Hilbert-Siegel modular forms and automorphic forms on adele groups

Tamotsu Ikeda (Kyoto university)

Sep. 15, 2018, at Hakuba

1 Hilbert-Siegel modular group

Let F be a totally real number field of degree d. We denote the ring of integers and the unit group of F by $\mathfrak{o} = \mathfrak{o}_F$ and $\mathfrak{o}^{\times} = \mathfrak{o}_F^{\times}$.

The embeddings of F into \mathbb{R} are denoted by $\iota^{(1)}, \ldots, \iota^{(d)}$. For $a \in F$, we set $\iota^{(i)}(a) = a^{(i)}$ $(i = 1, \ldots, d)$. $a \in F$ is totally positive if $a^{(1)}, \ldots, a^{(d)} > 0$. We write $a \gg 0$ if $a \in F$ is totally positive. The set of totally real elements of F is denoted by F_{+}^{\times} . Put $\mathfrak{o}_{F,+}^{\times} = \mathfrak{o}_{F}^{\times} \cap F_{+}^{\times}$. This is a subgroup of $\mathfrak{o}_{F}^{\times}$ of finite index.

For a ring R, the symplectic group $\operatorname{Sp}_m(R)$ is given by

$$\operatorname{Sp}_{m}(R) = \{ \gamma \in \operatorname{SL}_{2m}(R) \mid {}^{t}gw_{m}g = w_{m} \}, \quad w_{m} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

For $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{GL}_{2m}(R),$
 $g \in \operatorname{Sp}_{m}(R) \quad \Longleftrightarrow \quad A^{t}B = B^{t}A, C^{t}C = D^{t}C, A^{t}D - B^{t}C = \mathbf{1}_{m}.$

Definition 1. For an integral ideal \mathfrak{n} of F, we put

$$\Gamma(\mathfrak{n}) = \{\gamma \in \operatorname{Sp}_m(\mathfrak{o}_F) \,|\, \gamma - \mathbf{1}_{2m} \in \operatorname{M}_{2m}(\mathfrak{n})\}.$$

 $\Gamma(\mathfrak{n})$ is called the principal congruence subgroup of $\operatorname{Sp}_m(\mathfrak{o}_F)$ of level \mathfrak{n} .

Definition 2. A subgroup $\Gamma \subset \operatorname{Sp}_m(F)$ is called a congruence subgroup of $\operatorname{Sp}_m(F)$ if there is a integral ideal \mathfrak{n} such that $\Gamma(\mathfrak{n}) \subset \Gamma$ and $[\Gamma : \Gamma(\mathfrak{n})] < \infty$.

Example: For fractional ideal \mathfrak{a} , \mathfrak{b} of F such that $\mathfrak{ab} \subset \mathfrak{o}_F$,

$$\Gamma[\mathfrak{a},\mathfrak{b}] = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_m^+(F) \, \middle| \, a, d \in \operatorname{M}_m(\mathfrak{o}), \, b \in \operatorname{M}_m(\mathfrak{a}), \, c \in \operatorname{M}_m(\mathfrak{b}) \right\}$$

is a congruence subgroup of $\operatorname{Sp}_m(F)$.

Let $\mathbb{A} = \mathbb{A}_F$ be the adele ring of F. It is known that the strong approximation property holds for Sp_m , i.e., for any place v of F, $\operatorname{Sp}_m(F)\operatorname{Sp}_m(F_v)$ is dense in $\operatorname{Sp}_m(\mathbb{A})$. In particular, $\operatorname{Sp}_m(F)$ is dense in $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$, where $\mathbb{A}_{\operatorname{fin}}$ is the finite adele ring of F, when $\operatorname{Sp}_m(F)$ is regarded as a subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$.

As a fundamental system of neighbourhood of the unit element of $\mathrm{Sp}_m(\mathbb{A}_{\mathrm{fin}}),$ one can choose

$$\mathbf{K}(\mathfrak{n}) = \{g \in \operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}}) \, | \, g - \mathbf{1}_{2m} \in \operatorname{M}_{2m}(\mathfrak{n}\hat{\mathfrak{o}}) \} \,.$$

Here, \mathfrak{n} extends over all integral ideals of F. By definition, we have $\mathbf{K}(\mathfrak{n}) \cap \operatorname{Sp}_m(F) = \Gamma(\mathfrak{n})$.

Theorem 1. We think of $\operatorname{Sp}_m(F)$ as a subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$. Let $\Gamma \subset \operatorname{Sp}_m(F)$ be a congruence subgroup. Then the closure $\overline{\Gamma}$ of Γ in $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$ is a compact open subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$.

Conversely, let $C \subset \operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$ be a compact open subgroup. Then $C \cap \operatorname{Sp}_m(F)$ is a congruence subgroup of $\operatorname{Sp}_m(F)$.

By this correspondence, congruence subgroups of $\operatorname{Sp}_m(F)$ correspond to compact open subgroups of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$ in one-to-one way.

Proof. Suppose that C is a compact open subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$ and that $C \supset \mathbf{K}(\mathfrak{n})$. Put $\Gamma = \operatorname{Sp}_m(F) \cap C$. Since C is an open and closed subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$, we have $\overline{\Gamma} = C$ by the strong approximation property. In particular, Γ contains an element of any left coset of $\mathbf{K}(\mathfrak{n})$, and so $[C : \mathbf{K}(\mathfrak{n})] = [C : \Gamma \cdot \mathbf{K}(\mathfrak{n})] = [\Gamma : \Gamma \cap \mathbf{K}(\mathfrak{n})] = [\Gamma : \Gamma(\mathfrak{n})]$. It follows that Γ is a congruence subgroup of $\operatorname{Sp}_m(F)$. In particular, considering the case $C = \mathbf{K}(\mathfrak{n})$, we have $\overline{\Gamma(\mathfrak{n})} = \mathbf{K}(\mathfrak{n})$.

Conversely, suppose that $\Gamma \supset \Gamma(\mathfrak{n})$ is a congruence subgroup of $\operatorname{Sp}_m(F)$. Then the closure $\overline{\Gamma}$ contains $\overline{\Gamma(\mathfrak{n})} = \mathbf{K}(\mathfrak{n})$ as a subgroup of finite index. It follows that $\overline{\Gamma}$ is a compact open subgroup of $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$. Moreover, since $\Gamma \cap \mathbf{K}(\mathfrak{n}) = \Gamma(\mathfrak{n})$, we hve $[\Gamma : \Gamma(\mathfrak{n})] = [\overline{\Gamma} : \mathbf{K}(\mathfrak{n})]$. Hence we have $\overline{\Gamma} \cap \operatorname{Sp}_m(F) = \Gamma$.

2 Hilbert-Siegel modular forms

A real symmetrix matrix $Y \in \operatorname{Sym}_m(\mathbb{R})$ of size m is positive definite if all the eigenvalues of Y are positive. Write Y > 0 if Y is positive definite. Put $\operatorname{Sym}_m^+(\mathbb{R}) = \{Y \in \operatorname{Sym}_m(\mathbb{R}) | Y > 0\}$. Let

$$\mathfrak{h}_m = \{X + \sqrt{-1}Y \in \operatorname{Sym}_m(\mathbb{C}) \,|\, X, Y \in \operatorname{Sym}_m(\mathbb{R}), \, Y > 0\}$$

be the Siegel upper half space of size m. The symplectic group $\operatorname{Sp}_m(\mathbb{R})$ acts on \mathfrak{h}_m by

$$\gamma(Z) = (AZ + B)(CZ + D)^{-1}$$
 for $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_m(\mathbb{R}), Z \in \mathfrak{h}_m$

The automorphy factor $j(\gamma, Z) \ \gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_m(\mathbb{R}) \text{ and } Z \in \mathfrak{h}_m \text{ is defined by}$

$$j(\gamma, Z) = \det(CZ + D).$$

Let $\mathbf{k} = (k^{(1)}, k^{(2)}, \dots, k^{(d)}) \in \mathbb{Z}^d$ be a multi-index of size m. Then the automorphy factor $j(\gamma, Z)^{\mathbf{k}}$ for $\gamma = (\gamma_1, \dots, \gamma_d) \in \operatorname{Sp}_m(\mathbb{R})^d$ and $Z = (Z_1, \dots, Z_d) \in \mathfrak{h}_m^d$ is defined by

$$j(\gamma, Z)^{\mathbf{k}} = \prod_{i=1}^{d} j(\gamma_i, Z_i)^{k^{(i)}}$$

Suppose that $f(\mathbf{z})$ is a \mathbb{C} -valued function on \mathfrak{h}_m^d . Then, for $\gamma \in \mathrm{Sp}_m(\mathbb{R})^d$, put

$$(f|_{\mathbf{k}}\gamma)(Z) = f(\gamma(Z))j(\gamma,Z)^{-\mathbf{k}}.$$

Then we have

$$(f|_{\mathbf{k}}\gamma_1)|_{\mathbf{k}}\gamma_2 = f|_{\mathbf{k}}(\gamma_1\gamma_2) \quad \text{for } \gamma_1, \gamma_2 \in \operatorname{Sp}_m(\mathbb{R})^d.$$

Definition 3. A holomorphic function f(Z) on \mathfrak{h}_m^d is a weak Hilbert-Siegel modular form for a congruence subgroup Γ if $f|_{\mathbf{k}}\gamma = f$ for any $\gamma \in \Gamma$.

Let f be a weak Hilbert-Siegel modular form for a congruence subgroup Γ . Let \mathfrak{m} be an integral ideal such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then we have

$$f(Z + \mu) = f(Z) \qquad \forall \mu \in \operatorname{Sym}_m(\mathfrak{m}).$$

It follows that f(Z) has a Fourier expansion

$$f(Z) = \sum_{\xi \in \operatorname{Sym}(\mathfrak{m})^{\vee}} a_f(\xi) \mathbf{e}(\xi Z).$$

Here,

$$\operatorname{Sym}_{m}(\mathfrak{m})^{\vee} = \{ \xi \in \operatorname{Sym}_{m}(F) \mid \operatorname{Tr}_{F/\mathbb{Q}} \operatorname{tr}(\xi\mu) \in \mathbb{Z}, \ ^{\forall}\mu \in \operatorname{Sym}_{m}(\mathfrak{m}) \}$$
$$\mathbf{e}(\xi Z) = \exp(2\pi\sqrt{-1}\sum_{i=1}^{d} \operatorname{tr}(\xi^{(i)}Z_{i})).$$

This Fourier expansion converges absolutely and uniformly on any compact subset of \mathfrak{h}_m^d . If f(z) is a weak Hilbert-Siegel modular form of weight **k** for Γ , then $f|_{\mathbf{k}}\gamma$ is a weak Hilbert-Siegel modular form of weight **k** for $\gamma^{-1}\Gamma\gamma$.

A symmetrix matrix $\xi \in \operatorname{Sym}_m(F)$ is totally positive definite if $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are all positive definite. We write $\xi > 0$ if ξ is totally positive definite. A symmetrix matrix $\xi \in \operatorname{Sym}_m(F)$ is totally positive semi-definite if $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are all positive semi-definite. We write $\xi \ge 0$ if ξ is totally positive semi-definite.

Definition 4. A weak Hilbert-Siegel modular form f(Z) of weight **k** for Γ is a Hilbert-Siegel modular form if f(Z) has a Fourier expansion of the form

$$(f|_{\mathbf{k}}\gamma)(Z) = \sum_{\substack{\xi \in \operatorname{Sym}(F)\\\xi \ge 0}} a_{f,\gamma}(\xi) \mathbf{e}(\xi Z)$$

for any $\gamma \in \operatorname{Sp}_m(F)$. The space of all Hilbert-Siegel modular form of weight **k** for Γ is denoted by $\mathcal{M}_{\mathbf{k}}(\Gamma)$.

Definition 5. A Hilbert-Siegel modular form f(Z) of weight **k** for Γ is a Hilbert-Siegel cusp form if f(Z) has a Fourier expansion of the form

$$(f|_{\mathbf{k}}\gamma)(Z) = \sum_{\substack{\xi \in \operatorname{Sym}(F)\\\xi > 0}} a_{f,\gamma}(\xi) \mathbf{e}(\xi Z)$$

for any $\gamma \in \operatorname{Sp}_m(F)$. The space of all Hilbert-Siegel modular form of weight **k** for Γ is denoted by $\mathcal{S}_{\mathbf{k}}(\Gamma)$.

Theorem 2 (Koecher principle). Suppose that $dm \ge 2$. Then a weak Hilbert-Siegel modular form of weight **k** for Γ is automatically a Hilbert-Siegel modular form.

Proof. First we consider the case m = 1 and d > 1. Choose an integral ideal \mathfrak{m} such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then $f(\mathbf{z})$ is stable under a translation $\mathbf{z} \mapsto \mathbf{z} + \mu$ for $\mu \in \mathfrak{m}$. Fix $\mathbf{y} = (y_1, \ldots, y_d) \in (\mathbb{R}_+^{\times})^d$. Then as a function of $\mathbf{x} \in \mathbb{R}^d$, $f(\mathbf{x} + \sqrt{-1}\mathbf{y})$ is a periodic function with period \mathfrak{m} . It follows that there is a positive number M > 0 such that

$$|f(\mathbf{x} + \sqrt{-1}\mathbf{y})| < M, \qquad \forall \mathbf{x} \in \mathbb{R}^d.$$

Since

$$a_f(\xi) = \frac{1}{\operatorname{Vol}(\mathbb{R}^d/\mathfrak{n})} \int_{\mathbb{R}^d/\mathfrak{n}} f(\mathbf{x} + \sqrt{-1}\mathbf{y}) \mathbf{e}(-\xi(\mathbf{x} + \sqrt{-1}\mathbf{y})) \, d\mathbf{x},$$

we have

$$|a_f(\xi)| \le M e^{2\pi \cdot \operatorname{tr}(\xi \mathbf{y})}.$$

It follows that for any $\varepsilon \in \mathfrak{o}_{F,+}^{\times}$, $\varepsilon \equiv 1 \mod \mathfrak{m}$ and and $n \in \mathbb{Z}_{>0}$,

$$a_f(\xi) \leq \varepsilon^{-n\mathbf{k}} M e^{2\pi \cdot \operatorname{tr}(\varepsilon^{2n}\xi\mathbf{y})} \qquad \forall \xi \in \mathfrak{m}^{\vee}.$$

Suppose that $\xi \notin F_+^{\times} \cup \{0\}$. We may assume $\xi^{(1)} < 0$. Then by Dirichlet unit theorem, there exists $\varepsilon \in \mathfrak{o}_+^{\times}$ such that $\varepsilon^{(1)} > 1$, $\varepsilon^{(2)}, \ldots, \varepsilon^{(d)} < 1$. We may assume $\varepsilon \equiv 1 \mod \mathfrak{m}$. Then for $n \longrightarrow +\infty$, we have

$$\varepsilon^{-n\mathbf{k}}e^{2\pi\cdot\operatorname{tr}(\varepsilon^{2n}\xi\mathbf{y})}\longrightarrow 0.$$

Hence we have $a_f(\xi) = 0$.

Next, we consider the case $m \geq 2$. Let N be an integer such that $\Gamma(N\mathfrak{o}) \subset \Gamma$. Put $L = \operatorname{Sym}(N\mathfrak{o})$ and $L^{\vee} = \operatorname{Sym}(N\mathfrak{o})^{\vee}$. Then $f(\mathbf{z})$ is stable under a translation $Z \mapsto Z + \mu$ by $\mu \in L$. Fix

$$Y = (Y^{(1)}, \dots, Y^{(d)}) \in \operatorname{Sym}_m^+(\mathbb{R})^d,$$

$$Y^{(i)} = \operatorname{diag}(y_1^{(i)}, \dots, y_m^{(i)}), \quad y_1^{(i)}, \dots, y_m^{(i)} > 0, \quad (i = 1, \dots, d).$$

Then as a function of $X \in \text{Sym}(\mathbb{R})^d$, $f(X + \sqrt{-1}Y)$ is periodic with period L. It follows that there exists a positive number M > 0 such that

$$|f(X + \sqrt{-1}Y)| < M, \qquad \forall X \in \operatorname{Sym}_m(\mathbb{R})^d$$

Since

$$a_f(\xi) = \frac{1}{\operatorname{Vol}(\operatorname{Sym}_m(\mathbb{R})^d/L)} \int_{(\operatorname{Sym}_m(\mathbb{R})^d/L} f(X + \sqrt{-1}Y) \mathbf{e}(-\xi(X + \sqrt{-1}Y)) \, dX,$$

we have

$$|a_f(\xi)| \le M \exp(2\pi \cdot \operatorname{tr}(\xi \mathbf{y})).$$

It follows that for any $A \in SL_m(\mathfrak{o})$ such that $A \equiv \mathbf{1}_m \mod N$, we have

$$a_f(\xi) \le M \exp(2\pi \cdot \operatorname{tr}(A\xi^{t}AY)) \qquad \forall \xi \in L^{\vee}.$$

Suppose that $\xi = (\xi_{ij}) \in \text{Sym}_m(F)$ is not totally positive semi-definite. We need show that $a_f(\xi) = 0$. By assumption, $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are not all positive semidefinite. We may assume $\iota^{(1)}(\xi)$ is not positive semi-definite. Then there exists $v = (v_1, \ldots, v_m) \in \mathbb{R}^m$ such that $v\iota^{(1)}(\xi) \cdot v < 0$. Since \mathbb{Q}^m is dense in \mathbb{R}^m , we may assume $v \in \mathbb{Q}^m$. Moreover, multiplying an integer, we may assume $v \in \mathbb{Z}^m$. Let Kbe a GCD of $v_1 - v_2, v_1 - v_3, \ldots, v_1 - v_m$. By replacing v by $(1, 0, \ldots, 0) + KNv$, if necessary, we may assume v satisfies the following conditions:

- $v \equiv (1, 0, \dots, 0) \mod N$.
- v_1, \ldots, v_m are coprime.

It follows that there exists $A \in SL_m(\mathbb{Z})$, $A \equiv \mathbf{1}_m \mod N$ such that the first column of A is v. By replacing ξ by $A\xi^{t}A$, we may assume that $\iota^{(1)}(\xi_{11}) < 0$. Put

$$B = \begin{pmatrix} 1 & N & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & & 1 \end{pmatrix}$$

Then we have $B \equiv \mathbf{1}_m \mod N$ and

$$\operatorname{tr}(B^{n}\xi \cdot {}^{t}B^{n}) = \sum_{i=1}^{d} (\xi_{11}^{(i)}N^{2}n^{2} + 2\xi_{12}^{(i)}Nn)y_{2}^{(i)} + (\xi_{11}^{(i)}y_{1}^{(i)} + \xi_{22}^{(i)}y_{2}^{(i)} + \dots + \xi_{mm}^{(i)}y_{m}^{(i)}).$$

One can choosing Y such that $\sum_{i=1}^{d} \xi_{11}^{(i)} y_2^{(i)} < 0$. Then for $n \to \infty$, we have $\operatorname{tr}(B^n \xi \cdot t B^n) \to -\infty$. Hence we have $a_f(\xi) = 0$, as desired.

The following are known:

- $\mathcal{M}_{\mathbf{k}}(\Gamma)$, $\mathcal{S}_{\mathbf{k}}(\Gamma)$ are finite-dimensional.
- If $F \neq \mathbb{Q}$ and $k^{(i)} \neq k^{(j)}$ for some $i, j \in \{1, \ldots, d\}$, then we have $\mathcal{M}_{\mathbf{k}}(\Gamma) = \mathcal{S}_{\mathbf{k}}(\Gamma)$.

3 Vector-valued Hilbert-Siegel modular forms

Put

 $\mathbf{i} = (\sqrt{-1} \cdot \mathbf{1}_m, \dots, \sqrt{-1} \cdot \mathbf{1}_m) \in \mathfrak{h}_m^d.$

The stabilizer of **i** in $\operatorname{Sp}_m(F_\infty) \simeq \operatorname{Sp}_m(\mathbb{R})^d$ is denoted by K_∞ . Then K_∞ is isomorphic to $\operatorname{U}(m)^d$. Here, the unitary group $\operatorname{U}(m)$ is considered as a subgroup of $\operatorname{Sp}_m(\mathbb{R})$ by

$$A + \sqrt{-1}B \mapsto \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$$

For $k = (k_1, \ldots, k_m) \in \mathbb{Z}^m$ such that $k_1 \geq \cdots \geq k_m$, the irreducible representation of U(m) with highest weight (k_1, \ldots, k_m) is denoted by ρ_k . For a multi-index weight $\mathbf{k} = (k^{(1)}, \ldots, k^{(d)}), \ k^{(i)} = (k_1^{(i)}, \ldots, k_m^{(i)}) \in \mathbb{Z}^m$ such that $k_1^{(i)} \geq \cdots \geq k_m^{(i)}$ for each i, the irreducible representation $\rho_{\mathbf{k}}$ of $U(m)^d$ is defined by $\rho_{\mathbf{k}} = \rho_{k^{(1)}} \otimes \cdots \otimes \rho_{k^{(d)}}$. The representation space of $\rho_{\mathbf{k}}$ is denoted by $V_{\rho_{\mathbf{k}}}$.

The canonical automorphy factor $J(\gamma, Z) \in \operatorname{GL}_m(\mathbb{C})^d$ for $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_m(\mathbb{R})$ and $Z \in \mathfrak{h}_m$ is defined by

$$J(\gamma, Z) = CZ + D.$$

Let $\mathbf{k} = (k^{(1)}, k^{(2)}, \dots, k^{(d)}), \ k^{(i)} = (k_1^{(i)}, \dots, k_m^{(i)}), \ k_1^{(i)} \ge \dots \ge k_m^{(i)}$ be a multi-index weight of size m. Then $\rho_{\mathbf{k}}(J(\gamma, Z)) \in \operatorname{GL}(V_{\rho_{\mathbf{k}}})$ for $\gamma = (\gamma_1, \dots, \gamma_d) \in \operatorname{Sp}_m(\mathbb{R})^d$ and $Z = (Z_1, \dots, Z_d) \in \mathfrak{h}_m^d$ is an automorphy factor. Suppose that $f(\mathbf{z})$ is a $V_{\rho_{\mathbf{k}}}$ -valued function on \mathfrak{h}_m^d . Then, for $\gamma \in \operatorname{Sp}_m(\mathbb{R})^d$, put

$$(f|_{\rho_{\mathbf{k}}}\gamma)(Z) = \rho_{\mathbf{k}}(J(\gamma, Z))^{-1}f(\gamma(Z))$$

Then we have

$$(f|_{\rho_{\mathbf{k}}}\gamma_1)|_{\rho_{\mathbf{k}}}\gamma_2 = f|_{\rho_{\mathbf{k}}}(\gamma_1\gamma_2) \quad \text{for } \gamma_1, \gamma_2 \in \operatorname{Sp}_m(\mathbb{R})^d.$$

Definition 6. A $V_{\rho_{\mathbf{k}}}$ -valued holomorphic function f(Z) on \mathfrak{h}_m^d is a weak Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for a congruence subgroup Γ if $f|_{\rho_{\mathbf{k}}}\gamma = f$ for any $\gamma \in \Gamma$.

Remark 1. $\rho = \rho_{\mathbf{k}}$ is usually called the weight $\rho_{\mathbf{k}}$. But, since the word "weight" is somewhat confusing, we use the word "vector weight" here.

Let f be a weak Hilbert-Siegel modular form for a congruence subgroup Γ of vector weight $\rho_{\mathbf{k}}$. Let \mathfrak{m} be an integral ideal such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then we have

$$f(Z + \mu) = f(Z) \qquad \forall \mu \in \operatorname{Sym}_m(\mathfrak{m}).$$

It follows that f(Z) has a Fourier expansion

$$f(Z) = \sum_{\xi \in \operatorname{Sym}(\mathfrak{m})^{\vee}} a_f(\xi) \mathbf{e}(\xi Z).$$

This Fourier expansion converges absolutely and uniformly on any compact subset of \mathfrak{h}_m^d . If f(z) is a weak Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ , then $f|_{\rho_{\mathbf{k}}}\gamma$ is a weak Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for $\gamma^{-1}\Gamma\gamma$.

Definition 7. A weak Hilbert-Siegel modular form f(Z) of vector weight $\rho_{\mathbf{k}}$ for Γ is a Hilbert-Siegel modular form if f(Z) has a Fourier expansion of the form

$$(f|_{\rho_{\mathbf{k}}}\gamma)(Z) = \sum_{\substack{\xi \in \operatorname{Sym}(F)\\\xi \ge 0}} a_{f,\gamma}(\xi) \mathbf{e}(\xi Z)$$

for any $\gamma \in \operatorname{Sp}_m(F)$. The space of all Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ is denoted by $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$.

Definition 8. A Hilbert-Siegel modular form f(Z) of vector weight $\rho_{\mathbf{k}}$ for Γ is a Hilbert-Siegel cusp form if f(Z) has a Fourier expansion of the form

$$(f|_{\rho_{\mathbf{k}}}\gamma)(Z) = \sum_{\substack{\xi \in \operatorname{Sym}(F)\\\xi > 0}} a_{f,\gamma}(\xi) \mathbf{e}(\xi Z)$$

for any $\gamma \in \operatorname{Sp}_m(F)$. The space of all Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ is denoted by $\mathcal{S}_{\rho_{\mathbf{k}}}(\Gamma)$.

It is known that if $k_m^{(i)} < 0$ for some *i*, then $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma) = 0$. The Koecher principle holds for vector-valued Hilbert-Siegel modular forms. It is also known that $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$ and $\mathcal{S}_{\rho_{\mathbf{k}}}(\Gamma)$ are finite-dimensional vector spaces.

4 Hilbert-Siegel modular forms on $Sp_m(\mathbb{A})$

The adele group $\operatorname{Sp}_m(\mathbb{A})$ of Sp_m is given by

$$\operatorname{Sp}_m(\mathbb{A}) = \bigcup_{\mathfrak{S}} \left(\prod_{v \notin \mathfrak{S}} \operatorname{Sp}_m(\mathfrak{o}_v) \right) \times \left(\prod_{v \in \mathfrak{S}} \operatorname{Sp}_m(F_v) \right),$$

where \mathfrak{S} extends over finite sets of places of F containing all archimedean places.

Let Γ be a congruence subgroup of $\operatorname{Sp}_m(F)$ and \mathbf{K}_{Γ} its closure in $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$. Then the strong approximation property, we have

$$\operatorname{Sp}_m(\mathbb{A}) = \operatorname{Sp}_m(F) \cdot \mathbf{K}_{\Gamma} \cdot \operatorname{Sp}_m(F_{\infty}).$$

Here, $F_{\infty} \simeq \mathbb{R}^d$ is the infinite part of \mathbb{A} . When $\mathrm{Sp}_m(F)$ is regarded as a subgroup of $\mathrm{Sp}_m(\mathbb{A})$, we have

$$\operatorname{Sp}_m(F) \cap \mathbf{K}_{\Gamma} \cdot \operatorname{Sp}_m(F_{\infty}) = \Gamma.$$

Let f(Z) be a Hilbert-Siegel modular form of vector weight $\rho = \rho_{\mathbf{k}}$ for Γ . Then we can construct a V_{ρ} -valued function $\phi_f(g)$ as follows.

For $g \in \mathrm{Sp}_m(\mathbb{A})$, choose a decomposition

$$g = \gamma \cdot u \cdot h, \qquad \gamma \in \operatorname{Sp}_m(F), \ u \in \mathbf{K}_{\Gamma}, \ h \in \operatorname{Sp}_m(F_{\infty})$$

and put

$$\phi_f(g) = (f|_{\rho}h)(\mathbf{i}).$$

Then we have a well-defined V_{ρ} -valued function ϕ_f on $\operatorname{Sp}_m(\mathbb{A})$. In fact, let

$$g = \gamma' \cdot u' \cdot h', \qquad \gamma' \in \operatorname{Sp}_m(F), \ u' \in \mathbf{K}_{\Gamma}, \ h' \in \operatorname{Sp}_m(F_{\infty})$$

be another decomposition. Then $\delta := \gamma {\gamma'}^{-1} \in \Gamma$. Let δ_{fin} and δ_{∞} be the finite and infinite part of δ . Then we have

$$u' = \delta_{\text{fin}} u, \qquad h' = \delta_{\infty} h$$

and so

$$f|_{\mathbf{k}}h' = f|_{\rho}\delta_{\infty}h = f|_{\rho}h$$

Hence $\phi_f(g)$ is well-defined.

Let \mathfrak{g} and \mathfrak{k} be the complexification of the Lie algebra of $\operatorname{Sp}_m(F_\infty)$ and K_∞ , respectively. Then we have a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}, \ \mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ such that

$$[\mathfrak{k},\mathfrak{p}^{\pm}] \subset \mathfrak{p}^{\pm}, \quad [\mathfrak{p}^+,\mathfrak{p}^+] = [\mathfrak{p}^-,\mathfrak{p}^-] = 0, \quad [\mathfrak{p}^+,\mathfrak{p}^-] = \mathfrak{k}.$$

Note that in the case d = 1, we have

$$\mathfrak{g} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_3 & -^t X_1 \end{pmatrix} \middle| X_1, X_2, X_3 \in \mathcal{M}_m(\mathbb{C}), X_2 = {}^t X_2, X_3 = {}^t X_3 \right\},$$
$$\mathfrak{k} = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \middle| A, B \in \mathcal{M}_m(\mathbb{C}), -A = {}^t A, B = {}^t B \right\},$$
$$\mathfrak{p}^+ = \left\{ \begin{pmatrix} Z & \sqrt{-1}Z \\ \sqrt{-1}Z & -Z \end{pmatrix} \middle| Z \in \mathcal{M}_m(\mathbb{C}), Z = {}^t Z \right\},$$
$$\mathfrak{p}^- = \left\{ \begin{pmatrix} Z & -\sqrt{-1}Z \\ -\sqrt{-1}Z & -Z \end{pmatrix} \middle| Z \in \mathcal{M}_m(\mathbb{C}), Z = {}^t Z \right\}.$$

The element of \mathfrak{p}^- acts on a function on \mathfrak{h}_m^d by an anti-holomorphic differential operator. Since f is a holomorphic function on \mathfrak{h}_m^d , we have $\mathfrak{p}^- \cdot \phi_f = 0$.

Let $\mathcal{U}(\mathfrak{g})$ and $\mathcal{Z}(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g} and its center, respectively.

An element of $\mathcal{U}(\mathfrak{g})$ (resp. $\mathcal{Z}(\mathfrak{g})$) acts on $C^{\infty}(\mathrm{Sp}_m(F_{\infty}))$ as a left invariant (resp. bi-invariant) differential operator. A ring homomorphism $\chi : \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$ is called an infinitesimal character.

Let $\mathfrak{h} \subset \mathfrak{k}$ be a Cartan subalgebra of \mathfrak{k} . Then \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g} . Let $W = W(\mathfrak{g}, \mathfrak{h})$ be the Weyl group. By the Harish-Chandra isomorphism, we have $\mathcal{Z}(\mathfrak{g}) \simeq \mathbb{C}[\mathfrak{h}]^W$. The Cartan subalgebra is isomorphic to $\underbrace{\mathbb{C}^m \times \cdots \times \mathbb{C}^m}_{d \text{ times}}$. Let $\chi_{\mathbf{k}}$ be the infinitesimal character determined by

$$(H_1^{(1)}, H_2^{(1)}, \dots, H_m^{(1)}, \dots, H_1^{(d)}, H_2^{(d)}, \dots, H_m^{(d)}) \mapsto \sum_{i=1}^d \sum_{j=1}^m (k_j^{(i)} - j) H_j^{(d)}.$$

Proposition 1. We have $z \cdot \phi_f = \chi_{\mathbf{k}}(z)\phi_f$ for any $f \in \mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$.

Proof. Let $\mathfrak{n}_{\mathfrak{k}}^+$ and $\mathfrak{n}_{\mathfrak{k}}^-$ be the maximal nilotent subalgebras of \mathfrak{k} , corresponding to positive and negative root systems, respectively. Since $\phi_f(gk) = \rho(k)\phi_f(g)$ for $k \in$ K_{∞} , we may assume ϕ_f is a highest weight vector, i.e., $N \cdot \phi_f = 0$ for any $N \in \mathfrak{n}_{\mathfrak{k}}^+$.

Put $\mathfrak{n} = \mathfrak{p}^- + \mathfrak{n}_{\mathfrak{k}}^+$. Then \mathfrak{n} is a maximal nilpotent subalgebra of \mathfrak{g} . Then we have

$$\mathbf{n} \cdot \phi_f = 0,$$
$$H \cdot \phi_f = \left(\sum_{i=1}^d \sum_{j=1}^m k_j^{(i)}\right) \phi_f$$

for

$$H = (H_1^{(1)}, H_2^{(1)}, \dots, H_m^{(1)}, \dots, H_1^{(d)}, H_2^{(d)}, \dots, H_m^{(d)}) \in \mathfrak{h}.$$

Let δ be the half the sum of roots in \mathfrak{n} . Then we have

$$\delta(H) = -\sum_{i=1}^{d} \sum_{j=1}^{m} j H_j^{(i)}$$

By the Poincare-Birkoff-Witt theorem, we have $\mathbb{C}[\mathfrak{h}] \cap \mathfrak{U}(\mathfrak{g})\mathfrak{n} = 0$ and $\mathfrak{Z}(\mathfrak{g}) \subset \mathbb{C}[\mathfrak{h}] + \mathfrak{U}(\mathfrak{g})\mathfrak{n}$. Let $\gamma' : \mathfrak{Z}(\mathfrak{g}) \to \mathbb{C}[\mathfrak{h}]$ be the first projection. Let $\sigma : \mathfrak{h} \to \mathbb{C}[\mathfrak{h}]$ be the map given by $\sigma(H) = H - \delta(H)$. Then the Harish-Chandra isomorphism $\gamma : \mathfrak{Z}(\mathfrak{g}) \simeq \mathbb{C}[\mathfrak{h}]^W$ is induced by $\gamma = \sigma \circ \gamma'$. Since

$$\gamma^{-1}(H) \cdot \phi_f = \left(\sum_{i=1}^d \sum_{j=1}^m (k_j^{(i)} - j)\right) \phi_f,$$

We obtain the proposition.

Let $\mathcal{M}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})/\mathbf{K}_{\Gamma})$ be the space of all ϕ_{f} such that $f \in \mathcal{M}_{\rho}(\Gamma)$. Then it is known that an element $\phi \in \mathcal{M}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})/\mathbf{K}_{\Gamma})$ is characterized as a function on $\mathrm{Sp}_{m}(\mathbb{A})$ with the properties:

- (1) ϕ is left $\text{Sp}_m(F)$ invariant.
- (2) ϕ is right \mathbf{K}_{Γ} invariant.
- (3) For $h \in K_{\infty} \simeq U(m)^d$, we have $\phi(gh) = \rho(h)\phi(g)$.
- (4) $\mathfrak{p}^- \phi = 0.$
- (5) $z \cdot \phi_f = \chi_{\mathbf{k}}(z)\phi_f$ for any $z \in \mathcal{Z}(\mathfrak{g})$.
- (6) ϕ is slowly increasing on $\mathrm{Sp}_m(\mathbb{A})$.

When dm > 1, the condition (5) is not necessary by the Koecher principle. For $\delta \in \text{Sp}_m(F)$, we have $f|_{\mathbf{k}}\delta_{\infty} \in M_{\mathbf{k}}(\delta^{-1}\Gamma\delta)$. Moreover, we have

$$\phi_{(f|_{\mathbf{k}}\delta_{\infty})}(g) = \phi_f(g\delta_{\mathrm{fin}}^{-1})$$

Here, $\delta_{\rm fin}$ and δ_{∞} are the finite and infinite part of δ , respectively. In fact, let

$$g = \gamma \cdot u \cdot h_{\infty}, \qquad \gamma \in \operatorname{Sp}_m(F), \quad u \in \delta^{-1} \mathbf{K}_{\Gamma} \delta, \quad h_{\infty} \in \operatorname{Sp}_m(F_{\infty})$$

be a decomposition. Then we have

$$\phi_{(f|_{\mathbf{k}}\delta_{\infty})}(g) = ((f|_{\mathbf{k}}\delta_{\infty})|_{\mathbf{k}}h_{\infty})(\mathbf{i}) = (f|_{\mathbf{k}}\delta_{\infty}h_{\infty})(\mathbf{i}).$$

Note that a decomposition of $f \delta_{\text{fin}}^{-1}$ is given by

 $g\delta_{\text{fin}}^{-1} = (\gamma\delta^{-1}) \cdot (\delta u\delta^{-1}) \cdot (\delta_{\infty}h_{\infty}), \qquad \gamma\delta^{-1} \in \text{Sp}_m(F), \ \delta u\delta^{-1} \in \mathbf{K}_{\Gamma}, \ \delta_{\infty}h_{\infty} \in \text{Sp}_m(F_{\infty}).$

Hence we have $\phi_f(g\delta_f^{-1}) = (f|_{\mathbf{k}}\delta_{\infty}h_{\infty})(\mathbf{i})$. It follows that

$$\phi_{(f|_{\mathbf{k}}\delta)}(g) = (f|_{\mathbf{k}}\delta_{\infty}h_{\infty})(\mathbf{i}) = \phi_f(g\delta_{\mathrm{fin}}^{-1}).$$

Definition 9.

$$\begin{split} &\mathcal{M}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})) = \bigcup_{\Gamma} \mathcal{M}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})/\mathbf{K}_{\Gamma}) \\ & \mathcal{S}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})) = \bigcup_{\Gamma} \mathcal{S}_{\rho}(\mathrm{Sp}_{m}(F)\backslash \mathrm{Sp}_{m}(\mathbb{A})/\mathbf{K}_{\Gamma}) \end{split}$$

By what we have seen as above, the finite adele group $\operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$ acts on $\mathcal{M}_{\rho}(\operatorname{Sp}_m(F)\backslash\operatorname{Sp}_m(\mathbb{A}))$ and $\mathcal{S}_{\rho}(\operatorname{Sp}_m(F)\backslash\operatorname{Sp}_m(\mathbb{A}))$ by right translation.

Definition 10. A (\mathbb{C} -valued) function φ on $\operatorname{Sp}_m(F) \setminus \operatorname{Sp}_m(\mathbb{A})$ is an automophic form on $\operatorname{Sp}_m(F) \setminus \operatorname{Sp}_m(\mathbb{A})$ of infinitesimal character χ and K_{∞} -type ρ if the following conditions hold:

- (1) φ is left $\operatorname{Sp}_m(F)$ invariant.
- (2) φ is right **K** invariant for some compact open subgroup $\mathbf{K} \subset \operatorname{Sp}_m(\mathbb{A}_{\operatorname{fin}})$.
- (3) φ has an infinitesimal character χ , i.e., $z \cdot \varphi = \chi(z)\varphi$ for any $z \in \mathcal{Z}(\mathfrak{g})$.
- (4) By the action of K_{∞} by the right translation, φ has a K_{∞} -type ρ .
- (5) φ is slowly increasing on $\text{Sp}_m(\mathbb{A})$.

The space of automorphic form on $\operatorname{Sp}_m(F) \setminus \operatorname{Sp}_m(\mathbb{A})$ of infinitesimal character χ and K_{∞} type ρ is denoted by $\mathcal{A}(\operatorname{Sp}_m(F) \setminus \operatorname{Sp}_m(\mathbb{A}); \chi; \rho)$.

Put

$$\mathcal{A}(\mathrm{Sp}_m(F)\backslash \mathrm{Sp}_m(\mathbb{A});\ \chi;\ \rho)^{\mathfrak{p}^-} = \{\phi \in \mathcal{A}(\mathrm{Sp}_m(F)\backslash \mathrm{Sp}_m(\mathbb{A});\ \chi;\ \rho) \mid \mathfrak{p}^-\phi = 0\}.$$

Then we have

$$\mathcal{M}_{\rho}(\mathrm{Sp}_m(F)\backslash \mathrm{Sp}_m(\mathbb{A})) \otimes V_{\rho}^{\vee} = \mathcal{A}(\mathrm{Sp}_m(F)\backslash \mathrm{Sp}_m(\mathbb{A}); \ \chi; \ \rho)^{\mathfrak{p}^-}.$$

Here, V_{ρ}^{\vee} is the dual space of V_{ρ} . This isomorphism is given by

$$f \otimes v^{\vee} \mapsto \langle \phi_f, v^{\vee} \rangle$$