Hilbert-Siegel modular forms and automorphic forms on adele groups

> Tamotsu Ikeda (Kyoto university)

Sep. 15, 2018, at Hakuba

1 Hilbert-Siegel modular group

Let F be a totally real number field of degree d. We denote the ring of integers and the unit group of F by $\mathfrak{o}=\mathfrak{o}_{F}$ and $\mathfrak{o}^{\times}=\mathfrak{o}_{F}^{\times}$.
The embeddings of F into \mathbb{R} are denoted by $\iota^{(1)}, \ldots, \iota^{(d)}$. For $a \in F$, we set $\iota^{(i)}(a)=a^{(i)}(i=1, \ldots, d) . a \in F$ is totally positive if $a^{(1)}, \ldots, a^{(d)}>0$. We write $a \gg 0$ if $a \in F$ is totally positive. The set of totally real elements of F is denoted by F_{+}^{\times}. Put $\mathfrak{o}_{F,+}^{\times}=\mathfrak{o}_{F}^{\times} \cap F_{+}^{\times}$. This is a subgroup of $\mathfrak{o}_{F}^{\times}$of finite index.
For a ring R, the symplectic group $\mathrm{Sp}_{m}(R)$ is given by

$$
\mathrm{Sp}_{m}(R)=\left\{\left.\gamma \in \mathrm{SL}_{2 m}(R)\right|^{t} g w_{m} g=w_{m}\right\}, \quad w_{m}=\left(\begin{array}{cc}
0 & -\mathbf{1} \\
\mathbf{1} & 0
\end{array}\right) .
$$

For $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{GL}_{2 m}(R)$,

$$
g \in \mathrm{Sp}_{m}(R) \quad \Longleftrightarrow \quad A^{t} B=B^{t} A, C^{t} C=D^{t} C, A^{t} D-B^{t} C=\mathbf{1}_{m}
$$

Definition 1. For an integral ideal \mathfrak{n} of F, we put

$$
\Gamma(\mathfrak{n})=\left\{\gamma \in \operatorname{Sp}_{m}\left(\mathfrak{o}_{F}\right) \mid \gamma-\mathbf{1}_{2 m} \in \mathrm{M}_{2 m}(\mathfrak{n})\right\} .
$$

$\Gamma(\mathfrak{n})$ is called the principal congruence subgroup of $\operatorname{Sp}_{m}\left(\mathfrak{o}_{F}\right)$ of level \mathfrak{n}.
Definition 2. A subgroup $\Gamma \subset \operatorname{Sp}_{m}(F)$ is called a congruence subgroup of $\operatorname{Sp}_{m}(F)$ if there is a integral ideal \mathfrak{n} such that $\Gamma(\mathfrak{n}) \subset \Gamma$ and $[\Gamma: \Gamma(\mathfrak{n})]<\infty$.

Example: For fractional ideal $\mathfrak{a}, \mathfrak{b}$ of F such that $\mathfrak{a b} \subset \mathfrak{o}_{F}$,

$$
\Gamma[\mathfrak{a}, \mathfrak{b}]=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Sp}_{m}^{+}(F) \right\rvert\, a, d \in \mathrm{M}_{m}(\mathfrak{o}), b \in \mathrm{M}_{m}(\mathfrak{a}), c \in \mathrm{M}_{m}(\mathfrak{b})\right\}
$$

is a congruence subgroup of $\operatorname{Sp}_{m}(F)$.

Let $\mathbb{A}=\mathbb{A}_{F}$ be the adele ring of F. It is known that the strong approximation property holds for Sp_{m}, i.e., for any place v of $F, \mathrm{Sp}_{m}(F) \mathrm{Sp}_{m}\left(F_{v}\right)$ is dense in $\mathrm{Sp}_{m}(\mathbb{A})$. In particular, $\operatorname{Sp}_{m}(F)$ is dense in $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$, where $\mathbb{A}_{\text {fin }}$ is the finite adele ring of F, when $\mathrm{Sp}_{m}(F)$ is regarded as a subgroup of $\mathrm{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right)$.

As a fundamental system of neighbourhood of the unit element of $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$, one can choose

$$
\mathbf{K}(\mathfrak{n})=\left\{g \in \operatorname{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right) \mid g-\mathbf{1}_{2 m} \in \mathrm{M}_{2 m}(\mathfrak{n} \hat{\mathbf{o}})\right\}
$$

Here, \mathfrak{n} extends over all integral ideals of F. By definition, we have $\mathbf{K}(\mathfrak{n}) \cap \operatorname{Sp}_{m}(F)=$ $\Gamma(\mathfrak{n})$.

Theorem 1. We think of $\operatorname{Sp}_{m}(F)$ as a subgroup of $\mathrm{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right)$. Let $\Gamma \subset \operatorname{Sp}_{m}(F)$ be a congruence subgroup. Then the closure $\bar{\Gamma}$ of Γ in $\mathrm{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right)$ is a compact open subgroup of $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$.

Conversely, let $C \subset \operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$ be a compact open subgroup. Then $C \cap \operatorname{Sp}_{m}(F)$ is a congruence subgroup of $\operatorname{Sp}_{m}(F)$.

By this correspondence, congruence subgroups of $\mathrm{Sp}_{m}(F)$ correspond to compact open subgroups of $\mathrm{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right)$ in one-to-one way.

Proof. Suppose that C is a compact open subgroup of $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$ and that $C \supset \mathbf{K}(\mathfrak{n})$. Put $\Gamma=\operatorname{Sp}_{m}(F) \cap C$. Since C is an open and closed subgroup of $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$, we have $\bar{\Gamma}=C$ by the strong approximation property. In particular, Γ contains an element of any left coset of $\mathbf{K}(\mathfrak{n})$, and so $[C: \mathbf{K}(\mathfrak{n})]=[C: \Gamma \cdot \mathbf{K}(\mathfrak{n})]=[\Gamma: \Gamma \cap \mathbf{K}(\mathfrak{n})]=[\Gamma: \Gamma(\mathfrak{n})]$. It follows that Γ is a congruence subgroup of $\operatorname{Sp}_{m}(F)$. In particular, considering the case $C=\mathbf{K}(\mathfrak{n})$, we have $\overline{\Gamma(\mathfrak{n})}=\mathbf{K}(\mathfrak{n})$.

Conversely, suppose that $\Gamma \supset \Gamma(\mathfrak{n})$ is a congruence subgroup of $\operatorname{Sp}_{m}(F)$. Then the closure $\bar{\Gamma}$ contains $\overline{\Gamma(\mathfrak{n})}=\mathbf{K}(\mathfrak{n})$ as a subgroup of finite index. It follows that $\bar{\Gamma}$ is a compact open subgroup of $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$. Moreover, since $\Gamma \cap \mathbf{K}(\mathfrak{n})=\Gamma(\mathfrak{n})$, we hve $[\Gamma: \Gamma(\mathfrak{n})]=[\bar{\Gamma}: \mathbf{K}(\mathfrak{n})]$. Hence we have $\bar{\Gamma} \cap \operatorname{Sp}_{m}(F)=\Gamma$.

2 Hilbert-Siegel modular forms

A real symmetrix matrix $Y \in \operatorname{Sym}_{m}(\mathbb{R})$ of size m is positive definite if all the eigenvalues of Y are positive. Write $Y>0$ if Y is positive definite. Put $\operatorname{Sym}_{m}^{+}(\mathbb{R})=$ $\left\{Y \in \operatorname{Sym}_{m}(\mathbb{R}) \mid Y>0\right\}$. Let

$$
\mathfrak{h}_{m}=\left\{X+\sqrt{-1} Y \in \operatorname{Sym}_{m}(\mathbb{C}) \mid X, Y \in \operatorname{Sym}_{m}(\mathbb{R}), Y>0\right\}
$$

be the Siegel upper half space of size m. The symplectic group $\operatorname{Sp}_{m}(\mathbb{R})$ acts on \mathfrak{h}_{m} by

$$
\gamma(Z)=(A Z+B)(C Z+D)^{-1} \quad \text { for } \gamma=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}_{m}(\mathbb{R}), Z \in \mathfrak{h}_{m}
$$

The automorphy factor $j(\gamma, Z) \gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}_{m}(\mathbb{R})$ and $Z \in \mathfrak{h}_{m}$ is defined by

$$
j(\gamma, Z)=\operatorname{det}(C Z+D)
$$

Let $\mathbf{k}=\left(k^{(1)}, k^{(2)}, \ldots, k^{(d)}\right) \in \mathbb{Z}^{d}$ be a multi-index of size m. Then the automorphy factor $j(\gamma, Z)^{\mathbf{k}}$ for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \operatorname{Sp}_{m}(\mathbb{R})^{d}$ and $Z=\left(Z_{1}, \ldots, Z_{d}\right) \in \mathfrak{h}_{m}^{d}$ is defined by

$$
j(\gamma, Z)^{\mathbf{k}}=\prod_{i=1}^{d} j\left(\gamma_{i}, Z_{i}\right)^{k^{(i)}}
$$

Suppose that $f(\mathbf{z})$ is a \mathbb{C}-valued function on \mathfrak{h}_{m}^{d}. Then, for $\gamma \in \operatorname{Sp}_{m}(\mathbb{R})^{d}$, put

$$
\left(\left.f\right|_{\mathbf{k}} \gamma\right)(Z)=f(\gamma(Z)) j(\gamma, Z)^{-\mathbf{k}}
$$

Then we have

$$
\left.\left(\left.f\right|_{\mathbf{k}} \gamma_{1}\right)\right|_{\mathbf{k}} \gamma_{2}=\left.f\right|_{\mathbf{k}}\left(\gamma_{1} \gamma_{2}\right) \quad \text { for } \gamma_{1}, \gamma_{2} \in \operatorname{Sp}_{m}(\mathbb{R})^{d}
$$

Definition 3. A holomorphic function $f(Z)$ on \mathfrak{h}_{m}^{d} is a weak Hilbert-Siegel modular form for a congruence subgroup Γ if $\left.f\right|_{\mathbf{k}} \gamma=f$ for any $\gamma \in \Gamma$.

Let f be a weak Hilbert-Siegel modular form for a congruence subgroup Γ. Let \mathfrak{m} be an integral ideal such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then we have

$$
f(Z+\mu)=f(Z) \quad \forall \mu \in \operatorname{Sym}_{m}(\mathfrak{m})
$$

It follows that $f(Z)$ has a Fourier expansion

$$
f(Z)=\sum_{\xi \in \operatorname{Sym}(\mathfrak{m})^{\vee}} a_{f}(\xi) \mathbf{e}(\xi Z)
$$

Here,

$$
\begin{aligned}
\operatorname{Sym}_{m}(\mathfrak{m})^{\vee} & =\left\{\xi \in \operatorname{Sym}_{m}(F) \mid \operatorname{Tr}_{F / \mathbb{Q}} \operatorname{tr}(\xi \mu) \in \mathbb{Z},{ }^{\forall} \mu \in \operatorname{Sym}_{m}(\mathfrak{m})\right\} \\
\mathbf{e}(\xi Z) & =\exp \left(2 \pi \sqrt{-1} \sum_{i=1}^{d} \operatorname{tr}\left(\xi^{(i)} Z_{i}\right)\right) .
\end{aligned}
$$

This Fourier expansion converges absolutely and uniformly on any compact subset of \mathfrak{h}_{m}^{d}. If $f(z)$ is a weak Hilbert-Siegel modular form of weight \mathbf{k} for Γ, then $\left.f\right|_{\mathbf{k}} \gamma$ is a weak Hilbert-Siegel modular form of weight \mathbf{k} for $\gamma^{-1} \Gamma \gamma$.

A symmetrix matrix $\xi \in \operatorname{Sym}_{m}(F)$ is totally positive definite if $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are all positive definite. We write $\xi>0$ if ξ is totally positive definite. A symmetrix matrix $\xi \in \operatorname{Sym}_{m}(F)$ is totally positive semi-definite if $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are all positive semi-definite. We write $\xi \geq 0$ if ξ is totally positive semi-definite.

Definition 4. A weak Hilbert-Siegel modular form $f(Z)$ of weight \mathbf{k} for Γ is a HilbertSiegel modular form if $f(Z)$ has a Fourier expansion of the form
for any $\gamma \in \operatorname{Sp}_{m}(F)$. The space of all Hilbert-Siegel modular form of weight \mathbf{k} for Γ is denoted by $\mathcal{M}_{\mathbf{k}}(\Gamma)$.

Definition 5. A Hilbert-Siegel modular form $f(Z)$ of weight \mathbf{k} for Γ is a HilbertSiegel cusp form if $f(Z)$ has a Fourier expansion of the form

$$
\left(\left.f\right|_{\mathbf{k}} \gamma\right)(Z)=\sum_{\substack{\xi \in \operatorname{Sym}(F) \\ \xi>0}} a_{f, \gamma}(\xi) \mathbf{e}(\xi Z)
$$

for any $\gamma \in \operatorname{Sp}_{m}(F)$. The space of all Hilbert-Siegel modular form of weight \mathbf{k} for Γ is denoted by $\mathcal{S}_{\mathbf{k}}(\Gamma)$.

Theorem 2 (Koecher principle). Suppose that $d m \geq 2$. Then a weak Hilbert-Siegel modular form of weight \mathbf{k} for Γ is automatically a Hilbert-Siegel modular form.

Proof. First we consider the case $m=1$ and $d>1$. Choose an integral ideal \mathfrak{m} such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then $f(\mathbf{z})$ is stable under a translation $\mathbf{z} \mapsto \mathbf{z}+\mu$ for $\mu \in \mathfrak{m}$. Fix $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in\left(\mathbb{R}_{+}^{\times}\right)^{d}$. Then as a function of $\mathbf{x} \in \mathbb{R}^{d}, f(\mathbf{x}+\sqrt{-1} \mathbf{y})$ is a periodic function with period \mathfrak{m}. It follows that there is a positive number $M>0$ such that

$$
|f(\mathbf{x}+\sqrt{-1} \mathbf{y})|<M, \quad{ }^{\forall} \mathbf{x} \in \mathbb{R}^{d}
$$

Since

$$
a_{f}(\xi)=\frac{1}{\operatorname{Vol}\left(\mathbb{R}^{d} / \mathfrak{n}\right)} \int_{\mathbb{R}^{d} / \mathfrak{n}} f(\mathbf{x}+\sqrt{-1} \mathbf{y}) \mathbf{e}(-\xi(\mathbf{x}+\sqrt{-1} \mathbf{y})) d \mathbf{x}
$$

we have

$$
\left|a_{f}(\xi)\right| \leq M e^{2 \pi \cdot \operatorname{tr}(\xi \mathbf{y})} .
$$

It follows that for any $\varepsilon \in \mathfrak{o}_{F,+}^{\times}, \varepsilon \equiv 1 \bmod \mathfrak{m}$ and and $n \in \mathbb{Z}_{>0}$,

$$
a_{f}(\xi) \leq \varepsilon^{-n \mathbf{k}} M e^{2 \pi \cdot \operatorname{tr}\left(\varepsilon^{2 n} \xi \mathbf{y}\right)} \quad{ }^{\forall} \xi \in \mathfrak{m}^{\vee}
$$

Suppose that $\xi \notin F_{+}^{\times} \cup\{0\}$. We may assume $\xi^{(1)}<0$. Then by Dirichlet unit theorem, there exists $\varepsilon \in \mathfrak{o}_{+}^{\times}$such that $\varepsilon^{(1)}>1, \varepsilon^{(2)}, \ldots, \varepsilon^{(d)}<1$. We may assume $\varepsilon \equiv 1 \bmod$ \mathfrak{m}. Then for $n \longrightarrow+\infty$, we have

$$
\varepsilon^{-n \mathbf{k}} e^{2 \pi \cdot \operatorname{tr}\left(\varepsilon^{2 n} \xi \mathbf{y}\right)} \longrightarrow 0
$$

Hence we have $a_{f}(\xi)=0$.
Next, we consider the case $m \geq 2$. Let N be an integer such that $\Gamma(N \mathfrak{o}) \subset \Gamma$. $\operatorname{Put} L=\operatorname{Sym}(N \mathfrak{o})$ and $L^{\vee}=\operatorname{Sym}(N \mathfrak{o})^{\vee}$. Then $f(\mathbf{z})$ is stable under a translation $Z \mapsto Z+\mu$ by $\mu \in L$. Fix

$$
\begin{aligned}
Y & =\left(Y^{(1)}, \ldots, Y^{(d)}\right) \in \operatorname{Sym}_{m}^{+}(\mathbb{R})^{d} \\
Y^{(i)} & =\operatorname{diag}\left(y_{1}^{(i)}, \ldots, y_{m}^{(i)}\right), \quad y_{1}^{(i)}, \ldots, y_{m}^{(i)}>0, \quad(i=1, \ldots, d) .
\end{aligned}
$$

Then as a function of $X \in \operatorname{Sym}(\mathbb{R})^{d}, f(X+\sqrt{-1} Y)$ is periodic with period L. It follows that there exists a positive number $M>0$ such that

$$
|f(X+\sqrt{-1} Y)|<M, \quad{ }^{\forall} X \in \operatorname{Sym}_{m}(\mathbb{R})^{d}
$$

Since

$$
a_{f}(\xi)=\frac{1}{\operatorname{Vol}\left(\operatorname{Sym}_{m}(\mathbb{R})^{d} / L\right)} \int_{\left(\operatorname{Sym}_{m}(\mathbb{R})^{d} / L\right.} f(X+\sqrt{-1} Y) \mathbf{e}(-\xi(X+\sqrt{-1} Y)) d X
$$

we have

$$
\left|a_{f}(\xi)\right| \leq M \exp (2 \pi \cdot \operatorname{tr}(\xi \mathbf{y})) .
$$

It follows that for any $A \in \operatorname{SL}_{m}(\mathfrak{o})$ such that $A \equiv \mathbf{1}_{m} \bmod N$, we have

$$
a_{f}(\xi) \leq M \exp \left(2 \pi \cdot \operatorname{tr}\left(A \xi^{t} A Y\right)\right) \quad{ }^{\forall} \xi \in L^{\vee}
$$

Suppose that $\xi=\left(\xi_{i j}\right) \in \operatorname{Sym}_{m}(F)$ is not totally positive semi-definite. We need show that $a_{f}(\xi)=0$. By assumption, $\iota^{(1)}(\xi), \ldots, \iota^{(d)}(\xi)$ are not all positive semidefinite. We may assume $\iota^{(1)}(\xi)$ is not positive semi-definite. Then there exists $v=\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{R}^{m}$ such that $v \iota^{(1)}(\xi) \cdot t v<0$. Since \mathbb{Q}^{m} is dense in \mathbb{R}^{m}, we may assume $v \in \mathbb{Q}^{m}$. Moreover, multiplying an integer, we may assume $v \in \mathbb{Z}^{m}$. Let K be a GCD of $v_{1}-v_{2}, v_{1}-v_{3}, \ldots, v_{1}-v_{m}$. By replacing v by $(1,0, \ldots, 0)+K N v$, if necessary, we may assume v satisfies the following conditions:

- $v \equiv(1,0, \ldots, 0) \bmod N$.
- v_{1}, \ldots, v_{m} are coprime.

It follows that there exists $A \in \mathrm{SL}_{m}(\mathbb{Z}), A \equiv \mathbf{1}_{m} \bmod N$ such that the first column of A is v. By replacing ξ by $A \xi^{t} A$, we may assume that $\iota^{(1)}\left(\xi_{11}\right)<0$. Put

$$
B=\left(\begin{array}{ccccc}
1 & N & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & & 1
\end{array}\right)
$$

Then we have $B \equiv \mathbf{1}_{m} \bmod N$ and

$$
\operatorname{tr}\left(B^{n} \xi \cdot{ }^{t} B^{n}\right)=\sum_{i=1}^{d}\left(\xi_{11}^{(i)} N^{2} n^{2}+2 \xi_{12}^{(i)} N n\right) y_{2}^{(i)}+\left(\xi_{11}^{(i)} y_{1}^{(i)}+\xi_{22}^{(i)} y_{2}^{(i)}+\cdots+\xi_{m m}^{(i)} y_{m}^{(i)}\right)
$$

One can choosing Y such that $\sum_{i=1}^{d} \xi_{11}^{(i)} y_{2}^{(i)}<0$. Then for $n \rightarrow \infty$, we have $\operatorname{tr}\left(B^{n} \xi \cdot{ }^{t}\right.$ $\left.B^{n}\right) \rightarrow-\infty$. Hence we have $a_{f}(\xi)=0$, as desired.

The following are known:

- $\mathcal{M}_{\mathbf{k}}(\Gamma), \mathcal{S}_{\mathbf{k}}(\Gamma)$ are finite-dimensional.
- If $F \neq \mathbb{Q}$ and $k^{(i)} \neq k^{(j)}$ for some $i, j \in\{1, \ldots, d\}$, then we have $\mathcal{M}_{\mathbf{k}}(\Gamma)=$ $\mathcal{S}_{\mathbf{k}}(\Gamma)$.

3 Vector-valued Hilbert-Siegel modular forms

Put

$$
\mathbf{i}=\left(\sqrt{-1} \cdot \mathbf{1}_{m}, \ldots, \sqrt{-1} \cdot \mathbf{1}_{m}\right) \in \mathfrak{h}_{m}^{d}
$$

The stabilizer of \mathbf{i} in $\operatorname{Sp}_{m}\left(F_{\infty}\right) \simeq \operatorname{Sp}_{m}(\mathbb{R})^{d}$ is denoted by K_{∞}. Then K_{∞} is isomorphic to $\mathrm{U}(m)^{d}$. Here, the unitary group $\mathrm{U}(m)$ is considered as a subgroup of $\mathrm{Sp}_{m}(\mathbb{R})$ by

$$
A+\sqrt{-1} B \mapsto\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right)
$$

For $k=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}^{m}$ such that $k_{1} \geq \cdots \geq k_{m}$, the irreducible representation of $\mathrm{U}(m)$ with highest weight $\left(k_{1}, \ldots, k_{m}\right)$ is denoted by ρ_{k}. For a multi-index weight $\mathbf{k}=\left(k^{(1)}, \ldots, k^{(d)}\right), k^{(i)}=\left(k_{1}^{(i)}, \ldots, k_{m}^{(i)}\right) \in \mathbb{Z}^{m}$ such that $k_{1}^{(i)} \geq \cdots \geq k_{m}^{(i)}$ for each i, the irreducible representation $\rho_{\mathbf{k}}$ of $\mathrm{U}(m)^{d}$ is defined by $\rho_{\mathbf{k}}=\rho_{k^{(1)}} \otimes \cdots \otimes \rho_{k^{(d)}}$. The representation space of $\rho_{\mathbf{k}}$ is denoted by $V_{\rho_{\mathbf{k}}}$.

The canonical automorphy factor $J(\gamma, Z) \in \mathrm{GL}_{m}(\mathbb{C})^{d}$ for $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}_{m}(\mathbb{R})$ and $Z \in \mathfrak{h}_{m}$ is defined by

$$
J(\gamma, Z)=C Z+D
$$

Let $\mathbf{k}=\left(k^{(1)}, k^{(2)}, \ldots, k^{(d)}\right), k^{(i)}=\left(k_{1}^{(i)}, \ldots, k_{m}^{(i)}\right), k_{1}^{(i)} \geq \cdots \geq k_{m}^{(i)}$ be a multi-index weight of size m. Then $\rho_{\mathbf{k}}(J(\gamma, Z)) \in \operatorname{GL}\left(V_{\rho_{\mathbf{k}}}\right)$ for $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \operatorname{Sp}_{m}(\mathbb{R})^{d}$ and $Z=\left(Z_{1}, \ldots, Z_{d}\right) \in \mathfrak{h}_{m}^{d}$ is an automorphy factor. Suppose that $f(\mathbf{z})$ is a $V_{\rho_{\mathbf{k}}}$-valued function on \mathfrak{h}_{m}^{d}. Then, for $\gamma \in \operatorname{Sp}_{m}(\mathbb{R})^{d}$, put

$$
\left(\left.f\right|_{\rho_{\mathbf{k}}} \gamma\right)(Z)=\rho_{\mathbf{k}}(J(\gamma, Z))^{-1} f(\gamma(Z))
$$

Then we have

$$
\left.\left(\left.f\right|_{\rho_{\mathbf{k}}} \gamma_{1}\right)\right|_{\rho_{\mathbf{k}}} \gamma_{2}=\left.f\right|_{\rho_{\mathbf{k}}}\left(\gamma_{1} \gamma_{2}\right) \quad \text { for } \gamma_{1}, \gamma_{2} \in \operatorname{Sp}_{m}(\mathbb{R})^{d}
$$

Definition 6. A $V_{\rho_{\mathbf{k}}}$-valued holomorphic function $f(Z)$ on \mathfrak{h}_{m}^{d} is a weak HilbertSiegel modular form of vector weight $\rho_{\mathbf{k}}$ for a congruence subgroup Γ if $\left.f\right|_{\rho_{\mathbf{k}}} \gamma=f$ for any $\gamma \in \Gamma$.

Remark 1. $\rho=\rho_{\mathbf{k}}$ is usually called the weight $\rho_{\mathbf{k}}$. But, since the word "weight" is somewhat confusing, we use the word "vector weight" here.

Let f be a weak Hilbert-Siegel modular form for a congruence subgroup Γ of vector weight $\rho_{\mathbf{k}}$. Let \mathfrak{m} be an integral ideal such that $\Gamma(\mathfrak{m}) \subset \Gamma$. Then we have

$$
f(Z+\mu)=f(Z) \quad \forall \mu \in \operatorname{Sym}_{m}(\mathfrak{m})
$$

It follows that $f(Z)$ has a Fourier expansion

$$
f(Z)=\sum_{\xi \in \operatorname{Sym}(\mathfrak{m})^{\vee}} a_{f}(\xi) \mathbf{e}(\xi Z) .
$$

This Fourier expansion converges absolutely and uniformly on any compact subset of \mathfrak{h}_{m}^{d}. If $f(z)$ is a weak Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ, then $\left.f\right|_{\rho_{\mathbf{k}}} \gamma$ is a weak Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for $\gamma^{-1} \Gamma \gamma$.

Definition 7. A weak Hilbert-Siegel modular form $f(Z)$ of vector weight $\rho_{\mathbf{k}}$ for Γ is a Hilbert-Siegel modular form if $f(Z)$ has a Fourier expansion of the form
for any $\gamma \in \mathrm{Sp}_{m}(F)$. The space of all Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ is denoted by $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$.

Definition 8. A Hilbert-Siegel modular form $f(Z)$ of vector weight $\rho_{\mathbf{k}}$ for Γ is a Hilbert-Siegel cusp form if $f(Z)$ has a Fourier expansion of the form
for any $\gamma \in \operatorname{Sp}_{m}(F)$. The space of all Hilbert-Siegel modular form of vector weight $\rho_{\mathbf{k}}$ for Γ is denoted by $\mathcal{S}_{\rho_{\mathbf{k}}}(\Gamma)$.

It is known that if $k_{m}^{(i)}<0$ for some i, then $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)=0$. The Koecher principle holds for vector-valued Hilbert-Siegel modular forms. It is also known that $\mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$ and $\mathcal{S}_{\rho_{\mathrm{k}}}(\Gamma)$ are finite-dimensional vector spaces.

4 Hilbert-Siegel modular forms on $\operatorname{Sp}_{m}(\mathbb{A})$

The adele group $\mathrm{Sp}_{m}(\mathbb{A})$ of Sp_{m} is given by

$$
\operatorname{Sp}_{m}(\mathbb{A})=\bigcup_{\mathfrak{S}}\left(\prod_{v \notin \mathfrak{S}} \operatorname{Sp}_{m}\left(\mathfrak{o}_{v}\right)\right) \times\left(\prod_{v \in \mathfrak{S}} \operatorname{Sp}_{m}\left(F_{v}\right)\right)
$$

where \mathfrak{S} extends over finite sets of places of F containing all archimedean places.
Let Γ be a congruence subgroup of $\operatorname{Sp}_{m}(F)$ and \mathbf{K}_{Γ} its closure in $\operatorname{Sp}_{m}\left(\mathbb{A}_{\mathrm{fin}}\right)$. Then the strong approximation property, we have

$$
\operatorname{Sp}_{m}(\mathbb{A})=\operatorname{Sp}_{m}(F) \cdot \mathbf{K}_{\Gamma} \cdot \operatorname{Sp}_{m}\left(F_{\infty}\right)
$$

Here, $F_{\infty} \simeq \mathbb{R}^{d}$ is the infinite part of \mathbb{A}. When $\mathrm{Sp}_{m}(F)$ is regarded as a subgroup of $\mathrm{Sp}_{m}(\mathbb{A})$, we have

$$
\operatorname{Sp}_{m}(F) \cap \mathbf{K}_{\Gamma} \cdot \operatorname{Sp}_{m}\left(F_{\infty}\right)=\Gamma
$$

Let $f(Z)$ be a Hilbert-Siegel modular form of vector weight $\rho=\rho_{\mathbf{k}}$ for Γ. Then we can construct a V_{ρ}-valued function $\phi_{f}(g)$ as follows.

For $g \in \operatorname{Sp}_{m}(\mathbb{A})$, choose a decomposition

$$
g=\gamma \cdot u \cdot h, \quad \gamma \in \operatorname{Sp}_{m}(F), u \in \mathbf{K}_{\Gamma}, h \in \operatorname{Sp}_{m}\left(F_{\infty}\right)
$$

and put

$$
\phi_{f}(g)=\left(\left.f\right|_{\rho} h\right)(\mathbf{i})
$$

Then we have a well-defined V_{ρ}-valued function ϕ_{f} on $\operatorname{Sp}_{m}(\mathbb{A})$. In fact, let

$$
g=\gamma^{\prime} \cdot u^{\prime} \cdot h^{\prime}, \quad \gamma^{\prime} \in \mathrm{Sp}_{m}(F), u^{\prime} \in \mathbf{K}_{\Gamma}, h^{\prime} \in \mathrm{Sp}_{m}\left(F_{\infty}\right)
$$

be another decomposition. Then $\delta:=\gamma \gamma^{\prime-1} \in \Gamma$. Let $\delta_{\text {fin }}$ and δ_{∞} be the finite and infinite part of δ. Then we have

$$
u^{\prime}=\delta_{\mathrm{fin}} u, \quad h^{\prime}=\delta_{\infty} h
$$

and so

$$
\left.f\right|_{\mathbf{k}} h^{\prime}=\left.f\right|_{\rho} \delta_{\infty} h=\left.f\right|_{\rho} h
$$

Hence $\phi_{f}(g)$ is well-defined.

Let \mathfrak{g} and \mathfrak{k} be the complexification of the Lie algebra of $\operatorname{Sp}_{m}\left(F_{\infty}\right)$ and K_{∞}, respectively. Then we have a Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}, \mathfrak{p}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$such that

$$
\left[\mathfrak{k}, \mathfrak{p}^{ \pm}\right] \subset \mathfrak{p}^{ \pm}, \quad\left[\mathfrak{p}^{+}, \mathfrak{p}^{+}\right]=\left[\mathfrak{p}^{-}, \mathfrak{p}^{-}\right]=0, \quad\left[\mathfrak{p}^{+}, \mathfrak{p}^{-}\right]=\mathfrak{k} .
$$

Note that in the case $d=1$, we have

$$
\begin{aligned}
\mathfrak{g} & =\left\{\left.\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{3} & -{ }^{t} X_{1}
\end{array}\right) \right\rvert\, X_{1}, X_{2}, X_{3} \in \mathrm{M}_{m}(\mathbb{C}), X_{2}={ }^{t} X_{2}, X_{3}={ }^{t} X_{3}\right\}, \\
\mathfrak{k} & =\left\{\left.\left(\begin{array}{cc}
A & -B \\
B & A
\end{array}\right) \right\rvert\, A, B \in \mathrm{M}_{m}(\mathbb{C}),-A={ }^{t} A, B={ }^{t} B\right\}, \\
\mathfrak{p}^{+} & =\left\{\left.\left(\begin{array}{cc}
Z & \sqrt{-1} Z \\
\sqrt{-1} Z & -Z
\end{array}\right) \right\rvert\, Z \in \mathrm{M}_{m}(\mathbb{C}), Z={ }^{t} Z\right\}, \\
\mathfrak{p}^{-} & =\left\{\left.\left(\begin{array}{cc}
Z & -\sqrt{-1} Z \\
-\sqrt{-1} Z & -Z
\end{array}\right) \right\rvert\, Z \in \mathrm{M}_{m}(\mathbb{C}), Z={ }^{t} Z\right\} .
\end{aligned}
$$

The element of \mathfrak{p}^{-}acts on a function on \mathfrak{h}_{m}^{d} by an anti-holomorphic differential operator. Since f is a holomorphic function on \mathfrak{h}_{m}^{d}, we have $\mathfrak{p}^{-} \cdot \phi_{f}=0$.

Let $\mathcal{U}(\mathfrak{g})$ and $\mathcal{Z}(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g} and its center, respectively.
An element of $\mathcal{U}(\mathfrak{g})$ (resp. $\mathcal{Z}(\mathfrak{g}))$ acts on $C^{\infty}\left(\operatorname{Sp}_{m}\left(F_{\infty}\right)\right)$ as a left invariant (resp. bi-invariant) differential operator. A ring homomorphism $\chi: \mathcal{Z}(\mathfrak{g}) \rightarrow \mathbb{C}$ is called an infinitesimal character.

Let $\mathfrak{h} \subset \mathfrak{k}$ be a Cartan subalgebra of \mathfrak{k}. Then \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}. Let $W=W(\mathfrak{g}, \mathfrak{h})$ be the Weyl group. By the Harish-Chandra isomorphism, we have $z(\mathfrak{g}) \simeq \mathbb{C}[\mathfrak{h}]^{W}$. The Cartan subalgebra is isomorphic to $\underbrace{\mathbb{C}^{m} \times \cdots \times \mathbb{C}^{m}}_{d \text { times }}$. Let $\chi_{\mathbf{k}}$ be the infinitesimal character determined by

$$
\left(H_{1}^{(1)}, H_{2}^{(1)}, \ldots, H_{m}^{(1)}, \ldots \ldots, H_{1}^{(d)}, H_{2}^{(d)}, \ldots, H_{m}^{(d)}\right) \mapsto \sum_{i=1}^{d} \sum_{j=1}^{m}\left(k_{j}^{(i)}-j\right) H_{j}^{(d)}
$$

Proposition 1. We have $z \cdot \phi_{f}=\chi_{\mathbf{k}}(z) \phi_{f}$ for any $f \in \mathcal{M}_{\rho_{\mathbf{k}}}(\Gamma)$.
Proof. Let $\mathfrak{n}_{\mathfrak{k}}^{+}$and $\mathfrak{n}_{\mathfrak{k}}^{-}$be the maximal nilotent subalgebras of \mathfrak{k}, corresponding to positive and negative root systems, respectively. Since $\phi_{f}(g k)=\rho(k) \phi_{f}(g)$ for $k \in$ K_{∞}, we may assume ϕ_{f} is a highest weight vector, i.e., $N \cdot \phi_{f}=0$ for any $N \in \mathfrak{n}_{\mathfrak{k}}^{+}$.

Put $\mathfrak{n}=\mathfrak{p}^{-}+\mathfrak{n}_{\mathfrak{k}}^{+}$. Then \mathfrak{n} is a maximal nilpotent subalgebra of \mathfrak{g}. Then we have

$$
\begin{aligned}
\mathfrak{n} \cdot \phi_{f} & =0 \\
H \cdot \phi_{f}= & \left(\sum_{i=1}^{d} \sum_{j=1}^{m} k_{j}^{(i)}\right) \phi_{f}
\end{aligned}
$$

for

$$
H=\left(H_{1}^{(1)}, H_{2}^{(1)}, \ldots, H_{m}^{(1)}, \ldots \ldots, H_{1}^{(d)}, H_{2}^{(d)}, \ldots, H_{m}^{(d)}\right) \in \mathfrak{h} .
$$

Let δ be the half the sum of roots in \mathfrak{n}. Then we have

$$
\delta(H)=-\sum_{i=1}^{d} \sum_{j=1}^{m} j H_{j}^{(i)} .
$$

By the Poincare-Birkoff-Witt theorem, we have $\mathbb{C}[\mathfrak{h}] \cap \mathcal{U}(\mathfrak{g}) \mathfrak{n}=0$ and $\mathcal{Z}(\mathfrak{g}) \subset \mathbb{C}[\mathfrak{h}]+$ $\mathcal{U}(\mathfrak{g}) \mathfrak{n}$. Let $\gamma^{\prime}: \mathcal{Z}(\mathfrak{g}) \rightarrow \mathbb{C}[\mathfrak{h}]$ be the first projection. Let $\sigma: \mathfrak{h} \rightarrow \mathbb{C}[\mathfrak{h}]$ be the map given by $\sigma(H)=H-\delta(H)$. Then the Harish-Chandra isomorphism $\gamma: \mathcal{Z}(\mathfrak{g}) \simeq \mathbb{C}[\mathfrak{h}]^{W}$ is induced by $\gamma=\sigma \circ \gamma^{\prime}$. Since

$$
\gamma^{-1}(H) \cdot \phi_{f}=\left(\sum_{i=1}^{d} \sum_{j=1}^{m}\left(k_{j}^{(i)}-j\right)\right) \phi_{f}
$$

We obtain the proposition.
Let $\mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) / \mathbf{K}_{\Gamma}\right)$ be the space of all ϕ_{f} such that $f \in \mathcal{M}_{\rho}(\Gamma)$. Then it is known that an element $\phi \in \mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) / \mathbf{K}_{\Gamma}\right)$ is characterized as a function on $\operatorname{Sp}_{m}(\mathbb{A})$ with the properties:
(1) ϕ is left $\operatorname{Sp}_{m}(F)$ invariant.
(2) ϕ is right \mathbf{K}_{Γ} invariant.
(3) For $h \in K_{\infty} \simeq \mathrm{U}(m)^{d}$, we have $\phi(g h)=\rho(h) \phi(g)$.
(4) $\mathfrak{p}^{-} \phi=0$.
(5) $z \cdot \phi_{f}=\chi_{\mathbf{k}}(z) \phi_{f}$ for any $z \in \mathcal{Z}(\mathfrak{g})$.
(6) ϕ is slowly increasing on $\operatorname{Sp}_{m}(\mathbb{A})$.

When $d m>1$, the condition (5) is not necessary by the Koecher principle.
For $\delta \in \operatorname{Sp}_{m}(F)$, we have $\left.f\right|_{\mathbf{k}} \delta_{\infty} \in M_{\mathbf{k}}\left(\delta^{-1} \Gamma \delta\right)$. Moreover, we have

$$
\phi_{\left(\left.f\right|_{\mathbf{k}} \delta_{\infty}\right)}(g)=\phi_{f}\left(g \delta_{\mathrm{fin}}^{-1}\right)
$$

Here, $\delta_{\text {fin }}$ and δ_{∞} are the finite and infinite part of δ, respectively. In fact, let

$$
g=\gamma \cdot u \cdot h_{\infty}, \quad \gamma \in \operatorname{Sp}_{m}(F), \quad u \in \delta^{-1} \mathbf{K}_{\Gamma} \delta, \quad h_{\infty} \in \operatorname{Sp}_{m}\left(F_{\infty}\right)
$$

be a decomposition. Then we have

$$
\phi_{\left(\left.f\right|_{\mathbf{k}} \delta_{\infty}\right)}(g)=\left(\left.\left(\left.f\right|_{\mathbf{k}} \delta_{\infty}\right)\right|_{\mathbf{k}} h_{\infty}\right)(\mathbf{i})=\left(\left.f\right|_{\mathbf{k}} \delta_{\infty} h_{\infty}\right)(\mathbf{i})
$$

Note that a decomposition of $f \delta_{\text {fin }}^{-1}$ is given by
$g \delta_{\text {fin }}^{-1}=\left(\gamma \delta^{-1}\right) \cdot\left(\delta u \delta^{-1}\right) \cdot\left(\delta_{\infty} h_{\infty}\right), \quad \gamma \delta^{-1} \in \operatorname{Sp}_{m}(F), \delta u \delta^{-1} \in \mathbf{K}_{\Gamma}, \delta_{\infty} h_{\infty} \in \operatorname{Sp}_{m}\left(F_{\infty}\right)$.
Hence we have $\phi_{f}\left(g \delta_{\mathrm{f}}^{-1}\right)=\left(\left.f\right|_{\mathbf{k}} \delta_{\infty} h_{\infty}\right)(\mathbf{i})$. It follows that

$$
\phi_{\left(\left.f\right|_{\mathbf{k}} \delta\right)}(g)=\left(\left.f\right|_{\mathbf{k}} \delta_{\infty} h_{\infty}\right)(\mathbf{i})=\phi_{f}\left(g \delta_{\text {fin }}^{-1}\right) .
$$

Definition 9.

$$
\begin{aligned}
\mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A})\right) & =\bigcup_{\Gamma} \mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) / \mathbf{K}_{\Gamma}\right) \\
\mathcal{S}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A})\right) & =\bigcup_{\Gamma} \mathcal{S}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) / \mathbf{K}_{\Gamma}\right)
\end{aligned}
$$

By what we have seen as above, the finite adele group $\operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$ acts on $\mathcal{M} \mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \mathrm{Sp}_{m}(\mathbb{A})\right)$ and $\mathcal{S}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \mathrm{Sp}_{m}(\mathbb{A})\right)$ by right translation.

Definition 10. A (\mathbb{C}-valued) function φ on $\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A})$ is an automophic form on $\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A})$ of infinitesimal character χ and K_{∞}-type ρ if the following conditions hold:
(1) φ is left $\operatorname{Sp}_{m}(F)$ invariant.
(2) φ is right \mathbf{K} invariant for some compact open subgroup $\mathbf{K} \subset \operatorname{Sp}_{m}\left(\mathbb{A}_{\text {fin }}\right)$.
(3) φ has an infinitesimal character χ, i.e., $z \cdot \varphi=\chi(z) \varphi$ for any $z \in \mathcal{Z}(\mathfrak{g})$.
(4) By the action of K_{∞} by the right translation, φ has a K_{∞}-type ρ.
(5) φ is slowly increasing on $\operatorname{Sp}_{m}(\mathbb{A})$.

The space of automorphic form on $\operatorname{Sp}_{m}(F) \backslash \mathrm{Sp}_{m}(\mathbb{A})$ of infinitesimal character χ and K_{∞} type ρ is denoted by $\mathcal{A}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) ; \chi ; \rho\right)$.

Put

$$
\mathcal{A}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) ; \chi ; \rho\right)^{\mathfrak{p}^{-}}=\left\{\phi \in \mathcal{A}\left(\operatorname{Sp}_{m}(F) \backslash \mathrm{Sp}_{m}(\mathbb{A}) ; \chi ; \rho\right) \mid \mathfrak{p}^{-} \phi=0\right\} .
$$

Then we have

$$
\mathcal{M}_{\rho}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A})\right) \otimes V_{\rho}^{\vee}=\mathcal{A}\left(\operatorname{Sp}_{m}(F) \backslash \operatorname{Sp}_{m}(\mathbb{A}) ; \chi ; \rho\right)^{\mathfrak{p}^{-}}
$$

Here, V_{ρ}^{\vee} is the dual space of V_{ρ}. This isomorphism is given by

$$
f \otimes v^{\vee} \mapsto\left\langle\phi_{f}, v^{\vee}\right\rangle
$$

