalue ¢; ; with respect to the Hecke operator T'(p)
is denoted by 7; 1 (p).

By Tsusima’s dimension formula [10], we have dim¢ S; ,(Spy(Z)) = 1 for
(J, k) = (4,10), (6,8), (8,8), (12,6).

Let ¢;,1 be a generator of S; 1 (Spy(Z)) for (j, k) = (4,10), (6,8), (8,8), (12,6).

Note that
C(s) JI L(s+i 126 spin) [ L(s+1i,61s)

10<i<11 8<i<9

has a gamma factor

Tr(s) [] Tels+1i),

6<:<11

which is the same as the gamma factor of the standard L-function of S12(Spg(Z)). By
the Arthur endoscopic classification, one can show that there exists a Hecke eigenform
F € S12(Spg(Z)) such that

L(s, F,st) = ((s) H L(s+1,$126,spin) H L(s+1,¢18).

10<i<11 8<i<9

comparing the Satake parameter, we have F' is equal to Fig up to a non-zero constant.

By a similar argument, we have

L(s, F15,st) =((s) H L(s+1,¢ss,spin) H L(s+1,¢16),

10<i<11 6<i<9
L(s, Fig,st) =L(s,A,st) [[ L(s+i ¢es,spin) [[ Lls+i,¢16) [ L(s+1i,612),
9<:<10 7<i<8 5<1<6
L(s, For,st) =((s) ] L(s+i ¢a10.pin) J[ L(s+i,¢1s) J] L(s+i,A).
10<i<11 8<i<9 4<4<7

In this way, we have the following list.



L(s,Fs,st) =C(s) ] L(s+i,¢22),

10<i<11
L(s, Fy,st) =L(s,A,st) [ L(s+1i,¢20),
9<4<10
L(s, Fs,st) =C(s) [] L(s+1,20),
8<i<11
L(s, Fe,st) =C(s) [ IL(s+i,d22) [[ L(s+i, 1),
10<i<11 8<i<9
L(s, Fr,st) =L(s,A;st) [[ L(s+i,¢20) [ L(s+4 ),
9<4<10 7<i<8
L(S,Fg,St) :L(Sa AaSt) H L(S + i7¢18)a
7<i<10
L(s, Fo,st) =C(s) [ IL(s+i,d22) [[ L(s+i,é16),
10<i<11 6<i<9
L(s,Fio,st) =C(s) ] L(s+1i,¢12,6,5pin) [ L(s+1i,¢1s),
10<i<11 8<4i<9
L(s, Fi1,st) =C(s) [ L(s+i,¢18),
6<i<11
L(S7F12a5t) :L(Sa AaSt) H L(S + i7¢16)a
5<i<10
L(s, Fia,st) =L(s,A,st) ] L(s+i,¢20) [[ Ls+i¢16) [[ L(s+14,4),
9<4<10 7<i<8 5<i<6
L(s, Fig,st) =L(s,A,st) [[ L(s+i,618) [[ L(s+14,2),
7<i<10 5<i<6
L(S7F13a5t) :C(S) H L(S + ia¢16)7
4<i<11
L(S,F17aSt) :C(S) H L(S+i,¢20) H L(8+27A),
8<i<11 4<i<7
L(s, Fig,st) =C(s) [[ L(s+i,¢22) [[ L(s+i,¢18) [[ L(s+1i,A),
10<4i<11 8<i<9 4<i<7
L(s,Fis,st) =C(s) ] L(s+i,¢88 spin) [ L(s+1i, ¢16),
10<i<11 6<i<9
L(s, Fao,st) =L(s,A,st) [[ L(s+i,¢20) [[ L(s+14,4),
9<4<10 3<i<8
L(s, Fro,st) =L(s,A,st) [[ L(s+i,des spin) [[ L(s+igie) [[ L(s+i ¢12),
9<3<10 7<i<8 5<i<6
L(s, Fag,st) =C(s) [[ L(s+i,¢22) [[ L(s+1i,4),
10<i<11 2<3i<9
L(S,F21aSt) :C(S) H L(S+ia¢4,1075pin) H L(S+l,¢18) H L(S—}—Z,A),
10<4i<11 8<i<9 4<i<7
10
L(s, Fag,st) =L(s,A,st) [ [ L(s +1, 1),
=1
11

L(s, Faa,st) =C(s) [ [ L(s + i, A).
=0



Now we look at fig and fo1. The coefficients of fig and fa; are as follows:

f18 fo1
L4 —497296800 —10443232800
Lo 4598528 133745920
Ls —1339173 —47191815
Ly 1079296 47645696
Ls —979625 —59665625
Lg —1587744 —62532000
Lo 18238464 181232640
Lg 5882107 454089125
Lg —1874432 304192000
L1g 42770511 —1585714725
L1 —52307360 —6844516000
Lio —33873920 —775168000
L3 43287552 18627840000
L1a 1733363712 —100776960000
L5 —1236612377 89553839375
Lqs 456902656 67945830400
L7 5926176256 —486566080000
Lis —22766026752 113799168000
L1g 8836315488 —270161892000
Lo 100908408832 139639808000
Loy 149286312175 12525735096875
Loo —817169633280 45429576192000
Los 8013000038400 —64332092160000
Loy | —873155271532544 | —4104432876544000

We follow the argument of Chenevier-Lannes [2]. The standard L-function of Fig €

S12(Spg(Z)) is associated to the [-adic Galois representation
L+ (T x T ) e + (X X ps (T AT XX T o

Here, x : Gal(Q/Q) — Q) is the cyclotomic character. It follows that the eigenvalue
evigK(p)Y of fis with respect to K(p) is equal to

P (1 70+ p az(p) + (07 4 pars(p) + (07 4 p70 4 p 0+ p asa(p)
+p_4+p_3+p_2+p_1+1+p+p2+p3+p4)
Similarly, The standard L-function of F»; € S12(Sp;;(Z)) is associated to
L+ (" +x"par0+ (X +x")pis + (0 + X7+ X+ xT)p1z
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It follows that the eigenvalue eva; K (p)Y of fo1 with respect to K(p)Y is equal to
P (14 70 4 o7 ) mi0(p) + (07 + pars(p) + (07 4070 4070+ ara(p)
+p 2 +p! +1+p+p2)
By an explicit calculation, we have
fis — 2+ for € 41Z]9].

Hence we have
evisK(p)Y = eve1 K(p)Y mod 41.

It follows that
(p 4+ 1)(Ta.10(p) — az2(p) — p** — p®) = 0 mod 41.
Put [ = 41. By the argument as above, we have
(14 X)(Ps,14 — (P22 + X + %)) =0

in the Grothendieck group of mod [ Galois representations with coefficient IF;. Here,

bar means the reduction mod [. After a little argument, one can show
pa1a = poo + X7+ X%

It follows that
74,10(p) = az2(p) +p13 +p3 mod 41

for p # 41. This is a special case of the Harder conjecture.

4 Positive definite even unimodular lattices of rank 8 over
Q(v2)

Now, we set F' = Q(v/2). By the result of Hsia and Hung [4], there are six isomor-
phism classes of positive definite even unimodular lattices of rank 8 over F. Let ¢ be

the set of isomorphism classes. They are labeled as
9 == {ES; 2A£La A8a 2D47 4A27 @}
e The order E(L) = 4O(L) of the automorphism group of L is as follows.
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L Es 2/ Ag 2D, | 44, 0
E(L) || 2™-3%.5%.7 | 2'7.3% | 215.32.5.7 | 2!4.3% | 218.3 | 2!%.32.5.7

e The Kneser g-neighbor matrix N (L, K, q) is as follows:

L\K | By | 24, | Ag | 2Dy | 44, | 0
Es| 0| 0135 0] 0] 0
2A, | 0| 18| 36| 0| 81| 0
As | 2| 35| 28] 70| 0] 0
2D, | 0| 0| 3| 96| 36| 0
4, | 0 64 | 49 | 16
0] 0 0| 105 | 30

e The coefficients of eigenvectors f; € C[¥4] of the dual Kneser g-neighbor operator
K(q)Y are given by

Eq 2A) Ag 2Dy 40, 1]
f1 1 1 1 1 1 1
fo 135 36 | —30 3 -8 14
f3 —14175 —216 840 81 —304 | 840
fa —135 —36 | —58 -3 8 30
| f5 | 5775 — 525v/73 | —88 4+ 10473 560 | —81 —13v/73 | 16 + 1673 | 560 |
| fo | 5775+ 525v73 | —88 — 10473 560 | —81+ 1373 | 16 — 16v/73 | 560 |

e The eigenvalue of f; (i =1,...,6) with respect to K(q)":

fi fo | f3 | fa f5 f6
135 | =30 | —8 | 58 | 33+ 373 | 33 —3V73

Note that these eigenvalues are distinct.

5 Hecke eigenforms for S;(I';[071,9]) and Ss(T'1[071,0])

Let £ > 1 be an integer. For an integral ideal b of F', we put o (b) = Za|b N(a)”.
The Eisenstein series Gog(2) € Mok (T'1[071,0]) is defined by

Gor(2) =27%r(1=2k) + D oz—1((6)e(éz) € Mai (T, 2]).

X
§€oNF

Then
@ Moy (T1[071,0]) = C[Ga, G4, Gg].

k>0
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In particular, we have
dim 54(111[071,0]) = 1, dim 56(111[071,0]) = 2.

Let
5 2 2—2 2 13
¢4(Z):44G4(Z)—6G2(Z) =q-—2q —4q°+---, q° =e(£2)
be a normalized Hecke eigenform of Sy(T'1[071,0]).

The L-function L(s, ¢4) of ¢p4(Z) = delaij a(€)q¢ is defined by

L(s,60) = [[(1 — alwy)ay* + 32"
p

Here, wq is a positive definite generator of the ideal q. Then the functional equation

of ¢4 is given by
A4 —s,04) = A(s, d4), A(s, ¢4) = 87°Tc(s)*L(s, ¢a)-
Put q = (v/2). Then the g-Satake parameter of ¢, is determined by
2/2(By + 85 1) = a(wq) = ~2.

It follows that the {34, 8, '} = {e(3/8),e(5/8)}. The standard L-fuction L(s, ¢4, st)
is given by
L(87 ¢4>St) = H(]' - qCTS)(]' - /qu;8>(1 - 6;1q;8)

q

There are two normalized Hecke eigenforms {¢g, ¢5 } for Sg(T'1[071,9]).

N —48240G4(2)G4(Z) + 2824320G5(Z)3 — 7G6(Z)
¢6 (Z) = 1560
N VT73(14160G2(Z)G4(Z) — 470400G2(Z)? — 7G6(2))
1560
=q+ (-1 V73)g> V24 -

The L-function L(s, ¢g) has a functional equation
A(6 — s,¢06) = A(s, dg), A(s, ¢g) = 8 °T'c(s)?L(s, ¢).
The g-Satake parameter of ¢6i is also determined by
2/2(yE 4 (7)) = —1 4 VT3,
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The standard L-fuction L(s, ¢6i, st) is given by

L(s, ¢a,st) = [J(1 = ¢ )1 = 7Eqy (1 = (vF) gy )
q

6 Hilbert-Siegel modular form arising from C|¥]

e The degree of f; € C[¥] is given by
deg f1 =0, degfe=4, degfs=1, degfs=degfs=2.
Here, the degree deg f; of f; is defined by

deg f; = min{m | ™ (f;) # 0}.

f2) is a DII lift of ¢4 to Sy(T™[~1,0]).

) is equal to ¢4 up to a non-zero constant.

) is a Miyawaki lift of ¢4 to S4(I'® [0~ 9]) with respect to @@ (fs).
f5) (resp. O (f5) ) is a DII lift of ¢ (resp. to ¢g ) to Sy(T'P [0t d)).

The standard L-functions are given by

4
L(s,0W(f),st) =Cr(s) [ [ L(s + 4 — i, ),
=1
L(87 9(1)(f4)7 St) :L(S7 ¢47 St)a
2
L(s, 03 (fs),st) =L(s, ¢a,st) [ [ L(s +3 — i, 6a),

=1

IS

L(s,0@)(f5),st) =Cr(s) | [ L(s + 4 — i, 0¢),

-
I
—_

IS

L(57@(2)(f6)78t) :CF(S) L(3+4—i7¢€)'

@
I
_
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